用户名: 密码: 验证码:
垃圾生物覆盖土对填埋气中H_2S的净化作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填埋处理过程产生的还原态硫化物是导致填埋场恶臭污染的主要原因,其中的H2S在还原态硫化物中占主导地位,是该类物质浓度和流量的敏感指标,因此,H2S减排对填埋场恶臭污染控制具有重要意义。填埋场覆盖土层是“填埋气(Landfill Gas, LFG)-大气”体系的环境界面,当LFG通过覆盖土层进入大气时,其所含的H2S会在覆盖土层的物化和生物作用下被去除。生物覆盖土是一种类似腐殖质的物质,在CH4氧化和减排方面具有优良性能,但目前关于其在H2S净化性能方面的研究鲜有报道。鉴于此,本论文以生物处理后的垃圾为材料,制备了垃圾生物覆盖土(Waste Biocover Soil, WBS),考察其对H2S的去除和影响因子,并构建了模拟土柱和垃圾填埋场反应器,探究了WBS作为新型的填埋场覆盖材料对LFG中H2S的净化作用和机理,获得如下主要研究结果:
     (1)考察和检测了垃圾填埋场现场大气中H2S的浓度和排放量,获得了实际运行中的不同年龄填埋场的H2S排放规律。在填埋场中,H2S的排放量和大气中H2S的浓度范围分别是141-9854μgm-2d-1和4.4~261μg m-3。填埋场覆盖土呈现出较强的硫氧化能力和硫酸盐还原能力,且两者分别与其中的硫氧化细菌(Sulfur Oxidizing Bacteria, SOB)和硫酸盐还原菌(Sulfate Reducing Bacteria, SRB)的数量有一定相关性。填埋场覆盖土中主要的SOB有Halothiobacillus、Rhodothalassium、Paracocccus、Allochromatium和Thiobacillus;主要的SRB有Desulfovibrio、Syntrophobacter、Desulfomonile和Desulfobacca。在覆盖土的pH、含水率、有机质及含硫化合物含量等理化指标中,pH值是影响其中SOB和SRB群落结构分布与丰度的最主要因素。
     (2)制备了WBS,对比于填埋场覆盖土(Landfill Cover Soil,LCS)、桑园土和砂土,WBS对H2S具有较高的吸附脱除性能。WBS组成影响实验研究表明,粒径是影响WBS吸附脱除性能的主要因素,其次是含水率和pH。WBS脱除H2S的最佳条件为:原始pH值(7.9)、含水率40%和粒径≤4mm。在温度为4-45℃和O2浓度为0%-21%(v/v)时,WBS对H2S吸附脱除量随着温度和02浓度的增加呈先升高后降低的趋势,在35℃和O2浓度为10%(v/v)时分别达到最大吸附脱除量,分别为55.6±5.0mgkgd.w.-1和59.6±1.3mg kg d.w.-1。当H2S顶空浓度为0.1%-10%(v/v)时,WBS对其吸附可在2-3h内达饱和,且随着H2S浓度的增大,吸附饱和时间延长。
     (3)探究了WBS的矿物质组成,主要有石英、莫来石(硅酸铝)、钠长石、白云母、白云石、方解石等。WBS中水分和硅酸铝对其吸附脱除H2S有较大贡献,分别可占36.9%和24.9%,其后,依次是石英砂(1.6%)>钠长石(1.5%)>白云母(1.1%)>方解石(0.7%)>腐殖质(0.4%)>白云石(0.3%)。在低温及中温条件下(≤30℃),WBS对H2S的硫有较好的吸附保持能力;当温度达到45℃时,WBS上层含水率的急剧降低使其吸附的H2S在120h内完全释放或转化,但下层仍有88.6%的吸附硫残余量。此外,酸性降水(pH=3.5~6.0)可短期内(12~36h)使WBS的吸附硫几乎全部释放或转化,但酸的种类(H2SO4和HNO3)和pH对吸附硫的释放或转化无显著影响。
     (4)探索了WBS土柱对模拟LFG中H2S的净化特性,结果表明,暴露于含H2S的LFG后,WBS和LCS的硫氧化能力、硫酸盐还原能力和硫化物含量都出现了增长。相较于LCS, WBS具有较高的硫氧化和硫酸盐还原能力。在土柱运行结束时(第35d),WBS下层的硫氧化潜力达到最大值(82.5±7.9μmol g d.w.-1d-1),为LCS的4.3~5.4倍;此时,WBS上、中、下层土样的CH4氧化活性分别是LCS对应层土样的3.1、3.5、6.6倍。与LCS相比,WBS对H2S和CH4具有更强的净化性能,是一种可有效减少LFG中污染物排放的填埋场覆盖材料。
     (5)分析了WBS和LCS土柱层中微生物群落结构,结果表明,WBS和LCS中主要的优势微生物是Proteobacteria、Firmicutes和Bacteroidete。暴露于含H2S的LFG后,WBS中的微生物多样性指数出现了下降,而LCS中却有所升高。在WBS和LCS中参与硫代谢的微生物主要是Proteobacteria和Firmicutes门微生物,包括Ochrobactrum、 Paracoccus、Comamonas、Pseudomonas、Enterobacteriaceae、Acinetobacter,以及Firmicutes门的Bacillus (Bacilli)和Clostridium (Clostridia)。
     (6)研究了在填埋场稳定化过程中WBS作为新型覆盖材料对H2S的净化效果。在模拟垃圾填埋场反应器中LFG的产生量和气体组分随垃圾填埋时间的增长呈动态变化。由于填埋垃圾异质性高,不同反应器产生的LFG中H2S浓度相差较大,其随时间的变化波动也较大。在整个实验运行过程中WBS和LCS对H2S的去除率均保持在90%以上。
     含H2S的LFG持续通入,有效地刺激了WBS中好氧异养细菌、放线菌、真菌以及SOB和SRB的生长,而LCS土样中微生物数量增长较少,在LCS下层中放线菌、真菌和SRB甚至出现了下降。这表明,WBS中的微生物对H2S的毒害不仅有更高的耐受性,而且可以在其中生长繁衍并将H2S转化和脱除。WBS和LCS中硫化物含量和pH分析表明,LCS对H2S的去除主要是吸附作用,而WBS不仅能吸附H2S,而且具有较高的生物硫代谢活性,促进了其中H2S的转化和脱除。
Reduced sulfur compounds (RSCs), generated during the landfilling of municipal solid waste, are the main sources of odor in landfills. H2S is an important RSC and is the most sensitive indicator for the concentrations and fluxes of RSCs. So the reduction of H2S emission is of great significance to odor control in landfills. Landfill cover soil is the environmental interface of landfill gas (LFG) and the atmosphere. A part of H2S can be removed by physico-chemical and biological reactions in landfill cover soils while LFG is escaping to the atmosphere. Biocover soils are similar to humus soil and had been extensively studied as an alternative landfill cover materials. Biocover soils had a good performance in CH4oxidation and reduction. However, studies on its effects on H2S removal are rarely found. Thus, we chose waste biocover soil (WBS), collected from a waste treating bioreactor, as raw materials, and studied its characterization on H2S adsorption removal, as well as the influencing factors. Moreover, we designed and established the soil coloumns and simulated landfill bioreactors to study the efficiency of H2S elimination by WBS as a novel alternative landfill cover soil. The major results are as follows:
     (1) The concentrations of H2S in the air of landfills and its emission rates were detected. The concentrations of H2S in the ambient air and its emissions from landfills were in ranges of35-261μg m-3and1361-9854μg m-2d-1, respectively. The landfill cover soils showed high activity of sulfide oxidation and sulfate reduction, which had good correlations with the populations of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB), respectively. In the investigated landfill cover soils (LCS), the main SOB species were Halothiobacillus, Rhodothalassium, Paracocccus, Allochromatium and Thiobacillus, and main SRB species were Desulfovibrio, Syntrophobacter, Desulfomonile and Desulfobacca. Among the factors including pH, moisture content and the contents of organic materials and sulfur compounds, pH was the most important factor in influencing the microbial community structures and abundance in the landfill cover soils.
     (2) We selected biologically treated waste to prepare the WBS. Compared to LCS, mulberry soil and sand soil, WBS had the higher adsorption removal capacity of H2S. Particle size was the main factor affecting the adsorption capacity of WBS, followed by moisture content and pH. The effects of different environmental conditions on the adsorption capacity of WBS for H2S were studied and results showed that with the increase of temperatures (4-45℃) and O2concentrations (0%-21%(v/v)), the H2S adsorption removal capacity of WBS firstly increased and then decreased. When the temperature and O2concentration were35℃and10%(v/v), the H2S adsorption removal capacity of WBS reached the maximum value of55.6±5.0mg kg d.w.-1and59.6±1.3mg kg d.w.-1, respectively. Adsorption equilibrium for H2S on WBS was achieved within2-3h at the H2S concentrations of0.1%-10%(v/v). The time for adsorption equilibrium of H2S on WBS became longer with the increasing concentrations of H2S.
     (3) The main mineral components of WBS were studied, which included Mullite (Aluminum Silicate), Quartz, Albite, Muscovite, Dolomite and Calcite. Water and Aluminum Silicate contribute most to H2S adsorption removal of WBS, accounting for36.9%and24.9%, respectively, followed by Humus> Quartz> Muscovite> Dolomite> Calcite> Albite. At the temperatures below30℃, little amount of sulfur was loss from WBS after it was saturated adsorption for H2S. However, the adsorbed sulfide was almost totally released or converted in the top layer of WBS after it was put at45℃for120h for the significant drop of its moisture content, while88.6%of residual sulfide was in the bottom layer of WBS. Acid solutions precipitation of22.3-66.9mm could leach the sulfide from WBS within12-36h, but acid types (HNO3and H2SO4) and the pH values had no significant influence on the contents of residual sulfide (i.e. the release and transformation of adsorbed sulfide).
     (4) The removal efficiency of WBS as an alternative landfill cover was studied. Results showed that, under the continuous inflow of simulated LFG (CH4:CO2=1:1, H2S concentration of1%(v/v)), the potential sulfur oxidation rate and sulfate reduction rate as well as the contents of sulfur compounds were all increased in WBS and LCS. Compared to LCS, the potential sulfur oxidation rate and sulfate reduction rate were higher in WBS. On35d, the potential sulfur oxidation rate of the bottom layer of WBS reached the maximum value (82.5±7.9μmol g d.w.-1d-1), which was4.3-5.4times of that of LCS, while the the potential CH4oxidation rate in the top, middle and bottom layers of WBS were, respectively,3.1,3.5,6.6times of that of LCS. Compared with LCS, the performance in H2S elimination and CH4oxidation was better in WBS, demonstrating that WBS would be an excellent alternative cover material for landfills.
     (5) The microbial community structures in WBS and LCS were analyzed. The main microorganisms in WBS and LCS were Proteobacteria, Firmicutes and Bacteroidetes. After exposure to LFG with H2S, the diversity indexes decreased in WBS, while they increased in LCS. The main microorganisms participating in the sulfur metabolism were Proteobacteria and Firmicutes, ncluding Ochrobactrum, Paracoccus, Comamonas, Pseudomonas (Gammaproteobacteria), Enterobacteriaceae, Acinetobacter, as well as Bacillus (Bacilli) and Clostridium (Clostridia) of Firmicutes.
     (6) Simulated landfills were designed and established, and the removal of H2S by WBS as an alternative landfill cover soil were studied. The LFG production rate of the and the LFG compositions varied a lot during the stabilization process of landfills. Owing to the great heterogeneity of the wasted landfilled, the H2S concentration in LFG from the landfills differ much from each other, and changed greatly over time. During the whole experiment, the removal efficiencies of H2S of the two soils were both above90%.
     The input of LFG with H2S stimulated significantly the growth of aerobic heterotrophic bacteria, actinomyces, fungi, SOB and SRB in WBS. However, the increase of the microbial populations in LCS was lower than that in WBS. In the bottom layer of LCS, the populations of actinomyces, fungi and SRB even decreased. These results indicated that the microorganisms in WBS had higher tolerance to the toxicity of LFG and could covert and remove H2S during their growth. The variation of sulfur compounds contents and pH values in WBS and LCS indicated that LCS eliminated H2S mainly by adsorption, while the higher biological sulfur metabolic activity of WBS additionally enhanced its ability in H2S conversion and removal.
引文
Abdullah AZ, Bakar MZ, Bhatia S. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst[J]. Journal of Hazardous Materials,2006,129:39-49.
    Abichou T, Chanton J, Powelson D, Fleiger J, Escoriaza S, Lei Y, Stern J. Methane flux and oxidation at two types of intermediate landfill covers[J]. Waste Management,2006,26: 1305-1312.
    Adib F, Bagreev A, Bandosz TJ. Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide[J]. Journal of Colloid and Interface Science, 1999,214:407-415.
    Adib F, Bagreev A, Bandosz TJ. Analysis of the relationship between H2S removal capacity and surface properties of unimpregnated activated carbons[J]. Environmental Science & Technology,2000,34:686-692.
    Aguilar JRP, Cabriales JJP, Vega MM. Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery [J]. International Journal of Phytoremediation,2008,10:359-370.
    Allen MR, Braithwaite A, Hills CC. Trace organic compounds in landfill gas at seven UK waste disposal sites[J]. Environmental Science & Technology,1997,31:1054-1061.
    Anfruns A, Canals-Batlle C, Ros A, Lillo-Rodenas MA, Linares-Solano A, Fuente E, Montes-Moran MA, Martin MJ. Removal of odour-causing compounds using carbonaceous adsorbents/catalysts prepared from sewage sludge[J]. Water Science and Technology,2009, 59:1371-1376.
    Bagehi A, Ghosh TC. Structural identification of a novel thioredoxin SoxS:Prediction of the function in the Process of transport of reductants during sulfur oxidation by the novel global sulfur oxidation reaction cycle[J]. Journal of Moleeular Structure:THEOCHEM, 2006,758:113-118.
    Bagreev A, Adib F, Bandosz TJ. pH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams[J]. Carbon,2001,39:1897-1905.
    Barlaz MA, Green RB, Chanton JP, Goldsmith CD, Hater GR. Evaluation of a biologically active cover for mitigation of landfill gas emissions[J]. Environmental Science & Technology,2004,38:4891-4899.
    Barton LL. Sulatfe-reducing bacteria[M]. New York and London:Plenum Press,1995.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature,2000,407:623-626.
    Bogner JE. Anaerobic burial of refuse in landfills:increased atmospheric methane and implications for increased carbon storage[J]. Ecological Bulletins,1992,42:98-108.
    Bogner JE, Scott P. Landfill methane emissions guidance for field measurements[J]. Final Report. International Energy Agency. Expert Working Group on Landfill Gas,1995.
    Bogner JE, Spokas KA, Burton EA. Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole landfill oxidation experiment, and modeling of net CH4 emissions[J]. Environmental Science & Technology,1997,31:2504-2514.
    Borgwardt RH, Roache NF, Bruce KR. Surface area of calcium oxide and kinetics of calcium sulfide formation[J]. Environmental Progress,1984,3:129-135.
    Borjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH. Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes[J]. FEMS Microbiology Ecology,1998,26:207-217.
    Bottrell SH, Newton RJ. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes[J]. Earth-Science Reviews,2006,75:59-83.
    Bouzaza A, Laplanche A, Marsteau S. Adsorption-oxidation of hydrogen sulfide on activated carbon fibers:effect of the composition and the relative humidity of the gas phase[J]. Chemosphere,2004,54:481-488.
    Brosseau J, Heitz M. Trace gas compound emissions from municipal landfill sanitary sites[J]. Atmospheric Environment,1994,28:285-293.
    Bruno P, Caselli M, de Gennaro G, Solito M, Tutino M. Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers[J]. Waste Managemet, 2007,27:539-544.
    Busca G, Pistarino C. Technologies for the abatement of sulphide compounds from gaseous streams:a comparative overview[J]. Journal of Loss Prevention in the Process Industries, 2003,16:363-371.
    Caldwell SL, Laidler JR, Brewer EA, Eberly JO, Sandborgh SC, Colwell FS. Anaerobic oxidation of methane:Mechanisms, bioenergetics, and the ecology of associated microorganisms[J]. Environmental Science & Technology,2008,42:6791-6799.
    Campagna D, Kathman SJ, Pierson R, Inserra SG, Phifer BL, Middleton DC, Zarus GM, White MC. Ambient hydrogen sulfide, total reduced sulfur, and hospital visits for respiratory diseases in northeast Nebraska,1998-2000[J]. Journal of Exposure Analysis and Environmental Epidemiology,2004,14:180-187.
    Canfield DE, Des Marais DJ. Aerobic sulfate reduction in microbial mats[J]. Science,1991,251: 1471-1473.
    Castro HF, Williams NH, Ogram A. Phylogeny of sulfate-reducing bacteria1 [J]. FEMS Microbiology Ecology,2000,31:1-9.
    Caumette P, Matheron R, Raymond N, Relexans JC. Microbial mats in the hypersaline ponds of mediterranean salterns (Salins-De-Giraud, France)[J]. FEMS Microbiology Ecology,1994, 13:273-286.
    Celis-Garcia LB, Gonzalez-Blanco G, Meraz M. Removal of sulfur inorganic compounds by a biofilm of sulfate reducing and sulfide oxidizing bacteria in a down-flow fluidized bed reactor[J]. Journal of Chemical Technology and Biotechnology,2008,83:260-268.
    Chai XL, Shimaoka T, Cao XY, Guo Q, Zhao YC. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill [J]. Chemosphere,2007,69:1446-1453.
    Chang YJ, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Hussain AKMA, Saxton AM, White DC. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site[J]. Applied and Environmental Microbiology, 2001,67:3149-3160.
    Chen YX, Yin J, Fang S. Biological removal of air loaded with a hydrogen sulfide and ammonia mixture[J]. Journal of Environmental Sciences-China,2004,16:656-661.
    Chiriac R, Carre J, Perrodin Y, Fine L, Letoffe JM. Characterisation of VOCs emitted by open cells receiving municipal solid wastefJ]. Journal of Hazardous Materials,2007,149: 249-263.
    Clesceri LS, Greenberg AE, Eaton AD. Standard methods for the examination of water and wastewater[J]. American Public Health Association, American Water Works Association, and Water Environment Federation,1998.
    Cohen Y, Padan E, Shilo M. Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica[J].Journal of Bacteriology,1975,123:855-861.
    Cypionka H. Oxygen respiration by Desulfovibrio species[J]. Annual Reviews in Microbiology, 2000,54:827-848.
    Czepiel PM, Mosher B, Crill PM, Harriss RC. Quantifying the effect of oxidation on landfill methane emissions[J]. Journal of Geophysical Research-Atmospheres,1996,101: 16721-16729.
    Czerny M, Schieberle P. Influence of the polyethylene packaging on the adsorption of odour-active compounds from UHT-milk[J]. European Food Research and Technology, 2007,225:215-223.
    Dahl C. Inorganic sulfur compounds as electron donors in phototrophic sulfur bacteria[M]. Advances in Photosynthesis and Respiration (Govindjee J, series ed.), Sulfur Metabolism in Phototrophic Organisms, Vol.27 (Hell R, Dahl C, Knaff D, Leustek T, eds), pp.289-317. New York:Springer,2008.
    Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil:sulfide inhibition, kinetics, and regulation[J]. Applied and Environmental Microbiology,1994,60:291-297.
    Dar SA, Yao L, van Dongen U, Kuenen JG, Muyzer G. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers[J]. Applied and Environmental Microbiology,2007,73: 594-604.
    De Visscher A, Thomas D, Boeckx P, Van Cleemput O. Methane oxidation in simulated landfill cover soil environments[J]. Environmental Science & Technology,1999,33:1854-1859.
    Dedysh SN, Dunfield PF, Trotsenko YA. Methane utilization by Methylobacterium species:new evidence but still no proof for an old controversy[J]. International Journal of Systematic and Evolutionary Microbiology,2004,54:1919-1920.
    Delhomenie MC, Bibeau L, Heitz M. A study of the impact of particle size and adsorption phenomena in a compost-based biological filter[J]. Chemical Engineering Science,2002, 57:4999-5010.
    Dincer F, Odabasi M, Muezzinoglu A. Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry[J]. Journal of Chromatography A,2006, 1122:222-229.
    Dolla A, Fournier M, Dermoun Z. Oxygen defense in sulfate-reducing bacteria[J]. Journal of Biotechnology,2006,126:87-100.
    Duan HQ, Koe LCC, Yan R. Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon:reactor set up and performance evaluation[J]. Applied Microbiology and Biotechnology,2005,67:143-149.
    Duan HQ, Yan R, Koe LCC, Wang XL. Combined effect of adsorption and biodegradation of biological activated carbon on H2S biotrickling filtration [J]. Chemosphere,2007,66: 1684-1691.
    Elshorbagy WA, Mohamed AMO. Evaluation of using municipal solid waste compost in landfill closure caps in arid areas[J]. Waste Management,2000,20:499-507.
    Ensley BD, Sulflita JM. Sulfate-reducing bacteria[M]. New York:Springer,1995.
    Esteves IAAC, Lopes MSS, Nunes PMC, Mota JPB. Adsorption of natural gas and biogas components on activated carbon[J]. Separation and Purification Technology,2008,62: 281-296.
    Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, op den Camp HJM, Jetten MSM, Strous M. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea[J]. Environmental Microbiology,2008,10:3164-3173.
    Euzeby JP. List of bacterial names with standing in nomenclature:a folder available on the internet[J]. International Journal of Systematic Bacteriology,1997,47:590-592.
    Evans CL. Toxicity of hydrogen sulphide and other sulphides[J]. Quarterly Journal of Experimental Physiology and Cognate Medical Sciences,1967,52:231-248.
    Faisal M, Hasnain S. Beneficial role of hydrophytes in removing Cr (VI) from wastewater in association with chromate-reducing bacterial strains Ochrobactrum intermedium and Brevibacterium[J].International Journal of Phytoremediation,2005,7:271-277'.
    Fourcans A, Ranchou-Peyruse A, Caumette P, Duran R. Molecular analysis of the spatio-temporal distribution of sulfate-reducing bacteria (SRB) in Camargue (France) hypersaline microbial mat[J]. Microbial Ecology,2008,56:90-100.
    Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J. Prokaryotic sulfur oxidation[J]. Current Opinion in Microbiology,2005,8:253-259.
    Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17[J]. Journal of Bacteriology,2000,182:4677-4687.
    Gebert J, Groengroeft A, Miehlich G. Kinetics of microbial landfill methane oxidation in biofilters[J]. Waste Management,2003,23:609-619.
    Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria[J]. Journal of Microbiological Methods,2006,66:194-205.
    Gevertz D, Telang AJ, Voordouw G, Jenneman GE. Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine[J]. Applied and Environmental Microbiology,2000,66:2491-2501.
    Gonzalez-Sanchez A, Revah S, Deshusses MA. Alkaline biofiltration of H2S odors[Jj. Environmental Science & Technology,2008,42:7398-7404.
    Graham DW, Chaudhary JA, Hanson RS, Arnold RG. Factors affecting competition between Ttype-I and type-Ⅱ methanotrophs in 2-organism, continuous-flow reactors[J]. Microbial Ecology,1993,25:1-17.
    Green PN. The genus Methylobacterium[M]. In The Prokaryotes,2nd edn, pp.2342-2349. Edited by Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH. New York: Springer,1992.
    Green PN, Bousfield IJ. The taxonomy of pinkpigmented facultatively methylotrophic bacteria[M]. In:H.Dalton (ed.) Microbial growth on Cl-compounds, pp.285-293. London: Hey den and Son,1981.
    Green PN, Bousfield IJ. Emendation of Methylobacterium Patt, Cole, and Hanson 1976, Methylobacterium-Rhodinum (Heumann 1962) Comb-Nov-Corrig, Methylobacterium-Radiotolerans (Ito and Iizuka 1971) Comb-Nov-Corrig, and Methylobacterium-Mesophilicum (Austin and Goodfellow 1979) Comb-Nov[J]. International Journal of Systematic Bacteriology,1983,33:875-877.
    Gupta AK, Dharne MS, Rangrez AY, Verma P, Ghate HV, Rohde M, Patole MS, Shouche YS. Ignatzschineria indica sp. nov. and Ignatzschineria ureiclastica sp. nov., isolated from adult flesh flies (Diptera:Sarcophagidae)[J]. International Journal of Systematic and Evolutionary Microbiology,2011,61:1360-1369.
    Haimour N, El-Bishtawi R, Ail-Wahbi A. Equilibrium adsorption of hydrogen sulfide onto CuO and ZnO[J]. Desalination,2005,181:145-152.
    Han D, Zhao YC, Xue B J, Chai XL. Effect of bio-column composed of aged refuse on methane abatement-a novel configuration of biological oxidation in refuse landfill [J]. Journal of Environmental Sciences-China,2010,22:769-776.
    Hancock FE, King F, Flavell WR, Islam MS. Catalytically enhanced absorption of sulphur species from odorous air streams:a new technology for odour abatement[J]. Catalysis Today,1998,40:289-296.
    Hanson RS, Hanson TE. Methanotrophic bacteria[J]. Microbiological reviews,1996,60: 439-471.
    Hao OJ, Chen JM, Huang L, Buglassc RL. Sulfate-reducing bacteria[J]. Critical Reviews in Environmental Science and Technology,1996,26:155-187.
    Hardy JA, Bown JL. The corrosion of mild steel by biogenic sulfide films exposed to air[J]. Corrosion,1984,12:650-654.
    He R, Ruan A, Shen DS. Effects of methane on the microbial populations and oxidation rates in different landfill cover soil columns[J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,2007,42:785-793.
    He R, Ruan AD, Jiang CJ, Shen DS. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms[J]. Bioresource Technology,2008,99: 7192-7199.
    He R, Xia FF, Wang J, Pan CL, Fang CR. Characterization of adsorption removal of hydrogen sulfide by waste biocover soil, an alternative landfill cover[J]. Journal of Hazardous Materials,2011,186:773-778.
    He R, Wang J, Xia FF, Mao LJ, Shen DS. Evaluation of methane oxidation activity in waste biocover soil during landfill stabilization[J]. Chemosphere,2012a,89:672-679.
    He R, Wooller MJ, Pohlman JW, Catranis C, Quensen J, Tiedje JM, Leigh MB. Identification of functionally active aerobic methanotrophs in sediments from an arctic lake using stable isotope probing[J]. Environmental Microbiology,2012b,14:1403-1419.
    Heaney CD, Wing S, Campbell RL, Caldwell D, Hopkins B, Richardson D, Yeatts K. Relation between malodor, ambient hydrogen sulfide, and health in a community bordering a landfill[J]. Environmental Research,2011,111:847-852.
    Hilger HA, Wollum AG, Barlaz MA. Landfill methane oxidation response to vegetation, fertilization, and liming[J]. Journal of Environmental Quality,2000,29:324-334.
    Holmes P, Freischel MR.H2-producing bacteria in digesting sewage sludge isolated on simmple, defined media[J]. Applied and Environmental Microbiology,1978,36:394-395.
    Horikawa MS, Rossi F, Gimenes ML, Costa CMM, da Silva MGC. Chemical absorption of H2S for biogas purifi cation [J]. Brazilian Journal of Chemical Engineering,2004,21:415-422.
    Huang CC, Chen CH, Chu SM. Effect of moisture on H2S adsorption by copper impregnated activated carbonfJ]. Journal of Hazardous Materials,2006,136:866-873.
    Hubert CRJ. Control of hydrogen sulfide production in oil fields by managing microbial communities through nitrate or nitrite addition[J]. Calgary:University of Calgary,2004.
    Huber-Humer M, Gebert J, Hilger H. Biotic systems to mitigate landfill methane emissions[J]. Waste Management & Research,2008,26:33-46.
    Hurst C, Longhurst P, Pollard S, Smith R, Jefferson B, Gronow J. Assessment of municipal waste compost as a daily cover material for odour control at landfill sites[J]. Environmental Pollution,2005,135:171-177.
    Hwang C, Wu WM, Gentry TJ, Carley J, Carroll SL, Schadt C, Watson D, Jardine PM, Zhou J, Hickey RF, Criddle CS, Fields MW. Changes in bacterial community structure correlate with initial operating conditions of a field-scale denitrifying fluidized bed reactor[J]. Applied Microbiology and Biotechnology,2006,71:748-760.
    Ingelmo F, Canet R, Ibanez MA, Pomares F, Garcia J. Use of MSW compost, dried sewage sludge and other wastes as partial substitutes for peat and soil[J]. Bioresource Technology, 1998,63:123-129.
    Jiang X, Yan R, Tay JH. Reusing H2S-exhausted carbon as packing material for odor biofiltration[J]. Chemosphere,2008,73:698-704.
    Jin Y. Effects of Sulfide and pH on Microbial Sulfate Reducing Efficiency[D]. Reno:University of Nevada,2010.
    Kastner JR, Das KC, Melear ND. Catalytic oxidation of gaseous reduced sulfur compounds using coal fly ash[J]. Journal of Hazardous Materials,2002,95:81-90.
    Keller JU, Staudt R. Gas adsorption equilibria:experimental methods and adsorptive isotherms[M]. Heidelberg:Springer,2004.
    Kelly DP, Shergill JK, Lu WP, Wood AP. Oxidative metabolism of inorganic sulfur compounds by bacteria[J]. Antonie Van Leeuwenhoek,1997,71:95-107.
    Kettunen RH, Einola JKM, Rintala JA. Landfill methane oxidation in engineered soil columns at low temperature[J]. Water Air and Soil Pollution,2006,177:313-334.
    Kightley D, Nedwell DB, Cooper M. Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms[J]. Applied and Environmental Microbiology, 1995,61:592-601.
    Kim D, Cai Z, Sorial GA. Determination of gas phase adsorption isotherms-a simple constant volume method[J]. Chemosphere,2006a,64:1362-1368.
    Kim KH. Emissions of reduced sulfur compounds (RSC) as a landfill gas (LFG):a comparative study of young and old landfill facilities[J]. Atmospheric Environment,2006b,40: 6567-6578.
    Kim KH, Choi YJ, Jeon EC, Sunwoo Y. Characterization of malodorous sulfur compounds in landfill gas[J]. Atmospheric Environment,2005,39:1103-1112.
    Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH. Present and long-term composition of MSW landfill leachate:a review[J]. Critical Reviews in Environmental Science and Technology,2002,32:297-336.
    Klein M, Friedrich M, Roger AJ, Hugenholtz P, Fishbain S, Abicht H, Blackall LL, Stahl DA, Wagner M. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes[J]. Journal of Bacteriology,2001,183:6028-6035.
    Kleindienst S, Ramette A, Amann R, Knittel K. Distribution and in situ abundance of sulfate-reducing bacteria in diverse marine hydrocarbon seep sediments[J]. Environmental Microbiology,2012,14:2689-2710.
    Kletzin A. Molecular characterization of the sor gene, which encodes the sulfur oxygenase/reductase of the thermoacidophilic archaeum Desulfurolobus ambivalens[J]. Journal of Bacteriology,1992,174:5854-5859.
    Kletzin A, Urich T, Muller F, Bandeiras TM, Gomes CM. Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea[J]. Journal of Bioenergetics and Biomembranes, 2004,36:77-91.
    Knittel K, Boetius A. Anaerobic oxidation of methane:progress with an unknown process[J]. Annual Review of Microbiology,2009,63:311-334.
    Kobayashi T, Li YY, Kubota K, Harada H, Maeda T, Yu HQ. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization[J]. Applied Microbiology and Biotechnology,2012, 93:847-857.
    Kohl AL, Riesenfeld FC. Gas purification (Fourth Edition)[M]. Houston:Gulf Publishing Company,1985.
    Krishnani KK, Kathiravan V, Natarajan M, Kailasam M, Pillai SM. Diversity of sulfur-oxidizing bacteria in greenwater system of coastal aquaculture[J]. Applied Biochemistry and Biotechnology,2010,162:1225-1237.
    Kubo K, Knittel K, Amann R, Fukui M, Matsuura K. Sulfur-metabolizing bacterial populations in microbial mats of the Nakabusa hot spring, Japan[J]. Systematic and Applied Microbiology,2011,34:293-302.
    Kuhl M, Jorgensen BB. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms[J]. Applied and Environmental Microbiology,1992,58:1164-1174.
    Laska S, Lottspeich F, Kletzin A. Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens[J]. Microbiology,2003, 149:2357-2371.
    Lebrero R, Bouchy L, Stuetz R, Munoz R. Odor assessment and management in wastewater treatment plants:a review[J]. Critical Reviews in Environmental Science and Technology, 2011,41:915-950.
    Lee S, Xu Q, Booth M, Townsend TG, Chadik P, Bitton G. Reduced sulfur compounds in gas from construction and demolition debris landfills[J]. Waste Management,2006,26: 526-533.
    Leloup J, Quillet L, Oger C, Boust D, Petit F. Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments[J]. FEMS Microbiology Ecology,2004,47:207-214.
    Li WB, Wang JX, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts[J]. Catalysis Today,2009,148:81-87.
    Lin TF, Su YY, Su MC. Performance of gas mixing in a flux chamber[J]. Energy Sources,2003, 25:597-605.
    Lin WT, Luo JF, Guo Y. Comparison and characterization of microbial communities in sulfide-rich wastewater with and without propidium monoazide treatment[J]. Current Microbiology,2011,62:374-381.
    Losekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby mud volcano, Barents Sea[J]. Applied and Environmental Microbiology,2007,73:3348-3362.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH, Wagner M. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment[J]. Applied and Environmental Microbiology,2002,68:5064-5081.
    Lukow T, Dunfield PF, Liesack W. Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants[J]. FEMS Microbiology Ecology,2000,32: 241-247.
    Mahmood Q, Hu B, Cai J, Zheng P, Azim MR, Jilani G, Islam E. Isolation of Ochrobactrum sp.QZ2 from sulfide and nitrite treatment system[J]. Journal of Hazardous Materials,2009, 165:558-565.
    Marschall C, Frenzel P, Cypionka H. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria[J]. Archives of Microbiology,1993,159:168-173.
    Martinez CE, Yanez C, Yoon SJ, Bruns MA. Biogeochemistry of metalliferous peats:sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores[J]. Environmental Science & Technology,2007,41:5323-5329.
    Masuda S, Eda S, Ikeda S, Mitsui H, Minamisawa K. Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum[J]. Applied and Environmental Microbiology,2010,76:2402-2409.
    McNevin D, Barford J, Hage J. Adsorption and biological degradation of ammonium and sulfide on peat[J]. Water Research,1999,33:1449-1459.
    Meeyoo V, Trimm DL, Cant NW. Adsorption-reaction processes for the removal of hydrogen sulphide from gas streams[J]. Journal of Chemical Technology and Biotechnology,1997, 68:411-416.
    Meier J, Piva A, Fortin D. Enrichment of sulfate-reducing bacteria and resulting mineral formation in media mimicking pore water metal ion concentrations and pH conditions of acidic pit lakes[J]. FEMS Microbiology Ecology,2012,79:69-84.
    Mescia D, Hernandez SP, Conoci A, Russo N. MSW landfill biogas desulfurization[J]. International Journal of Hydrogen Energy,2011,36:7884-7890.
    Meyer B, Imhoff JF, Kuever J. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system[J]. Environmental Microbiology,2007,9:2957-2977.
    Michaelis W, Seifert R, Nauhaus K, Treude T, Thiel V, Blumenberg M, Knittel K, Gieseke A, Peterknecht K, Pape T, Boetius A, Amann R, Jorgensen BB, Widdel F, Peckmann J, Pimenov NV, Gulin MB. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science,2002,297:1013-1015.
    Modin O, Fukushi K, Yamamoto K. Denitrification with methane as external carbon source[J]. Water Research,2007,41:2726-2738.
    Moura I, Bursakov S, Costa C, Moura JJ. Nitrate and nitrite utilization in sulfate-reducing bacteria[J]. Anaerobe,1997,3:279-290.
    Mussmann M, Ishii K, Rabus R, Amann R. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea[J]. Environmental Microbiology,2005,7:405-418.
    Muyzer G, Stams AJM. The ecology and biotechnology of sulphate-reducing bacteria[J]. Nature Reviews Microbiology,2008,6:441-454.
    Nemati M, Jenneman GE, Voordouw G. Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs[J]. Biotechnology and Bioengineering,2001,74: 424-434.
    Nevatalo LM, Makinen AE, Kaksonen AH, Puhakka JA. Biological hydrogen sulfide production in an ethanol-lactate fed fluidized-bed bioreactor[J]. Bioresource Technology,2010,101: 276-284.
    Nguyen-Thanh D, Bandosz TJ. Activated carbons with metal containing bentonite binders as adsorbents of hydrogen sulfide[J]. Carbon,2005a,43:359-367.
    Nguyen-Thanh D, Block K, Bandosz TJ. Adsorption of hydrogen sulfide on montmorillonites modified with iron[J]. Chemosphere,2005b,59:343-353.
    Odom JM, Singleton R. The sulfate reducing bacteria[M]. New York:Springer-berlag,1993.
    Okabe S, Ito T, Sugita K, Satoh H. Succession of internal sulfur cycles and sulfur-oxidizing bacterial communities in microaerophilic wastewater biofilms[J]. Applied and Environmental Microbiology,2005,71:2520-2529.
    Okabe S, Odagiri M, Ito T, Satoh H. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems[J]. Applied and Environmental Microbiology,2007,73:971-980.
    Oyarzun P, Arancibia F, Canales C, Aroca GE. Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus[J].Process Biochemistry,2003,39:165-170.
    Pahm MA, Alexander M. Selecting inocula for the biodegradation of organic-compounds at low concentrations[J]. Microbial Ecology,1993,25:275-286.
    Panza D, Belgiorno V. Hydrogen sulphide removal from landfill gas[J]. Process Safety and Environmental Protection,2010,88:420-424.
    Park JW, Shin HC. Surface emission of landfill gas from solid waste landfill[J]. Atmospheric Environment,2001,35:3445-3451.
    Parker T, Dottridge J, Kelly S. Investigation of the composition and emissions of trace components in landfill gas[R]. R&D Technical Report P1-438/TR. Bristol:Environment Agency,2002.
    Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria[J]. International Journal of Systematic Bacteriology,1976,26:226-229.
    Patt TE, Cole GC, Bland J, Hanson RS. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy [J]. Journal of Bacteriology,1974,120:955-964.
    Petri R, Podgorsek L, Imhoff JF. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria[J]. FEMS Microbiology Letters,2001,197:171-178.
    Pfennig N, Widdel F. The bacteria of the sulphur cycle[J]. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1982,298:433-441.
    Pinto OA, Ramirez-Pastor AJ, Nieto F. Adsorption thermodynamics of a lattice-gas model with non-additive lateral interactions[J]. Surface Science,2008,602:1763-1769.
    Pipatmanomai S, Kaewluan S, Vitidsant T. Economic assessment of biogas-to-electricity generation system with H2S removal by activated carbon in small pig farm[J]. Applied Energy,2009,86:669-674.
    Plaza C, Xu Q, Townsend T, Bitton G, Booth M. Evaluation of alternative landfill cover soils for attenuating hydrogen sulfide from construction and demolition (C&D) debris landfills[J]. Journal of Environmental Management,2007,84:314-322.
    Pohland FG, Harper SA. Critical review and summary of leachate and gas production from landfills[J]. EPA/600/2-86/073, USEPA OSW, Washington,1986.
    Postgate JR. The sulphate reducing bacteria (2nded)[M]. Cambridge:Cambridge University Press,1984.
    Potivichayanon S. Removal of hydrogen sulfide by fix-film bioscrubber[D]. Bangkok:Mahidol University,2005.
    Poulton SW, Krom MD, Van Rijn J, Raiswell R. The use of hydrous iron (Ⅲ) oxides for the removal of hydrogen sulphide in aqueous systems[J]. Water Research,2002,36:825-834.
    Quina MJ, Bordado JC, Quinta-Ferreira RM. Treatment and use of air pollution control residues from MSW incineration:An overview[J]. Waste Management,2008,28:2097-2121.
    Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Damste JSS, Op den Camp HJM, Jetten MSM, Strous M. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature,2006,440: 918-921.
    Rattanapan C, Boonsawang P, Kantachote D. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater[J]. Bioresource Technology,2009,100:125-130.
    Ravenschlag K, Sahm K, Knoblauch C, Jorgensen BB, Amann R. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments[J]. Applied and Environmental Microbiology,2000,66:3592-3602.
    Reinhart DR, Townsend TG, Eun S, Xu Q. Control of odors from construction and demolition (C&D) debris landfills[J]. Florida Center for Solid and Hazardous Waste Management, 2004.
    Rother D, Henrich HJ, Quentmeier A, Bardischewsky F, Friedrich CG. Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17[J]. Journal of Bacteriology, 2001,183:4499-4508.
    Sanchez C, Couvert A, Laplanche A, Renner C. New compact scrubber for odour removal in wastewater treatment plants[J]. Water Science and Technology,2006,54:45-52.
    Sandbeck KA, Hitzman DO. Biocompetitive exclusion technology:a field system to control reservoir souring and increase production, pp.311-320. In R. Byrant and K.L. Sublette (ed.), Proceedings of the 5th International Conference on Microbial Enhanced Oil Recovery and Related Biotechnology for Solving Environmental Problems[M]. Springfield: National Technical and Information Service,1995.
    Saral A, Demir S, Yildiz S. Assessment of odorous VOCs released from a main MSW landfill site in Istanbul-Turkey via a modelling approach[J]. Journal of Hazardous Materials,2009, 168:338-345.
    Sass H, Cypionka H, Babenzien HD. Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin[J]. FEMS Microbiology Ecology,1997,22:245-255.
    Scheutz C, Kjeldsen P, Bogner JE, De Visscher A, Gebert J, Hilger HA, Huber-Humer M, Spokas K. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions[J]. Waste Management & Research,2009,27:409-455.
    Schmidtova J, Baldwin SA. Correlation of bacterial communities supported by different organic materials with sulfate reduction in metal-rich landfill leachate[J]. Water Research,2010,45: 1115-1128.
    Seitz AP, Leadbetter ER, Godchaux W. Utilization of sulfonates as sole sulfur source by soil bacteria including Comamonas-acidovorans[J].Archives of Microbiology,1993,159: 440-444.
    Sievert SM, Kiene RP, Schulz-vogt HN. The sulfur cycle[J]. Oceanography,2007,20:117-123.
    Sigalevich P, Meshorer E, Helman Y, Cohen Y. Transition from anaerobic to aerobic growth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae results in flocculation[J]. Applied and Environmental Microbiology,2000,66:5005-5012.
    Singh YP, Dhall P, Mathur RM, Jain RK, Thakur VV, Kumar V, Kumar R, Kumar A. Bioremediation of pulp and paper mill effluent by tannic acid degrading enterobacter sp.[J]. Water Air and Soil Pollution,2011,218:693-701.
    Sironi S, Capelli L, Centola P, Del Rosso R, Grande MI. Odour emission factors for assessment and prediction of Italian MSW landfills odour impact[J]. Atmospheric Environment,2005, 39:5387-5394.
    Smeta E, Lensb P, Langenhovea HV. Treatment of waste gases contaminated with odorous sulfur compounds[J]. Critical Reviews in Environmental Science and Technology,1998,28: 89-117.
    Solan PJ, Dodd VA, Curran TP. Evaluation of the odour reduction potential of alternative cover materials at a commercial landfill[J]. Bioresource Technology,2010,101:1115-1119.
    Sorokin DY, Tourova TP, Panteleeva AN, Muyzer G. Desulfonatronobacter acidivorans gen. nov., sp. nov. and Desulfobulbus alkaliphilus sp. nov., haloalkaliphilic heterotrophic sulfate-reducing bacteria from soda lakes[J]. International Journal of Systematic and Evolutionary Microbiology,2012,62:2107-2113.
    Sungthong D. Control of hydrogen sulfide emission[D]. Florida:University of Central Florida, 2010.
    Sungthong D, Reinhart DR. Control of hydrogen sulfide emissions using autotrophic denitrification landfill biocovers:engineering applications[J]. Frontiers of Environmental Science & Engineering in China,2011,5:149-158.
    Syed M, Soreanu G, Falletta P, Beland M. Removal of hydrogen sulfide from gas streams using biological processes-a review[J]. Canadian Biosystems Engineering,2006,48:2.1-2.14.
    Tang K, Baskaran V, Nemati M. Bacteria of the sulphur cycle:an overview of microbiology, biokinetics and their role in petroleum and mining industries[J]. Biochemical Engineering Journal,2009,44:73-94.
    Trujillo ME, Willems A, Abril A, Planchuelo AM, Rivas R, Ludena D, Mateos PF, Martinez-Molina E, Velazquez E. Nodulation of lupinus albus by strains of Ochrobactrum lupini sp. nov.[J]. Applied and Environmental Microbiology,2005,71:1318-1327.
    Van Aken B, Peres CM, Doty SL, Yoon JM, Schnoor JL. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34)[J]. International Journal of Systematic and Evolutionary Microbiology,2004,54:1191-1196.
    Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration[J]. Journal of Bacteriology,1998, 180:2975-2982.
    Wang H, Fang D, Chuang KT. A sulfur removal and disposal process through H2S adsorption and regeneration:ammonia leaching regeneration[J]. Process Safety and Environmental Protection,2008,86:296-302.
    Wang J, Xia FF, Bai Y, Fang CR, Shen DS, He R. Methane oxidation in landfill waste biocover soil:kinetics and sensitivity to ambient conditions[J]. Waste Management,2011,31: 864-870.
    Wert EC, Rosario-Ortiz FL, Snyder SA. Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater[J]. Water Research,2009,43:1005-1014.
    Wu XJ, Pan JL, Liu XL, Tan J, Li DT, Yang H. Sulfate-reducing bacteria in leachate-polluted aquifers along the shore of the East China Sea[J]. Canadian Journal of Microbiology,2009, 55:818-828.
    Xu Q. Hydrogen sulfide emissions and control strategies at construction and demolition debris landfills[D]. Florida:University of Central Florida,2005.
    Xu Q, Townsend T, Reinhart D. Attenuation of hydrogen sulfide at construction and demolition debris landfills using alternative cover materials[J]. Waste Management,2010,30: 660-666.
    Xu Q, Townsend T, Bitton G. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors[J]. Journal of Hazardous Materials,2011,191:204-211.
    Yan R, Liang DT, Tsen L, Tay JH. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon[J]. Environmental Science & Technology,2002,36:4460-4466.
    Yan R, Chin T, Ng YL, Duan H, Liang DT, Tay JH. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons[J]. Environmental Science & Technology,2004,38:316-323.
    Yang K, Xu QY, Townsend TG, Chadik P, Bitton G, Booth M. Hydrogen sulfide generation in simulated construction and demolition debris landfills:Impact of waste composition[J]. Journal of the Air & Waste Management Association,2006,56:1130-1138.
    Ying D, Chuanyu C, Bin H, Yueen X, Xuejuan Z, Yingxu C, Weixiang W. Characterization and control of odorous gases at a landfill site:a case study in Hangzhou, China[J]. Waste Management,2012,32:317-326.
    Yongsiri C, Vollertsen J, Hvitved-Jacobsen T. Effect of temperature on air-water transfer of hydrogen sulfide[J]. Journal of Environmental Engineering-Asce,2004,130:104-109.
    Yuan WX, Bandosz TJ. Removal of hydrogen sulfide from biogas on sludge-derived adsorbents[J]. Fuel,2007,86:2736-2746.
    Zagury GJ, Kulnieks VI, Neculita CM. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment[J]. Chemosphere, 2006,64:944-954.
    Zhang JB, Zhang T, Ma K, Chen GH, Zhang DY, Wei XH. Isolation and identification of the thermophilic alkaline desulphuricant strain[J]. Science in China Series B-Chemistry,2008a, 51:158-165.
    Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems:A review[J]. Water Research,2008b,42:1-12.
    Zhang X, Kong JY, Xia FF, Su Y, He R. Effects of ammonium on the activity and community of methanotrophs in landfill biocover soils[J]. Systematic and Applied Microbiology,2014,37: 296-304.
    鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2005.
    蔡靖.同步厌氧脱氮除硫工艺及微生物学特性的研究[D].杭州:浙江大学,2010.
    崔玉雪.用于填埋场臭气控制的微生物除臭剂开发与除臭机理研究[D].上海:华东师范大学,2011.
    邓述波,余刚.环境吸附材料及应用原理[M].北京:科学出版社,2012.
    董娜.利用改性活性氧化铝吸附剂处理硫化氢恶臭气体的研究[D].长春:吉林大学,2008.
    冯颖.硫酸盐还原菌与Fe0协同处理含重金属酸性废水的研究[D].天津:天津大学,2004.
    郭小品.城市生活垃圾处理厂恶臭散发及其净化技术研究[D].上海:同济大学,2007.
    何若.生物反应器填埋场中生活垃圾快速降解及生物脱氮机理[D].杭州:浙江大学,2004.
    黄昌勇,徐建明.土壤学(第三版)[M].北京:中国农业出版社,2011.
    胡斌.垃圾填埋场恶臭污染解析与控制技术研究[D].杭州:浙江大学,2010a.
    胡斌,丁颖,吴伟祥,胡倍纲,陈英旭.垃圾填埋场恶臭污染与控制研究进展[J].应用生态学报,2010b,21(3):785-790.
    贾汉东,孟祥茹,刘立松.高铁酸盐溶液除臭效果的研究[J].环境污染与防治,2002,24(2):82-84.
    纪华.垃圾填埋场恶臭气体产气机制及其动态变化研究[D].北京:中国农业大学,2004.
    孔娇艳.三氯乙烯胁迫下垃圾生物覆盖土的甲烷氧化活性及其微生物种群结构研究[D].杭州:浙江大学,2014.
    李广超.大气污染控制技术[M].北京:化学工业出版社,2008.
    李志章.生物法再生铁离子溶液脱除气体中硫化氢的研究[D].昆明:昆明理工大学,2007.
    林惠荣.水稻土壤重金属和硫分子形态转化的功能微生物作用机制[D].杭州:浙江大学,2010.
    刘新展,贺纪正,张丽梅.水稻土中硫酸盐还原微生物研究进展[J].生态学报,2009,29:4455-4463.
    路鹏,苏昭辉,王亘,戴志锋,张宗正,余长康,刘竞,王志茹,秦莉,聂志峰.填埋场大气中化合物分析与恶臭指示物筛选[J].环境科学,2011,04:936-942.
    罗永华,邓穗儿,孙国平.一种新型微生物除臭剂的垃圾除臭实验[J].城市环境与城市生态,2003,16:23-25.
    罗剑飞.硫氧化菌群落结构分析及特性研究[D].广州:华南理工大学,2011.
    闵航.厌氧微生物[M].杭州:浙江大学出版社,1993.
    闵航.微生物学实验[D].杭州:浙江大学出版社,2005.
    马琳,低温等离子体协同光催化技术处理甲苯和硫化氢的实验研究[D].北京:北京工业大学,2013.
    马艳玲,赵景联,杨伯伦.固定化脱氮硫杆菌净化硫化氢气体的研究[J].现代化工,2004,24:30-32.
    邱昌莲,刘建湘,彭美兰.土壤中硫化物测定方法的改进[J].中国公共卫生,1992,8:549-550.
    石磊,赵由才,唐圣钧.垃圾填埋沼气的收集、净化与利用综述[J].中国沼气,2004,22:14-17.
    石磊,边炳鑫,赵由才,牛冬杰.城市生活垃圾卫生填埋场恶臭的防治技术进展[J].环境污染治理技术与设备,2005,6(2):6-9.
    奚旦立,孙裕生.环境监测(第四版)[M].北京:高等教育出版社,2010.
    叶芬霞,朱瑞芬,叶央芳.复合微生物吸附除臭剂的制备及其除臭应用[J].农业工程学报,2008,24:254-257.
    宫磊.生物催化氧化法处理H2S废弃的工艺及理论研究[D].昆明:昆明理工大学,2005.
    王光玉,陈雷,马梅荣.固体XM菌剂对生活垃圾减容和除臭的研究[J].环境污染与防治,2006,28:261-263.
    王学谦.硫化氢废气的燃烧-吸附法净化研究[D].昆明:昆明理工大学,2001a.
    王学谦,宁平.硫化氢废气治理研究进展[J].环境污染治理技术与设备,2001b,2(4):77-85.
    王爱杰,徐潇文,任南琪,吴丽红,马放.改进型生物脱臭滴滤塔对硫化氢和氨气的处理[J].哈尔滨工业大学学报,2008,40:203-206.
    王红旗,鞠建华.城市环境氮污染与防治[M].北京:北京师范大学出版社,1998.
    张骄佼.镁铝水滑石低温吸附脱除硫化氢的研究[J].昆明:昆明理工大学,2013.
    张晋华.土壤-植物生态系统中挥发性含硫化合物释放研究[D].南京:南京理工大学,2004.
    张俊丰.铜(Ⅱ)沉淀、铁(Ⅲ)/铜(Ⅱ)湿式氧化脱除气体中硫化氢回收硫磺新技术研究[D].湘潭:湘潭大学,2006.
    张文钲,张羽天.除臭技术与除臭剂[J].化工新型材料,1998,26(10):25-27.
    张小里,刘海洪,陈开勋.硫酸盐还原菌生长规律的研究[J].西北大学学报,1999,29:397-403.
    中华人民共和国住房和城乡建设部.中国城市建设统计年鉴[M].北京:中国计划出版社,2009-2012.
    朱世勇.环境与工业气体净化技术[M].北京:化学工业出版社,2001.
    钟立梅.变压过程脱除气体中微量硫化氢的研究[D].天津:天津大学,2006.
    《空气和废气监测分析方法》编委会.空气和废气监测分析方法(第四版)[M].北京:中国环境科学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700