用户名: 密码: 验证码:
CYP2E1酶在去甲斑蝥素代谢和环孢素诱导肝损伤中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞色素P450酶2E1亚型(CYP2E1酶)可介导多种体内、外源性化合物代谢,在药理学和毒理学研究方面作用十分重要,本研究以去甲斑蝥素和环孢素为切入点,分别对CYP2E1酶在药物代谢和药物性肝损伤发病过程中的作用进行探讨。
     去甲斑蝥素用于肿瘤治疗多年,但其体内代谢过程尚未完全清楚。本研究首先采用MetaPrint2D软件,根据去甲斑蝥素及其水解产物去甲斑蝥酸化学结构中原子指纹特征,基于数据挖掘和统计分析技术,通过计算原子作为代谢位点的发生率,预测去甲斑蝥素及其代谢物去甲斑蝥酸代谢位点及可能代谢产物;采用Sybyl软件分别进行CYP1A2, CYP2A6, CYP2B6, CYP3A4, CYP2D6, CYP2C9, CYP2E1和CYP2C19酶与去甲斑蝥酸对接;然后选择其中得分较高者,进行人重组CYP450酶体外代谢实验,结果显示,CYP2E1、 CYP2C19和CYP2C9酶均参与介导去甲斑蝥酸代谢过程。人重组CYP2E1酶介导去甲斑蝥素体外代谢呈米氏动力学过程,Km为23.64μM, CL为0.689ml/mmol CYP2E1/min;最后对体内外代谢产物进行分离鉴定,结果证实,去甲斑蝥素进入体内后,首先水解为去甲斑蝥酸,进而发生氧桥水解、六元环不同方式断裂开环或脱羧,进一步发生氧化代谢,转化为小分子化合物排出体外,或与葡萄糖醛酸、甘氨酸、谷胱甘肽等发生结合反应,增加水溶性,利用消除,软件预测与体内、体外代谢实验结果基本一致。
     CYP2E1酶活性区域小,有利于小分子化合物进入,但分子内作用力和分子间范德华力能量较高,易导致酶-药物复合物不稳定;CYP2E1酶介导内外源性化合物代谢时发生变构,易导致氧化应激,诱导肝损伤发生。环孢素诱导肝损伤发病率约为30%,但其机制尚不清楚。本研究对322名长期服用环孢素进行抗排异或免疫抑制相关治疗的患者全血样本进行了CYP2E1基因型检测,首先对200名患者进行13种SNPs检测,经Hardy-Weinberg平衡检验和遗传连锁分析,从中选择6个标签SNPs,其余患者仅进行标签SNP测定,采用病例-对照研究方法,对全部患者6种标签SNPs与环孢素诱导肝损伤进行关联分析,结果显示,患者服用环孢素后,环孢素血清谷浓度与肝损伤发生未呈现明显相关性;rs3813866(-1563T>A)为环孢素诱导肝损伤易感基因(OR:2.325,95%CI:1.491-3.626).
     进一步从细胞分子水平,采用点突变技术,构建rs3813866突变体质粒载体,转染至HepG-2细胞,探索易感SNP如何调控CYP2E1蛋白表达或酶活性,结果显示,rs381366突变可使CYP2E1启动子活性增强约2.46倍,mRNA水平上调约1.64倍,导致携带rs381366突变基因的患者服用环孢素后,易发生诱导肝损伤;环孢素可使CYP2E1启动子活性增强,上调启动子活性能力与药物浓度成正比,但环孢素对CYP2E1启动子活性的上调作用远小于rs381366突变的影响:环孢素对细胞中CYP2E1mRNA表达水平的影响与启动子活性相反,环孢素干预后,野生型和突变型CYP2E1mRNA均呈现下调趋势,且随环孢素浓度增加而下调明显,20μM环孢素干预后CYP2E1野生型mRNA水平下调约2倍,突变型mRNA下降可达20倍;环孢素干预可使野生型和突变型CYP2E1蛋白表达和酶活性略微增强,环孢素浓度越高,上调蛋白表达和酶活性能力越强,20μM环孢素干预后CYP2E1蛋白表达水平提高约1.72倍,酶活性增强27.28%,环孢素上调CYP2E1酶转录表达过程是否存在其它反馈调节机制仍待进一步研究。
Cytochrome P4502E1(CYP2E1) isozyme can mediate the metabolism of endogenous and exogenous compounds, and plays important roles in the studies on pharmacology and toxicology. In order to investigate the roles of CYP2E1enzyme in drug metabolism and drug-induced liver injury, we undertook this study with norcantharidin and cyclosporine as entry points.
     In this study, the MetaPrint2D software was firstly used to predict metabolism sites and possible metabolites of norcantharidin and its hydrolysis product, norcantharidin acid, mainly based on the atomic fingerprint characteristics of the compounds, data mining and statistical analysis techniques by calculating the metabolism occurrence ratio; Then norcantharidin acid was docked with CYP1A2, CYP2A6, CYP2B6, CYP3A4, CYP2D6, CYP2C9, CYP2E1and CYP2C19isozymes respectively. Five of them with the top scores were chosen to be further metabolism studied in vitro with human recombined isozymes. The result showed that CYP2E1, CYP2C19and CYP2C9enzymes are mainly involved in norcantharidin acid metabolism. The metabolic prosess of norcantharidin acid mediated by recombinant human CYP2E1enzyme can be explained by Michaelis-Menten equation, with Km of23.64μM and CL of0.689ml/mmol CYP2E1/min. The results of prediction by software, metabolic experiment in vitro and metabolites speculation in vivo all confirmed that norcantharidin is firstly hydrolysed into norcantharidin acid, followed by oxygen bridge hydrolysis, six-membered ring broken by different ways or decarboxylation. Further oxidation can transform it to smaller molecules, which is easy to be eliminated, or combined with glucuronic acid, glycine or glutathione to increase the solubility; The same results of primary metabolic processe were found in rats and in vitro experiment, and the secondary metabolism similar.
     The character of rotating in CYP2E1stereo structure is necessary to make its substrates such as medium-long fatty acid entering, and also can easily make the enzyme-drug complexes unstable, then lead to oxidation stress and further induce the occurrence of liver injury. The incidence of Cyclosporine-induced liver injury is about30%, but its mechanism is still unknown. A total of322subjects who were orally taking Cyclosporine to prevent rejective reaction post organ-transplanting or to cure the autoimmune disease were recruited from Qilu hospital of Shandong University (P. R. China). All the subjects were divided into drug-induced liver injury (DILI) and control group according to the results of liver function examination,200of which were genotyped for thirteen CYP2E1SNPs, followed by Hardy-Weinberg equilibrium test, linkage disequilibrium analysis and tSNP selection in the first stage. The others were analyzed only for tSNP in the next stage. Results of tSNP genotyping from two stages were merged for statistic analysis. The results demonstrated that the SNP rs3813866(-1563T>A) showed a higher risk for developing DILI (OR:2.325,95%CI:1.491-3.626).
     Further study was conducted on the level of cell molecule to explore how the susceptible SNP regulate the transcription, expression and activity of CYP2E1. The mutated plasmid vector carrying rs3813866by site mutation technology was transferred into HepG-2cell, and the promoter activity, mRNA, protein expression and enzyme activity of CYP2E1were detected and compared with those of wild-type by dual-reporter gene, real-time PCR, western blot and substrate-probe methods. Besides, the same strategy was also conducted with or without Cyclosporine treatment. The results illustrated that the promoter activity of mutated-type of CYP2E1was2.46fold of wild type, and the mRNA increased by1.64times. Slight increasing of promoter activity, protein expression (1.72folder by20μM Cyclosporine) and enzyme activity (27.28%increasing by20μM Cyclosporine) can be made by Cyclosporine, but significant decreasing of mRNA was also found. The mRNA level of wild type of CYP2E1declined about2times and that of mutate-type even slipped20times after traetment by20μM Cyclosporine.
     To sum up, CYP2E1play an important role in norcantharidin metabolism. The rs3813866(-1563T>A) is susceptible SNP of Cyclosporine-induced liver injury through up-regulate the promoter activity and increasing the protein expression. Further study on the feedback regulation mechanism of CYP2E1transcriptional expression during Cyclosporine interference will be conducted.
引文
1. Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism:regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & therapeutics, 2013,138(1):103-141.
    2. Zanger UM, Klein K, Thomas M, Rieger JK, Tremmel R, Kandel BA, Klein M, Magdy T. Genetics, epigenetics and regulation of drug-metabolizing cytochrome p450 enzymes. Clinical pharmacology and therapeutics,2014,95(3):258-261.
    3. Piccoli P, Carrieri M, Padovano L, Di Mare M, Bartolucci GB, Fracasso ME, Lepera JS, Manno M. In vivo CYP2E1 phenoryping as a new potential biomarker of occupational and experimental exposure to benzene. Toxicology letters,2010,192(1):29-33.
    4.刘晨晖,乐江.细胞色素P450CYP2E1酶构型特征及其表达调控机制的研究进展.中国药理学与毒理学杂志,2010,24(2):155-161.
    5. Thierry Goasduff, Gwenaelle Bellec, Amet Y. P4502E1 Expression in Liver, Kidney, and Lung of Rats Treated with Single or Combined Inducers. Alcohol,1996,13(3):301-309.
    6. Zordoky BN, El-Kadi AO. Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacology & therapeutics,2010, 125(3):446-463.
    7. Kang JW, Wilkerson HW, Farin FM, Bammler TK, Beyer RP, Strand SE, Doty SL. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar. Functional & integrative genomics,2010,10(3):417-424.
    8. Fang C, Behr M, Xie F, Lu S, Doret M, Luo H, Yang W, Aldous K, Ding X, Gu J. Mechanism of chloroform-induced renal toxicity:non-involvement of hepatic cytochrome P450-dependent metabolism. Toxicology and applied pharmacology,2008,227(1):48-55.
    9. Duale N, Bjellaas T, Alexander J, Becher G, Haugen M, Paulsen JE, Frandsen H, Olesen PT, Brunborg G. Biomarkers of human exposure to acrylamide and relation to polymorphisms in metabolizing genes. Toxicological sciences,2009,108(1):90-99.
    10.Pratt-Hyatt M, Lin HL, Hollenberg PF. Mechanism-based inactivation of human CYP2E1 by diethyldithocarbamate. Drug metabolism and disposition,2010,38(12):2286-2292.
    11. Das J, Ghosh J, Manna P, Sil PC. Taurine protects acetaminophen-induced oxidative damage in mice kidney through APAP urinary excretion and CYP2E1 inactivation. Toxicology,2010, 269(1):24-34.
    12.1rie H, Asano-Hoshino A, Sekino Y, Nogami M, Kitagawa T, Kanda H. Striking LD50 variation associated with fluctuations of CYP2E1-positive cells in hepatic lobule during chronic CC14 exposure in mice. Virchows Archiv,2010,456(4):423-431.
    13.Prieto-Castello MJ, Cardona A, Marhuenda D, Roel JM, Corno A. Use of the CYP2E1 genotype and phenotype for the biological monitoring of occupational exposure to styrene. Toxicology letters,2010,192(1):34-39.
    14.Porubsky PR, Meneely KM, Scott EE. Structures of human cytochrome P-4502E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. The Journal of biological chemistry,2008,283(48):33698-33707.
    15.Porubsky PR, Battaile KP, Scott EE. Human cytochrome P4502E1 structures with fatty acid analogs reveal a previously unobserved binding mode. The Journal of biological chemistry, 2010,285(29):22282-22290.
    16.Bohmer AE, Mendes Ribeiro Correa A, de Souza DG, Knorr L, Hansel G, Corbellini LG, Driemeier D, Portela LV, Souza DO. Long-term cyclosporine treatment:evaluation of serum biochemical parameters and histopathological alterations in Wistar rats. Experimental and toxicologic pathology,2011,63(1-2):119-123.
    17.邵翠萍,吴赤红,李俊.122例药物性肝损伤临床特点分析.肝脏,2012,17(9):640-644.
    18.Yang BM, Derek A. O'Reilly, Andrew G. Demaine. Study of polymorphisms in the CYP2E1 gene in patients with alcoholic pancreatitis.pdf. Alcohol,2001,23:91-97.
    19.吴晓宁,尤红,贾继东.2003-2007年国内药物性肝损伤临床特点文献综合分析.肝脏,2008,13(6):463-467.
    20.武润生,薛永志,康晓琳.免疫性肝损伤和酒精性肝损伤中CYP2E1代谢活力的差异性变化.中国医院药学杂志,2009,30(16):1347-1351.
    21. Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress:studies with CYP2E1. Mutation research,2005,569(1-2):101-110.
    22.Leung TM, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. Journal of hepatology,2013,58(2):395-398.
    23. Webb A, Lind PA, Kalmijn J, Feiler HS, Smith TL, Schuckit MA, Wilhelmsen K. The investigation into CYP2E1 in relation to the level of response to alcohol through a combination of linkage and association analysis. Alcoholism, clinical and experimental research,2011, 35(1):10-18.
    24. Wu D, Wang X, Zhou R, Cederbaum A. CYP2E1 enhances ethanol-induced lipid accumulation but impairs autophagy in HepG2 E47 cells. Biochemical and biophysical research communications,2010,402(1):116-122.
    25. Jones AW. Role of CYP2E1 in the metabolism of ethanol in patients with liver cirrhosis. Scandinavian journal of gastroenterology,2010,45(3):382-383.
    26. Wang X, Wu D, Yang L, Cederbaum AI. Hepatotoxicity mediated by pyrazole (cytochrome P450 2E1) plus tumor necrosis factor alpha treatment occurs in c-Jun N-terminal kinase 2-/- but not in c-Jun N-terminal kinase 1-/- mice. Hepatology,2011,54(5):1753-1766.
    27. Cederbaum AI. Role of CYP2E1 in ethanol-induced oxidant stress, fatty liver and hepatotoxicity. Digestive Diseases,2010,28(6):802-811.
    28.卫培峰,张敏,焦晨丽.何首乌不同炮制品对大鼠肝脏CYP2E1基因mRNA表达的影响.中国医院药学杂志,2010,30(17):1445-1448.
    29.孙蓉,李素君,黄伟.氧化损伤相关指标在中药肝毒性损伤机制中作用与研究进展.中药药理与临床,2009,25(1):80-81.
    30. Lu Y, Cederbaum AI. CYP2E1 potentiation of LPS and TNFalpha-induced hepatotoxicity by mechanisms involving enhanced oxidative and nitrosative stress, activation of MAP kinases, and mitochondrial dysfunction. Genes & nutrition,2010,5(2):149-167.
    31.Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C. Influence of cytochrome P450 polymorphisms on drug therapies:pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacology & therapeutics,2007,116(3):496-526.
    32. Wang X, Cheung CM, Lee WY, Or PM, Yeung JH. Major tanshinones of Danshen (Salvia miltiorrhiza) exhibit different modes of inhibition on human CYP1A2, CYP2C9, CYP2E1 and CYP3A4 activities in vitro. Phytomedicine,2010,17(11):868-875.
    33.Knockaert L, Descatoire V, Vadrot N, Fromenty B, Robin MA. Mitochondrial CYP2E1 is sufficient to mediate oxidative stress and cytotoxicity induced by ethanol and acetaminophen. Toxicology in vitro,2011,25(2):475-484.
    34. Lu Y, Cederbaum A. The mode of cisplatin-induced cell death in CYP2E1-overexpressing HepG2 cells:modulation by ERK, ROS, glutathione, and thioredoxin. Free radical biology & medicine,2007,43(7):1061-1075.
    35. Cantor KP, Villanueva CM, Silverman DT, Figueroa JD, Real FX, Garcia-Closas M, Malats N, Chanock S, Yeager M, Tardon A. Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain. Environmental health perspectives,2010,118(11):1545-1550.
    36.Neafsey P, Ginsberg G, Hattis D, Johns DO, Guyton KZ, Sonawane B. Genetic polymorphism in CYP2E1:Population distribution of CYP2E1 activity. Journal of toxicology and environmental health,2009,12(5-6):362-388.
    37.Zgheib NK, Mitri Z, Geryess E, Noutsi P. Cytochrome P4502E1 (CYP2E1) genetic polymorphisms in a Lebanese population:frequency distribution and association with morbid diseases. Genetic testing and molecular biomarkers,2010,14(3):393-397.
    38.Kayaalti Z, Soylemezoglu T. Distribution of ADH1B, ALDH2, CYP2EP6 and CYP2E1*7B genotypes in Turkish population. Alcohol,2010,44(5):415-423.
    39. Lee MY, Mukherjee N, Pakstis AJ, Khaliq S, Mohyuddin A, Mehdi SQ, Speed WC, Kidd JR, Kidd KK. Global patterns of variation in allele and haplotype frequencies and linkage disequilibrium across the CYP2E1 gene. The pharmacogenomics journal,2008,8(5):349-356.
    40.Gordillo-Bastidas E, Panduro A, Gordillo-Bastidas D, Zepeda-Carrillo EA, Garcia-Banuelos JJ, Munoz-Valle JF, Bastidas-Ramirez BE. Polymorphisms of alcohol metabolizing enzymes in indigenous Mexican population:unusual high frequency of CYP2El*c2 allele. Alcoholism, clinical and experimental research,2010,34(1):142-149.
    41.Yoon Y, Park HD, Park KU, Kim JQ, Chang YS, Song J. Associations between CYP2E1 promoter polymorphisms and plasma 1,3-dimethyluric acid/theophylline ratios. European journal of clinical pharmacology,2006,62(8):627-631.
    42.Fridley BL, Biernacka JM. Gene set analysis of SNP data:benefits, challenges, and future directions. European journal of human genetics,2011,19(8):837-843.
    43.Tang K, Li X, Xing Q, Li W, Feng G, He L, Qin S. Genetic polymorphism analysis of cytochrome P4502E1 (CYP2E1) in Chinese Han populations from four different geographic areas of Mainland China. Genomics,2010,95(4):224-229.
    44.Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, Constenla L, Fernandez-Villar A. Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. Pharmacogenomics,2010, 11(9):1205-1206.
    45. Lee SW, Chung LS, Huang HH, Chuang TY, Liou YH, Wu LS. NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. The international journal of tuberculosis and lung disease,2010,14(5):622-626.
    46. Kim SH, Yoon HJ, Shin DH, Park SS, Kim YS, Park JS, Jee YK. NAT2, CYP2C9, CYP2C19, and CYP2E1 genetic polymorphisms in anti-TB drug-induced maculopapular eruption. European journal of clinical pharmacology,2011,67(2):121-127.
    47. Wang Y, Yang H, Li L, Wang H, Zhang C, Yin G, Zhu B. Association between CYP2E1 genetic polymorphisms and lung cancer risk:a meta-analysis. European journal of cancer,2010, 46(4):758-764.
    48. Khan AJ, Husain Q, Choudhuri G, Parmar D. Association of polymorphism in alcohol dehydrogenase and interaction with other genetic risk factors with alcoholic liver cirrhosis. Drug and alcohol dependence,2010,109(1-3):190-197.
    49. Zhou GW, Hu J, Li Q. CYP2E1 Pst1/Rsa1 polymorphism and colorectal cancer risk:a meta-analysis. World journal of gastroenterology,2010,16(23):2949-2953.
    50.Niu Y, Yuan H, Leng W, Pang Y, Gu N, Chen N. CYP2E1 Rsa I/Pst I polymorphism and esophageal cancer risk:a meta-analysis based on 1,088 cases and 2,238 controls. Medical oncology,2011,28(1):182-187.
    51.Zhan P, Wang J, Zhang Y, Qiu LX, Zhao SF, Qian Q, Wei SZ, Yu LK, Song Y. CYP2E1 Rsa I/Pst I polymorphism is associated with lung cancer risk among Asians. Lung Cancer,2010, 69(1):19-25.
    52.Guo X, Zeng Y, Deng H, Liao J, Zheng Y, Li J, Kessing B, O'Brien SJ. Genetic Polymorphisms of CYP2E1, GSTP1, NQO1 and MPO and the Risk of Nasopharyngeal Carcinoma in a Han Chinese Population of Southern China. BMC research notes,2010,3:212-218.
    53.Tang K, Li Y, Zhang Z, Gu Y, Xiong Y, Feng G, He L, Qin S. The Pstl/Rsal and Dral polymorphisms of CYP2E1 and head and neck cancer risk:a meta-analysis based on 21 case-control studies. BMC cancer,2010,10:575-581.
    54.Deka M, Bose M, Baruah B, Bose PD, Medhi S, Bose S, Saikia A, Kar P. Role of CYP2E1 gene polymorphisms association with hepatitis risk in Northeast India. World journal of gastroenterology,2010,16(38):4800-4808.
    55.Deka M. Role of CYP2Elgene polymorphisms association with hepatitis risk in Northeast India. World Journal of Gastroenterology,2010,16(38):4800-4806.
    56. Zhou J, Wang Q, Duan W. Effects of norcantharidin on lipopolysaccharide-induced hepatocyte injury in vitro. Journal of Central South University Medical sciences,2012,37(3):285-289.
    57. Chen S, Wan P, Ding W, Li F, He C, Chen P, Li H, Hu Z, Tan W, Li J. Norcantharidin inhibits DNA replication and induces mitotic catastrophe by degrading initiation protein Cdc6. International journal of molecular medicine,2013,32(1):43-50.
    58.Zhang L, Ji Q, Liu X, Chen X, Chen Z, Qiu Y, Sun J, Cai J, Zhu H, Li Q. Norcantharidin inhibits tumor angiogenesis via blocking VEGFR2/MEK/ERK signaling pathways. Cancer science,2013,104(5):604-610.
    59. Chen YC, Chang SC, Wu MH, Chuang KA, Wu JY, Tsai WJ, Kuo YC. Norcantharidin reduced cyclins and cytokines production in human peripheral blood mononuclear cells. Life sciences, 2009,84(7-8):218-226.
    60. Lee YC, Lee LM, Yang CH, Lin AM, Huang YC, Hsu CC, Chen MS, Chi CW, Yin PH, Kuo CD. Norcantharidin suppresses cell growth and migration with enhanced anticancer activity of gefitinib and cisplatin in human non-small cell lung cancer cells. Oncology reports,2013, 29(1):237-243.
    61.Hsieh CH, Chao KS, Liao HF, Chen YJ. Norcantharidin, Derivative of Cantharidin, for Cancer Stem Cells. Evidence-based complementary and alternative medicine:eCAM 2013:838651.
    62.Deng L, Tang S:Norcantharidin analogues, a patent review (2006-2010). Expert opinion on therapeutic patents,2011,21 (11):1743-1753.
    63.Zhang R, Wang J, Yuan G, Wei C, Liu X, Wang B, Gao H, Guo R. Determination of norcantharidin in mouse tissues by liquid chromatography coupled to tandem mass spectrometry and its tissue distribution study. Arzneimittel-Forschung,2012,62(6):290-294.
    64. Wei CM, Wang BJ, Ma Y, Sun ZP, Li XL, Guo RC. Pharmacokinetics and biodistribution of 3H-norcantharidin in mice. Acta pharmaceutica Sinica,2007,42(5):516-519.
    65. Wei CM, Zhang R, Wang BJ, Yuan GY, Guo RC. Determination and pharmacokinetic study of norcantharidin in human serum by HPLC-MS/MS method. Biomedical chromatography,2008, 22(1):44-49.
    66.Kontoyianni M, McClellan LM, Sokol GS. Evaluation of docking performance:comparative data on docking algorithms. Journal of medicinal chemistry,2004,47(3):558-565.
    67.Keseru GM, Molnar L. METAPRINT:a metabolic fingerprint. Acta pharmaceutica Hungarica, 2002,72(2):92-100.
    68. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. Journal of molecular biology,1997,267(3):727-748.
    69.陈玮,刘宵虹,张伟华.环孢素A治疗前后慢性再生障碍性贫血患者骨髓吲哚胺2-3双加氧酶水平变化.中国药物与临床,2010,10(10):1098-1101.
    70. Ye F, Ying-Bin X, Yu-Guo W, Hetzer R. Tacrolimus versus cyclosporine microemulsion for heart transplant recipients:a meta-analysis. The Journal of heart and lung transplantation,2009, 28(1):58-66.
    71.方淑娴,刘东,苑力娜.肾移植术后环孢素A肝毒性研究.中国医院药学杂志,2003,23(4):224-225.
    72.贾霜,赵力波,孙淑娟.环孢素A肝毒性的临床及实验室检查方法.中国药物与临床,2005,5(12):933-934.
    73.郑军华,闵志廉,朱有华.肾移植患者长期服用环孢素A后发生肝毒性的临床研究.中华器官移植杂志,2001,22(4):250-251.
    74.E1-Agroudy AE, Ismail AM, Nassar M, Ghoneim MA:Cyclosporine therapeutic monitoring with Cmax in kidney transplant recipients:does it fit for all populations? Experimental and clinical transplantation,2008,6(4):282-286.
    75.Kahan BD. Fifteen years of clinical studies and clinical practice in renal transplantation: reviewing outcomes with de novo use of sirolimus in combination with cyclosporine. Transplantation proceedings,2008,40(10):S 17-20.
    76.Suk KT, Kim DJ:Drug-induced liver injury, present and future. Clinical and molecular hepatology,2012,18(3):249-257.
    77.Cai Y, Yi J, Zhou C, Shen X. Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury:a meta-analysis. PloS one,2012,7(10):e47769.
    78.赖荣陶,谢青.药物性肝损伤的药物基因学.肝脏,2011,16(1):63-66.
    79.滕光菊,孙颖,常彬霞.药物性肝损伤的致病机制及影响因素.肝脏,2011,16(6):497-501.
    80.何长伦,陈成伟.药物性肝损伤网(DILIN)的前瞻性研究介绍.肝脏,2009,14(4):327-332.
    81.Rodrigues MA, Rodrigues JL, Martins NM, Barbosa F, Curti C, Santos NA, Santos AC. Carvedilol protects against cisplatin-induced oxidative stress, redox state unbalance and apoptosis in rat kidney mitochondria. Chemico-biological interactions,2011,189(1-2):45-51.
    82.Lupp A, Kuhn UD, Herwig R, Karge E, Rost M, Scheele J, Fleck C. Cyclosporine A and tacrolimus:in vitro investigations on the differential interactions with the cytochrome P450 system in rat and human liver. Experimental and toxicologic pathology,2003,54(5-6):467-473.
    83.Toshiro Niwa, Sanchiko Yamamoto, Sanito M. Effect of Cyclosporine and Tacrolimus on Cychrome P450 Activities in Human Liver Microsomes. YAKUGAKU ZASSHHI,2007, 127(1):209-217.
    84. Wang BY, Li QX, Li J, Xie XF, Ao Y, Ai YX. Hepatotoxicity and gene expression down-regulation of CYP isozymes caused by renal ischemia/reperfusion in the rat. Experimental and toxicologic pathology,2009,61(2):169-176.
    85.Rockey DC, Seeff LB, Rochon J, Freston J, Chalasani N, Bonacini M, Fontana RJ, Hayashi PH.. Causality assessment in drug-induced liver injury using a structured expert opinion process: comparison to the Roussel-Uclaf causality assessment method. Hepatology,2010, 51(6):2117-2126.
    86.Ozer J, Ratner M, Shaw M, Bailey W, Schomaker S. The current state of serum biomarkers of hepatotoxicity. Toxicology,2008,245(3):194-205.
    87.Helmig S, Dohrel J, Schneider J. Decreased Cyp2E1 mRNA expression in human leucocytes in patients with fibrotic and inflammatory lung diseases. International journal of molecular medicine,2010,26(1):143-149.
    88. Wang J, Hu Y, Nekvindova J, Ingelman-Sundberg M, Neve EP. IL-4-mediated transcriptional regulation of human CYP2E1 by two independent signaling pathways. Biochemical pharmacology,2010,80(10):1592-1600.
    89. Su YW, Chen X, Jiang ZZ, Wang T, Wang C, Zhang Y, Wen J, Xue M, Zhu D, Su YJ. A panel of serum microRNAs as specific biomarkers for diagnosis of compound-and herb-induced liver injury in rats. PloS one,2012,7(5):e37395.
    90. Yang H, Nie Y, Li Y, Wan YJ. Histone modification-mediated CYP2E1 gene expression and apoptosis of HepG2 cells. Experimental biology and medicine,2010,235(1):32-39.
    91.Mohri T, Nakajima M, Fukami T, Takamiya M, Aoki Y, Yokoi T. Human CYP2E1 is regulated by miR-378. Biochemical pharmacology,2010,79(7):1045-1052.
    92.Matsunaga N, Ikeda M, Takiguchi T, Koyanagi S, Ohdo S. The molecular mechanism regulating 24-hour rhythm of CYP2E1 expression in the mouse liver. Hepatology,2008, 48(1):240-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700