用户名: 密码: 验证码:
新型赤泥颗粒吸附材料的制备、表征及其对水体中磷的去除性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤泥是氧化铝工业的副产物,产量巨大且污染环境。为实现“以废治废”,本文在系统地分析总结国内外利用赤泥制备水处理材料的研究基础上,以赤泥做为主要原料并添加其他辅料,开发了一种新型的赤泥颗粒吸附材料(RMGA),并将其用于去除水体中的磷。论文重点对RMGA的制备工艺条件与其物化性质间的关系进行了研究,通过多种手段对RMGA的理化特性进行了表征,深入探讨了该材料对水体中磷的去除机理,并对RMGA的重复利用性能以及填充吸附柱进行动态除磷的性能进行了测试,在理论研究和实际应用中均具有重要意义。
     在前期对制备方案的筛选实验研究中,选择赤泥为主要原料、膨润土和淀粉为辅料制备RMGA,考察了原料配比、预处理温度、预处理时长、焙烧温度和焙烧时长对产品物化性能及对磷酸根去除效果的影响。在制备工艺中,原料配比和焙烧温度是影响RMGA性能的主要因素。原料中赤泥所占比例及焙烧温度对RMGA的性质影响较大,赤泥含量高的RMGA最佳焙烧温度相应更高。在不同的吸附环境温度下,为使RMGA达到较好的除磷效果,前期制备所需的焙烧温度也有所不同。随着焙烧温度的升高,制备得到的RMGA样品物化性质会发生一系列的变化,包括比表面积的增加、表面形貌特征的优化、表面电势电负性的增加和有效除磷成分(CaO、Fe2O3和γ-Al2O3)的减少,这些变化对RMGA的除磷效果分别产生促进或抑制作用,由此也进一步影响除磷机制中化学吸附和物理吸附所占的比重。综合考虑除磷效果,选取了以90:5:5的原料配比(赤泥:膨润土:淀粉)在400℃下预处理20min后经1000℃焙烧10min制备的RMGA-90%-1000℃作为后续研究的样品。
     其后,对筛选的样品RMGA-90%-1000℃进行吸附实验。该部分重点进行了物化性质表征和除磷特性研究,讨论了pH值、反应时间、吸附剂投加量和磷初始浓度等因素对除磷效果的影响,并通过动力学模型研究了除磷机理。通过焙烧的制备过程,不仅可以实现对赤泥中重金属成分的固化,也能够有效改善RMGA颗粒内部孔径结构及表面形态。经制备后,RMGA颗粒表面可形成带有(-OH)和(-SO4)官能团结构的物质,从而与磷酸根在溶液中发生配体交换反应而实现吸附除磷。对于不同的吸附操作环境,RMGA在酸性条件下对磷的去除效果普遍较好,但溶液酸性过强(溶液pH低于1时)会对RMGA颗粒结构造成影响,故可接受的适宜pH范围是3.00-6.00。RMGA对磷的去除过程受常见共存阴离子影响较小,在吸附实验溶液pH为5.50、初始磷浓度为50.00mg/L、环境温度20℃的条件下,其对磷酸根的选择吸附性能至少为同条件下对Ck-、NO3-和SO42-的62倍。RMGA对溶液中磷的去除率受投加量和磷溶液浓度影响较大,在室温条件下,接触时间为4h时,10.0g/L的RMGA投加量可对50mg/L磷溶液实现89.23%的磷去除率;对20mg/L磷溶液,投加量为4.0g/L时即可去除91.18%的磷。溶液pH和接触时间是影响RMGA除磷效果的重要因素,在较低的溶液pH下,RMGA对磷的吸附平衡较为迅速。根据除磷过程中溶液pH的变化情况,可将RMGA的除磷过程分为两个部分:在初始阶段溶液pH相对较低时,RMGA对磷的去除主要为吸附作用;随着实验进行,溶液pH升高,RMGA对磷的去除则为吸附和沉淀的共同作用。吸附动力学研究表明,RMGA的除磷行为较为符合伪二级动力学模型,由于溶液中同步形成的磷酸钙等沉淀附着于RMGA表面阻碍了吸附作用的进一步进行,致使实际研究中RMGA可达到的最大磷去除量明显低于理论数值。
     研究对比考察了不同焙烧温度下制备的RMGA对两种形态磷酸盐(正磷酸盐和焦磷酸盐)的去除特性,低于1030℃制备的RMGA对水体中正磷酸盐和焦磷酸盐均具有相对良好的去除效果。RMGA对正磷酸盐的去除量在溶液初始pH为3-4时相对较高,随着pH继续升高逐渐下降。RMGA对焦磷酸盐的去除量在溶液初始pH为5-7范围内时相对较高,pH高于7时对磷吸附量明显下降。在适宜的初始pH范围内,研究不同焙烧温度下制得RMGA的除磷特性,发现1010℃和1030℃焙烧制得的RMGA分别对正磷酸盐和焦磷酸盐达到最大去除效果。为了考察RMGA的重复利用性,在相同吸附条件下,分别对两种形态的磷进行二次吸附效果研究,结果显示两种形态磷的吸附量较第一次吸附都有所下降。在对两种盐的混合吸附实验中,总磷的去除量较两种磷酸盐单独吸附时都高,且RMGA对焦磷酸盐的去除更具优势,RMGA表面存在对两种形态磷分别具有吸附作用的不同官能团结构,能够实现对不同形态磷的选择吸附。RMGA对正磷酸根的去除是吸附和沉淀的共同作用,而对焦磷酸根的去除则以吸附为主。
     另外,为考察不同焙烧温度下制备的RMGA样品的重利用性能,对已用于除磷后的RMGA进行了脱附再生—再吸附研究。经采用不同的脱附剂对已经吸附了磷的RMGA进行简单再生后,发现RMGA对水体中的磷仍具有一定去除效果。在初次吸附和脱附再生的过程中,RMGA中的氧化钙、氧化钠等成分均会溶于水并使溶液pH升高;而当RMGA用于再次吸附除磷时,由于上述金属氧化物成分在该过程中的溶出量相对减少,溶液pH升高程度比初次吸附时明显下降,溶液中OH的竞争吸附作用减弱;因此,尽管去离子对RMGA的脱附效果并不明显,但再生后的RMGA仍具有相对良好的吸附性能。当采用HCl溶液进行再生时,由于酸蚀作用使RMGA表面结构解体,脱附率较高,但由于该过程致使RMGA中的有效除磷成分大量流失,再吸附性能显著降低。NaOH溶液对RMGA的脱附效率相对低,脱附机制主要以离子交换为基础;但由于溶液中的OH-可以与RMGA表面具有(-SO4)官能团结构的化学成分产生配体交换作用,生成带有(-OH)官能团的物质,增加了可与磷酸根发生吸附的活性位点,所以该方式处理后的RMGA对磷酸根的再吸附性能比去离子水处理后的RMGA再吸附性能较优。对于较低温度焙烧制得的RMGA而言,其矿物晶型稳定程度相对较低,表面(-SO4)结构容易与OH-发生上述反应,并从实验结果证实焙烧温度低于1000℃的RMGA对磷的再吸附量比初次吸附量更高。经综合分析,0.01mol/L的NaOH溶液是RMGA较为理想的脱附剂,其价格低廉,且经过该试剂处理后的RMGA对磷的再吸附量相对高。
     此后,对RMGA的原料进行改进,将之前使用的淀粉替换为污泥材料,以期进一步降低原料成本。为探讨制备过程及除磷实验中各项参数对RMGA除磷效果的影响,采用5因素4水平正交实验制备了16种RMGA。同时设计吸附正交实验,筛选得到对磷具有良好去除效果的RMGA制备条件如下:赤泥、膨润土、污泥的原料配比为85:3:12,焙烧温度为900℃,焙烧时长8min。RMGA对磷的去除受pH影响较大,以pH为5.00时效果最佳,在溶液初始pH值5.00、初始磷浓度35mg/L、环境温度37℃、吸附材料投加量4.0g/L的条件下,RMGA对磷的单位去除量在接触时间为8h时可达最大值为8.92mg/g。由于RMGA含有金属氧化物在酸性水体中会发生溶解释放出金属离子(如Ca2+、Fe3+等),因此RMGA除磷的机理是吸附和沉淀的综合作用。吸附及沉淀作用在整体除磷效果中所占的比例受多种因素影响,包括接触时间、溶液温度和溶液pH,接触时间越久沉淀量越大,但最终由于离子积浓度达到平稳而不再增加,在溶液初始pH为5.00的条件下除磷过程中沉淀效应最为显著。随着环境温度的升高,RMGA对磷的去除量和吸附作用除磷占总去除率的比例均在增大,可见高温对除磷机制中吸附作用具有较强的促进效果。
     后期研究中,利用制备得到具有较好除磷性能的RMGA填充吸附柱进行动态吸附实验,结果表明RMGA填料柱能有效去除水中的磷,随着进水流速和磷酸根浓度的减小以及填料高度的增加,RMGA填料柱对磷的去除效果明显提高。动态吸附实验对磷的吸附效果和总吸附量要高于烧杯实验结果,故而将RMGA作为填料填充吸附柱进行动态除磷更能充分利用其中的有效成分。然后应用吸附磷达到饱和的RMGA填料柱再次进行除铅实验,亦表现出良好的效果。结合动态吸附过程中出水pH和Ca2+浓度进行分析,可知RMGA对铅的去除机理是基于沉淀置换而在材料表面发生的Ca2+和Pb2+的交换反应。经检测RMGA重金属浸出情况符合国家标准GB5085.3-2007《危险废物鉴别标准浸出毒性鉴别》规定限值。处理后废水中各金属浓度符合国家标准GB3838-2002《地表水环境质量标准》Ⅲ类水体要求。
     与以往的研究相比,将赤泥制备为颗粒型吸附材料可以避免吸附剂使用后难以回收再生的弊端,并适于填充吸附柱以便于实际应用;在制备过程中,仅使用天然材料和固体废弃物,不添加任何化学试剂,成本低廉;实验采用高温焙烧法使粉状赤泥颗粒化,可以实现对其中有害成分的固化,减少使用过程中有害污染物的浸出,实现固体废物的无害化。综上所述,该研究利用固体废物制备出可用于水处理领域的颗粒型吸附材料,具有一定的环境、经济和社会效益。
Red mud, which is a by-product from alumina industry, is not only in large quantity but also causes serious pollution to the environment. For the purpose of treating waste with waste, red mud was used as the main raw material to produce red mud granular adsorbent (RMGA) in this study, and this novel adsorbent was applied for phosphate removal from aqueous solution. Some important parameters in the manufacturing process, which greatly affect the characteristics of RMGA, were investigated in details; RMGA was characterized by several analyse method; the mechanisms of phosphate removal and the reapplication property of RMGA was discussed further; a column study was also conducted, which is of great importance in the area of theoretical investigation and practical application.
     In the study of preparation of RMGA, red mud, bentonite and starch was used as the materials; the influences of some parameters, including mass ratio of three raw materials, preheating temperature, preheating time, sintering temperature and sintering time, were investigated. Mass ratio of raw materials and sintering temperature were important items that effected RMGA characteristic. Adsorption capacities for various RMGA were described by the removal capacity of phosphate from aqueous solution. The characteristic of RMGA was greatly affected by red mud ratio and sintering temperature. The optimum sintering temperature, at which the largest phosphate removal capacity could be achieved for RMGA, was much higher for RMGA with large red mud ratio, and it also varied with the different operation temperature in adsorption experiment. With the increase of sintering temperature, the physical and chemical character of RMGA changed, including the increase of surface area and the decrease of effective phosphate removal components (such as CaO, Fe2O3and γ-Al2O3). Based on the integrated result, RMGA with the mass ratio of90:5:5(red mud:bentonite:starch) that preatreated at400℃for20min and sintered at1000℃forlO min was selected for further study, and it was marked as RMGA-90%-1000℃.
     The selected RMGA-90%-1000℃was characterized and its phosphate removal performance was investigated. The influences of some operation parameters, like initial pH in solution, reaction time, adsorbent dosage and initial phosphate concentration, were discussed for phosphate removal, and the kinetics study was done. By the sintering process, the surface of RMGA could be optimized and components with functional groups of-OH and-SO4were formed, which enabled phosphate adsorption form aqueous solution through the ligand-exchange reaction. RMGA performed well in acidic solution, but the strong acid solution (with pH lower than1) would destroy the structure of RMGA, so an acceptable pH range was3.00-6.00. The removal of phosphate by RMGA was weakly affected by common coexisting ions in solution, and the selectivity of it for phosphate was62times to that of Cl-, NO3-and SO42-. A removal efficiency of89.23%could be achieved by RMGA dosage of10.0g/L in50mg/L solution for contact time of4h; and removal efficiency of91.18%could be achieved for20mg/L solution using4.0g/L of RMGA. The initial phosphate removal rate was faster at lower pH, since the electrostatic repulsion between RMGA and phosphate was enhanced as pH increased. During phosphate removal process, the pH in solution rose and the mechanism for phosphate removal could be divided into two stages:firstly, the removal of phosphate was mainly caused by adsorption; then, it was the combined effect of adsorption and precipitation with the increase of pH in solution. The kinetics studies presented that pseudo second-order model fit phosphate removal by RMGA well. However, the precipitation that attached on the surface of RMGA baffled adsorption reaction.
     The different phosphate removal behaviors of RMGA were investigated comparatively for different phosphate forms (orthophosphate form and pyrophosphate form). RMGA sintered below1030℃performed well for the both kinds of phosphates. At pH of3~4, the removal capacity of RMGA for orthophosphate was higher; and the removal capacity of RMGA for pyrophosphate was higher at pH of5~7. RMGA sintered at1010℃and1030℃could gain the largest removal capacity for orthophosphate and pyrophosphate, respectively. When orthophosphate and pyrophosphate coexisted in solutions, pyrophosphate was comparatively easily adsorbed because of the stronger electrostatic attraction effect. The total phosphate removal capacity was higher than that for pure orthophosphate or pyrophosphate removal, which implied that some effective sites on RMGA were able for orthophosphate or pyrophosphate adsorption selectively. The competitive adsorption experiment showed the mechanism for phosphates removal in this research was that precipitation affected orthophosphate removal greatly, while adsorption was the main reaction for pyrophosphate removal.
     In addition, in order to investigate the regeneration characteristics of RMGA manufactured at different sintering temperature, a systematic experiment was conducted by the adsorption, desorption and resorption tests. After being treated by different desorption reagents, RMGA could also remove phosphate from aqueous solution. It was assumed that the reductive release of CaO into solution during resorption process lead to a lower pH in solution, and this contributed to a higher resorption capacity for RMGA. When RMGA were treated by HC1solutions, although relatively higher desorption efficiencies were obtained, the acid erosion resulted in effective components extraction, and resorption capacities was smaller. A lower desorption efficiency was achieved when NaOH solution was applied to treat RMGA, and this was mainly based on ligand-exchange. While, because OH-could ameliorate the chemical composition on the surface of RMGA, RMGA treated by NaOH performed better than that treated by other desorption reagent. A ligand-exchange reaction between OH-in solution and the functional group of-SO4happened in NaOH desorption process. Since the crystal structure of RMGA manufactured under lower sintering temperature was comparatively unstable, the reactions above was easier to achieve, and RMGA sintered at temperature below1000℃could even obtained larger resorption capacities than their original adsorption capacities. Generally,0.01mol/L NaOH solution was a cost-effective desorption reagent for RMGA.
     Then, in order to reduce the cost of RMGA preparation, the raw material was improved by using sludge instead of starch. An orthogonal test with5factors and4 levels was designed and16kinds of RMGA were manufactured. The producing parameter for selected RMGA was as follows:mass ratio of red mud:bentonite: sludge was85:3:12, sintering temperature was900℃and sintering time was8min. The largest adsorption capacity of8.92mg/g could be achieved under the condition with pH of5.00, initial phosphate concentration of35mg/L, environmental temperature37℃and RMGA dosage4.0g/L after8h. Since metallic ions (such as Ca2+and Fe3+) would released from RMGA into acidic solution, the mechanism of phosphate removal was combined effect of adsorption and precipitation. The proportions of adsorption and precipitation in total removal efficiency were affected by several items, including reaction time, environment temperature and initial pH in solution, and precipitation was obvious in solution at initial pH of5.00.
     In the end of our research, the selected RMGA was applied in a column for phosphate removal. The result showed that RMGM column performed much better under the condition of lower flow rate, lower initial phosphate concentrations as well as larger RMGM dosage. In addition, the RMGM column can be regenerated automatically after suspend without treating wastewater for a short time, implying the effective component in RMGA could be sufficient used in dynamic test. Afterwards, the RMGM column which was saturated with phosphate is successfully applied in the treating of lead. According to the analysis of pH and Ca2+concentration in effluent solution during this process, it was known that the mechanism of lead removal was mainly based on ion exchange occurred on the surface of RMGA between Ca2+and Pb2+. For the toxicity analyse of RMGA, heavy metal contents in lixivium was lower than the thresholds determined by Hazardous Wastes Distinction Standard-Leaching Toxicity Distinction (GB5085.3-2007, China), and the treated water could meet level Ⅲ of the National Environmental Quality Standards for Surface Water (GB3838-2002, China).
引文
[1]Kumar S, Kumar R, Bandopadhyay A. Innovative methodologies for the utilisation of wastes from metallurgical and allied industries [J]. Resources Conservation and Recycling,2006,48(4):301-314.
    [2]中华人民共和国国家统计局,2012年国民经济和社会发展统计公报,http://www.stats.gov.cn/tjgb/ndtjgb/qgndtjgb/t20130221_402874525.htm.
    [3]韩福彬,赵睿明.氢氧化铝生产中赤泥的处理与处置[J].中国科技纵横,2012(2):85.
    [4]景英仁,景英勤,杨奇.赤泥的基本性质及其工程特性[J].轻金属,2001(4):20-23.
    [5]韩福彬,赵睿明.氢氧化铝生产中赤泥的处理与处置[J].中国科技纵横,2012(2):85.
    [6]陈蓓,陈素英.赤泥的综合利用和安全堆存[J].化工技术与开发,2006,35(12):32-35.
    [7]南相莉,张廷安,刘燕,等.我国主要赤泥种类及其对环境的影响[J].过程工程学报,2009,9(z1):459-464.
    [8]Samal S, Ray A K, Bandopadhyay A. Proposal for resources, utilization and processes of red mud in India -A review [J]. International Journal of Mineral Processing,2013,118 (0):43-55.
    [9]Lopez E, Soto B, Arias M, et al. Adsorbent properties of red mud and its use for wastewater treatment [J]. Water Research,1998,32(4):1314-1322.
    [10]Wang X, Qu Y, Hu W, et al. Particle characteristics and rheological constitutive relations of high concentration red mud [J]. Journal of China University of Mining and Technology,2008,18(2):266-270.
    [11]Pulford I D, Hargreaves J S J, d'urisova J, et al. Carbonised red mud-A new water treatment product made from a waste material [J]. Journal of Environmental Management,2012,100(0):59-64.
    [12]Perez-Villarejo L, Corpas-Iglesias F A, Martinez-Martinez S, et al. Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry [J]. Construction and Building Materials,2012,35(0): 656-665.
    [13]Tor A, Cengeloglu Y. Removal of congo red from aqueous solution by adsorption onto acid activated red mud [J]. Journal of Hazardous Materials, 2006,138(2):409-415.
    [14]Smiciklas I, Smiljanic S, Peric-Grujic A, et al. The influence of citrate anion on Ni(II) removal by raw red mud from aluminum industry [J]. Chemical Engineering Journal,2013,214(0):327-335.
    [15]Luo H, Huang S, Luo L, et al. Modified granulation of red mud by weak gelling and its application to stabilization of Pb [J]. Journal of Hazardous Materials, 2012,227-228(0):265-273.
    [16]Ju S, Lu S, Peng J, et al. Removal of cadmium from aqueous solutions using red mud granulated with cement [J]. Transactions of Nonferrous Metals Society of China,2012,22(12):3140-3146.
    [17]Nadaroglu H, Kalkan E, Demir N. Removal of copper from aqueous solution using red mud [J]. Desalination,2010,251(1-3):90-95.
    [18]Akin I, Arslan G, Tor A, et al. Arsenic(V) removal from underground water by magnetic nanoparticles synthesized from waste red mud [J]. Journal of Hazardous Materials,2012,235-236(0):62-68.
    [19]Tor A, Danaoglu N, Arslan G, et al. Removal of fluoride from water by using granular red mud:Batch and column studies [J]. Journal of Hazardous Materials, 2009,164(1):271-278.
    [20]Cengeloglu Y, Tor A, Ersoz M, et al. Removal of nitrate from aqueous solution by using red mud [J]. Separation and Purification Technology,2006,51(3): 374-378.
    [21]Akinci A, Artir R. Characterization of trace elements and radionuclides and their risk assessment in red mud [J]. Materials Characterization,2008,59(4): 417-421.
    [22]Zhu C, Luan Z, Wang Y, et al. Removal of cadmium from aqueous solutions by adsorption on granular red mud (GRM) [J]. Separation and Purification Technology,2007,57(1):161-169.
    [23]Yang Y, Inamori Y, Ojima H, et al. Development of an advanced biological treatment system applied to the removal of nitrogen and phosphorus using the sludge ceramics [J]. Water Research,2005,39(20):4859-4868.
    [24]Zhao Y, Zhang L, Ni F, et al. Evaluation of a novel composite inorganic coagulant prepared by red mud for phosphate removal [J]. Desalination,2011, 273(2-3):414-420.
    [25]Lu N C, Liu J C. Removal of phosphate and fluoride from wastewater by a hybrid precipitation-microfiltration process [J]. Separation and Purification Technology,2010,74(3):329-335.
    [26]Emeish S, Abu-Arabi M K, Hudaib B I. Removal of phosphate from Eshidiya industrial wastewater by sedimentation and enhanced sedimentation [J]. Desalination and Water Treatment,2013,51(7-9):1629-1633.
    [27]Qin J J, Oo M H, Kekre K A, et al. Integrated coagulation-ultrafiltration for enhanced removals of phosphate and organic in tertiary treatment [J]. Desalination and Water Treatment,2012,44(1-3):284-288.
    [28]Zhang L, Zhang S, Wang S, et al. Enhanced biological nutrient removal in a simultaneous fermentation, denitrification and phosphate removal reactor using primary sludge as internal carbon source [J]. Chemosphere,2013,91(5): 635-640.
    [29]Schuh A J. Phosphate removal-recovery and biofuel feedstock system [M]. Official Gazette of the United States Patent and Trademark Office Patents, 2012(US 08187861).
    [30]Saad R, Belkacemi K, Hamoudi S. Adsorption of phosphate and nitrate anions on ammonium-functionalized MCM-48:Effects of experimental conditions [J]. Journal of Colloid and Interface Science,2007,311(2):375-381.
    [31]Yagi S, Fukushi K. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite [J]. Journal of Colloid and Interface Science,2012,384:128-136.
    [32]Yang S, Zhao Y, Chen R, et al. A novel tablet porous material developed as adsorbent for phosphate removal and recycling [J]. Journal of Colloid and Interface Science,2013,396:197-204.
    [33]Zamparas M, Gianni A, Stathi P, et al. Removal of phosphate from natural waters using innovative modified bentonites [J]. Applied Clay Science,2012, 62-63:101-106.
    [34]Lu J B, Liu H J, Liu R P, et al. Adsorptive removal of phosphate by a nanostructured Fe-Al-Mn trimetal oxide adsorbent [J]. Powder Technology, 2013,233:146-154.
    [35]Almeelbi T, Bezbaruah A. Aqueous phosphate removal using nanoscale zero-valent iron [J]. Journal of Nanoparticle Research,2012,14(9007).
    [36]Liu C, Li Y, Luan Z, et al. Adsorption removal of phosphate from aqueous solution by active red mud [J]. Journal of Environmental Sciences,2007,19(10): 1166-1170.
    [37]Zhao Y, Wang J, Luan Z, et al. Removal of phosphate from aqueous solution by red mud using a factorial design [J]. Journal of Hazardous Materials,2009, 165(1-3):1193-1199.
    [38]Huang W, Wang S, Zhu Z, et al. Phosphate removal from wastewater using red mud [J]. Journal of Hazardous Materials,2008,158(1):35-42.
    [39]Koumanova B, Drame M, Popangelova M. Phosphate removal from aqueous solutions using red mud wasted in bauxite Bayer's process [J]. Resources, Conservation and Recycling,1997,19(1):11-20.
    [40]Yang J, Xiao B. Development of unsintered construction materials from red mud wastes produced in the sintering alumina process [J]. Construction and Building Materials,2008,22(12):2299-2307.
    [41]Pan Z, Li D, Yu J, et al. Properties and microstructure of the hardened alkali-activated red mud-slag cementitious material [J]. Cement and Concrete Research,2003,33(9):1437-1441.
    [42]Sglavo V M, Campostrini R, Maurina S, et al. Bauxite'red mud'in the ceramic industry. Part 1:thermal behaviour [J]. Journal of the European Ceramic Society, 2000,20(3):235-244.
    [43]Zhao Y, Yue Q, Li Q, et al. Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution [J]. Chemical Engineering Journal,2012,193-194(0):161-168.
    [44]葛世恒.氧化铝生产工业的能耗分析及节能研究[D].中南大学热能工程,2010.
    [45]Wang S, Ang H M, Tade M O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes [J]. Chemosphere, 2008,72(11):1621-1635.
    [46]Zhang R, Zheng S L, Ma S H, et al. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process [J]. Journal of Hazardous Materials,2011,189(3):827-835.
    [47]Liu W C, Yang J K, Xiao B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues [J]. Journal of Hazardous Materials,2009,161(1):474-478.
    [48]Zhou Qiu-sheng, Fan Kuang-sheng, Li Xiao-bin, et al. Alumina recovery from red mud with high iron by sintering process [J]. Journal of Central South University (Science and Technology),2008,39(1):92-9797.
    [49]姜怡娇.赤泥脱硫剂净化低浓度硫化氢废气的试验研究[D].昆明理工大学环境工程,2003.
    [50]Liu X, Zhang N, Sun H, et al. Structural investigation relating to the cementitious activity of bauxite residue-Red mud [J]. Cement and Concrete Research,2011,41(8):847-853.
    [51]王克勤,李生虎,朱国海,等.盐酸浸出氧化铝赤泥回收镓[J].有色金属(冶炼部分),2012(8):34-36.
    [52]朱国海,王克勤,王皓,等.硫酸浸出赤泥渣回收二氧化钛的研究[J].有色金属(冶炼部分),2012(7):23-26,29.
    [53]杨文.从赤泥中回收铁和氧化铝的研究[D].中南大学冶金工程,2012.
    [54]谭洪旗,刘玉平.氧化铝赤泥的综合利用及回收工艺探讨[J].中国矿业,2011,20(4):78-81.
    [55]张国立,李绍纯,张馨元,等.拜耳法赤泥不同脱碱工艺的对比分析[J].无机盐工业,2012,44(8):40-42.
    [56]韩玉芳,杨久俊,王晓,等.烧结法和拜耳法赤泥的基本特性对比及利用价值研究[J].材料导报,2011,25(22):122-125.
    [57]赖兰萍,周李蕾,韩磊,等.赤泥综合回收与利用现状及进展[J].四川有色金属,2008(1):43-48.
    [58]石莉,王宁,庞程,等.赤泥在建筑材料方面应用的研究进展[J].新型建筑材料,2009,36(1):20-24.
    [59]Wang W L, Wang X J, Zhu J P, et al. Experimental Investigation and Modeling of Sulfoaluminate Cement Preparation Using Desulfurization Gypsum and Red Mud [J]. Industrial & Engineering Chemistry Research,2013,52(3): 1261-1266.
    [60]Xiaoming L, Na Z. Utilization of red mud in cement production:a review [J]. Waste Management & Research,2011,29(10):1053-10631063.
    [61]任根宽.赤泥的改性及其在水泥生产中的应用[J].有色金属,2011,63(1):123-126.
    [62]张培新.利用赤泥制备硫铝酸盐快硬水泥的研究[J].环境污染与防治,2000,21(6):16.
    [63]祝丽萍,倪文,张旭芳,等.赤泥-矿渣-水泥基全尾砂膏体胶结充填料性能研究与微观分析:尾矿综合利用产业技术创新战略联盟成立大会暨中国尾矿综合利用产业发展高层论坛,北京,2010[C].
    [64]生雷.赤泥陶粒粉煤灰免烧免蒸压砖性能的研究[D].山东建筑大学结构工程,2010.
    [65]刘雪吟,姜斌,黄朝晖,等.以粉煤灰和赤泥为原料烧结陶瓷工艺与性能研究[J].硅酸盐通报,2010,29(1):188-192.
    [66]李文娟,龚猛,黄朝晖,等.赤泥/粉煤灰免烧矿物聚合物材料的制备和强度[J].硅酸盐通报,2010,29(1):38-42.
    [67]He H T, Yue Q Y, Su Y, et al. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud [J]. Journal of Hazardous Materials,2012,203:53-61.
    [68]Wu J F, Zhang F Y, Li H L, et al. Preparation and Reaction Mechanism of Red Mud based Ceramic Simple Bricks [J]. Journal of Wuhan University of Technology-Materials Science Edition,2010,25(6):1001-1005.
    [69]张月.赤泥在建筑材料中的应用[J].建材技术与应用,2008(9):14-16.
    [70]Yang J, Xiao B. Development of unsintered construction materials from red mud wastes produced in the sintering alumina process [J]. Construction and Building Materials,2008,22(12):2299-2307.
    [71]Yalcin N, Sevinc V. Utilization of bauxite waste in ceramic glazes [J]. Ceramics International,2000,26(5):485-493.
    [72]周文献,谢友均,刘宝举.赤泥对粉煤灰激发作用的试验研究[J].混凝土2002(1):37-40.
    [73]董鲁闽,倪文,郑永超,等.热处理赤泥粉煤灰制备少熟料胶凝材料的研究[J].环境工程,2008,26(3):92-95.
    [74]Yang H, Chen C, Pan L, et al. Preparation of double-layer glass-ceramic/ ceramic tile from bauxite tailings and red mud [J]. Journal of the European Ceramic Society,2009,29(10):1887-1894.
    [75]Tian X, Wu B, Li J. The exploration of making acidproof fracturing proppants using red mud [J]. Journal of Hazardous Materials,2008,160(2-3):589-593.
    [76]Peng F, Liang K, Shao H, et al. Nano-crystal glass-ceramics obtained by crystallization of vitrified red mud [J]. Chemosphere,2005,59(6):899-903.
    [77]Justiz-Smith N, Buchanan V E, Oliver G. The potential application of red mud in the production of castings [J]. Materials Science and Engineering:A,2006, 420(1-2):250-253.
    [78]Chen X, Lu A, Qu G. Preparation and characterization of foam ceramics from red mud and fly ash using sodium silicate as foaming agent [J]. Ceramics International,2013,39(2):1923-1929.
    [79]Kalkan E. Utilization of red mud as a stabilization material for the preparation of clay liners [J]. Engineering Geology,2006,87(3-4):220-229.
    [80]万军,刘恒波,宋美,等.利用赤泥制备高强陶粒的试验研究[J].矿冶工程,2011,31(5):111-113.
    [81]潘嘉芬,李梦红,刘爱菊.拜耳法赤泥质陶粒滤料处理含铜废水[J].金属矿山,2012(11):138-140.
    [82]马龙,李国忠.赤泥轻质陶粒的制备[J].砖瓦,2013(1).
    [83]谢襄漓,王林江,赵建新,等.烧胀赤泥陶粒的制备[J].桂林工学院学报,2008,28(2):196-199.
    [84]He H, Yue Q, Qi Y, et al. The effect of incorporation of red mud on the properties of clay ceramic bodies [J]. Applied Clay Science,2012,70:67-73.
    [85]张亚涛.赤泥装饰用微晶玻璃的研制[D].武汉理工大学材料学,2006.
    [86]杨会智,孙洪巍,陈昌平,等.烧结法制备赤泥微晶玻璃的研究[J].轻金属,2007(4):22-24.
    [87]徐晓虹,钟文波,吴建锋,等.用工业废渣赤泥研制微晶玻璃[J].玻璃与搪瓷,2006,34(2):28-31.
    [88]朱军,兰建凯.赤泥的综合回收与利用[J].矿产保护与利用,2008(2):52-54.
    [89]赖兰萍,周李蕾,韩磊,等.赤泥综合回收与利用现状及进展[J].四川有色金属,2008(1):43-48.
    [90]宋国卫,刘辉.赤泥在微孔硅酸钙保温材料生产中的应用[J].山东冶金,2004,26(2):36-37.
    [91]姜葱葱,马龙.赤泥轻质保温材料的试验研究[J].砖瓦,2012(11).
    [92]Paredes J R, Ordonez S, Vega A, et al. Catalytic combustion of methane over red mud-based catalysts [J]. Applied Catalysis B:Environmental,2004,47(1): 37-45.
    [93]Sushil S, Batra V S. Catalytic applications of red mud, an aluminium industry waste:A review [J]. Applied Catalysis B:Environmental,2008,81(1-2):64-77.
    [94]吴建锋,郭子瑜,徐晓虹,等.涂覆Ti02薄膜赤泥质陶瓷滤球的光催化性[J].武汉理工大学学报,2005,27(9):23-25.
    [95]尹方娜.赤泥脱碱放大试验及硅肥标准制订[D].郑州大学化学工程,2012.
    [96]Wissmeier L, Barry D A, Phillips I R. Predictive hydrogeochemical modelling of bauxite residue sand in field conditions [J]. Journal of Hazardous Materials, 2011,191(1-3):306-324.
    [97]梁玉英,黄益宗,朱永官,等.赤泥对土壤磷素释放的影响[J].农业环境科学学报,2007,26(1):286-289.
    [98]Castaldi P, Silvetti M, Garau G, et al. Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste) [J]. Journal of Hazardous Materials,2010,182(1-3):266-272.
    [99]蔡德龙,钱发军,邓挺,等.硅肥在黄河冲积土上的水稻肥效试验研究[J].地域研究与开发,1998,17(1):62-64.
    [100]Lombi E, Zhao F, Zhang G, et al. In situ fixation of metals in soils using bauxite residue:chemical assessment [J]. Environmental Pollution,2002,118(3): 435-443.
    [101]Lombi E, Zhao F, Wieshammer G, et al. In situ fixation of metals in soils using bauxite residue:biological effects [J]. Environmental Pollution,2002,118(3): 445-452.
    [102]高卫国,黄益宗,孙晋伟,等.赤泥和堆肥对土壤锌形态转化的影响[J].农业环境科学学报,2008,27(3):879-883.
    [103]高卫国,黄益宗,雷鸣.添加堆肥和赤泥对土壤生物有效性Cd和Zn的影响[J].环境工程学报,2008,2(1):78-82.
    [104]Klauber C, Grafe M, Power G. Bauxite residue issues:Ⅱ. options for residue utilization [J]. Hydrometallurgy,2011,108(1-2):11-32.
    [105]Maddocks G, Lin C, Mcconchie D. Effects of BauxsolTM and biosolids on soil conditions of acid-generating mine spoil for plant growth [J]. Environmental Pollution,2004,127(2):157-167.
    [106]Lin C, Wu Y, Lu W, et al. Water chemistry and ecotoxicity of an acid mine drainage-affected stream in subtropical China during a major flood event [J]. Journal of Hazardous Materials,2007,142(1-2):199-207.
    [107]Garau G, Silvetti M, Deiana S, et al. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil [J]. Journal of Hazardous Materials,2011,185(2-3):1241-1248.
    [108]Yadav V S, Prasad M, Khan J, et al. Sequestration of carbon dioxide (CO2) using red mud [J]. Journal of Hazardous Materials,2010,176(1-3):1044-1050.
    [109]Sushil S, Batra V S. Modification of red mud by acid treatment and its application for CO removal [J]. Journal of Hazardous Materials,2012,203-204: 264-273.
    [110]Rai S B, Wasewar K L, Mishra R S, et al. Sequestration of carbon dioxide in red mud [J]. Desalination and Water Treatment,2013,51(10-12):2185-2192.
    [111]Jones G, Joshi G, Clark M, et al. Carbon capture and the aluminium industry: Preliminary studies [J]. Environmental Chemistry,2006,3(4):297-303.
    [112]Sahu R C, Patel R, Ray B C. Removal of hydrogen sulfide using red mud at ambient conditions [J]. Fuel Processing Technology,2011,92(8):1587-1592.
    [113]Fois E, Lallai A, Mura G. Sulfur dioxide absorption in a bubbling reactor with suspensions of Bayer red mud [J]. Industrial & Engineering Chemistry Research, 2007,46(21):6770-6776.
    [114]张念炳,黎志英,丁彤.一次赤泥洗液的铝酸钡脱硫动力学[J].有色金属(冶炼部分),2012(6):24-27.
    [115]吕常胜,王家伟,路长远,等.拜耳法赤泥脱硫概述[J].广州化工,2012,40(18):20-22.
    [116]位朋,李惠萍,靳苏静,等.氧化铝赤泥用于工业烟气脱硫的研究:第十一届全国化学工艺学术年会,郑州,2011[C].
    [117]刘丽平.以赤泥为原料制备脱硫剂的方法[J].城市燃气,2006,377(7):17-18.
    [118]Yadav V S, Prasad M, Khan J, et al. Sequestration of carbon dioxide (CO2) using red mud [J]. Journal of Hazardous Materials,2010,176(1-3):1044-1050.
    [119]Orescanin V, Tibljas D, Valkovic V. A study of coagulant production from red mud and its use for heavy metals removal [J]. Journal of Trace and Microprobe Techniques,2002,20(2):233-245.
    [120]Orescanin V, Nad K, Valkovic V, et al. Red mud and waste base:Raw materials for coagulant production [J]. Journal of Trace and Microprobe Techniques,2001, 19(3):419-428.
    [121]Poulin E, Blais J, Mercier G. Transformation of red mud from aluminium industry into a coagulant for wastewater treatment [J]. Hydrometallurgy,2008, 92(1-2):16-25.
    [122]Ni F, Peng X J, Zhao Y, et al. Preparation of coagulant from red mud and semi-product of polyaluminum chloride for removal of phosphate from water [J]. Desalination and Water Treatment,2012,40(1-3):153-158.
    [123]Orescanin V, Nad K, Mikelic L, et al. Utilization of bauxite slag for the purification of industrial wastewaters [J]. Process Safety and Environmental Protection,2006,84(4):265-269.
    [124]Wang S B, Ang H M, Tade M O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes [J]. Chemosphere, 2008,72(11):1621-1635.
    [125]Zhao Y, Zhang L Y, Ni F, et al. Evaluation of a novel composite inorganic coagulant prepared by red mud for phosphate removal [J]. Desalination,2011, 273(2-3):414-420.
    [126]Vukasinovic-Pesic V L, Rajakovic-Ognjanovic V N, Blagojevic N Z, et al. Enhanced Arsenic Removal from Water by Activated Red Mud Based on Hydrated Iron (Ⅲ) and Titan (IV) Oxides [J]. Chemical Engineering Communications,2012,199(7):849-864.
    [127]Kong C Y. Adsorption Characteristics of Activated Red Mud for Lead Removal [J]. Asian Journal of Chemistry,2011,23(5):1963-1965.
    [128]Coruh S, Geyikci F, Ergun O N. Adsorption of basic dye from wastewater using raw and activated red mud [J]. Environmental Technology,2011,32(11): 1183-1193.
    [129]Fu J, Song R, Mao W J, et al. Adsorption of disperse blue 2BLN by microwave activated red mud [J]. Environmental Progress & Sustainable Energy,2011, 30(4):558-566.
    [130]Sahu R C, Patel R, Ray B C. Adsorption of Zn(II) on activated red mud: Neutralized by CO2 [J]. Desalination,2011,266(1-3):93-97.
    [131]Smiljanic S, Smiciklas I, Peric-Grujic A, et al. Study of factors affecting Ni2+ immobilization efficiency by temperature activated red mud [J]. Chemical Engineering Journal,2011,168(2):610-619.
    [132]Souza R D, El Didi H S, Da Silva M. Removal of Benzene From Aqueous Solution Using Raw Red Mud [M]. Milano:Aidic Servizi Srl,2011:1225-1230.
    [133]Tor A, Cengeloglu Y, Aydin M E, et al. Removal of phenol from aqueous phase by using neutralized red mud [J]. Journal of Colloid and Interface Science,2006, 300(2):498-503.
    [134]Da Silva E B, Alves M, Da Motta M, et al. Study on the use of red mud for removal of dyes from textile effluents [J]. Quimica Nova,2008,31(5):985-989.
    [135]Wang Q, Luan Z K, Wei N, et al. The color removal of dye wastewater by magnesium chloride/red mud (MRM) from aqueous solution [J]. Journal of Hazardous Materials,2009,170(2-3):690-698.
    [136]Coruh S, Geyikci F, Ergun O N. Adsorption of basic dye from wastewater using raw and activated red mud [J]. Environmental Technology,2011,32(11): 1183-1193.
    [137]Ratnamala G M, Shetty K V, Srinikethan G. Removal of Remazol Brilliant Blue Dye from Dye-Contaminated Water by Adsorption Using Red Mud: Equilibrium, Kinetic, and Thermodynamic Studies [J]. Water Air and Soil Pollution,2012,223(9):6187-6199.
    [138]Luo L, Ma C, Ma Y, et al. New insights into the sorption mechanism of cadmium on red mud [J]. Environmental Pollution,2011,159(5):1108-1113.
    [139]Ma Y, Lin C, Jiang Y, et al. Competitive removal of water-borne copper, zinc and cadmium by a CaCO3-dominated red mud [J]. Journal of Hazardous Materials,2009,172(2-3):1288-1296.
    [140]Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste [J]. Water Research,2001,35(5):1125-1134.
    [141]Gupta V K, Sharma S. Removal of cadmium and zinc from aqueous solutions using red mud [J]. Environmental Science & Technology,2002,36(16): 3612-3617.
    [142]Li Y, Liu C, Luan Z, et al. Phosphate removal from aqueous solutions using raw and activated red mud and fly ash [J]. Journal of Hazardous Materials,2006, 137(1):374-383.
    [143]Zhang S, Liu C, Luan Z, et al. Arsenate removal from aqueous solutions using modified red mud [J]. Journal of Hazardous Materials,2008,152(2):486-492.
    [144]Altundogan H S, Altundogan S, Tumen F, et al. Arsenic adsorption from aqueous solutions by activated red mud [J]. Waste Management,2002,22(3): 357-363.
    [145]cengeloglu Y, Kir E, Ersoz M. Removal of fluoride from aqueous solution by using red mud [J]. Separation and Purification Technology,2002,28(1):81-86.
    [146]姚珺.赤泥处理含磷废水的研究[J].化学与生物工程,2008(11):61-63.
    [147]Fortin J, Karam A. Phosphorus sorption by red mud residue as affected by concentration and reaction time [J]. Agrochimica,2001,45(1-2):55-66.
    [148]Sglavo V M, Maurina S, Conci A, et al. Bauxite'red mud'in the ceramic industry. Part 2:production of clay-based ceramics [J]. Journal of the European Ceramic Society,2000,20(3):245-252.
    [149]Huang S C, Chang F C, Lo S L, et al. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash [J]. Journal of Hazardous Materials,2007,144(1-2):52-58.
    [150]Yue Q, Zhao Y, Li Q, et al. Research on the characteristics of red mud granular adsorbents (RMGA) for phosphate removal [J]. Journal of Hazardous Materials, 2010,176(1-3):741-748.
    [151]Jeong Y R, Fan M H, Van Leeuwen J, et al. Effect of competing solutes on arsenic(V) adsorption using iron and aluminum oxides [J]. Journal of Environmental Sciences-China,2007,19(8):910-919.
    [152]Zhao Y, Yue Q, Li Q, et al. Influence of sintering temperature on orthophosphate and pyrophosphate removal behaviors of red mud granular adsorbents (RMGA) [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,394:1-7.
    [153]Xue Y J, Hou H B, Zhu S J. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag [J]. Journal of Hazardous Materials, 2009,162(2-3):973-980.
    [154]Karageorgiou K, Paschalis M, Anastassakis G N. Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent [J]. Journal of Hazardous Materials,2007,139(3):447-452.
    [155]Babatunde A O, Zhao Y Q, Yang Y, et al. Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate [J]. Chemical Engineering Journal,2008,136(2-3):108-115.
    [156]Chitrakar R, Tezuka S, Sonoda A, et al. Phosphate adsorption on synthetic goethite and akaganeite [J]. Journal of Colloid and Interface Science,2006, 298(2):602-608.
    [157]Sahu R C, Patel R, Ray B C. Utilization of activated CO2-neutralized red mud for removal of arsenate from aqueous solutions [J]. Journal of Hazardous Materials,2010,179(1-3):1007-1013.
    [158]Castaldi P, Silvetti M, Garau G, et al. Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste) [J]. Journal of Hazardous Materials,2010,182(1-3):266-272.
    [159]Gan F Q, Zhou J M, Wang H Y, et al. Removal of phosphate from aqueous solution by thermally treated natural palygorskite [J]. Water Research,2009, 43(11):2907-2915.
    [160]Yuanyuan S, Qinyan Y, Baoyu G, et al. Comparative study on characterization and adsorption properties of activated carbons with H3PO4 and H4P2O7 activation employing Cyperus alternifolius as precursor [J]. Chemical Engineering Journal,2012,181-182:790-797.
    [161]Qian Li, Qinyan Yue, Baoyu Gao, et al. Adsorption of p-chlorophenol on cationic polymer/bentonite nanocomposite adsorption materials [C].2010 International Conference on Mechanic Automation and Control Engineering (MACE),2010:5.
    [162]Ikotun O F, Marino N, Kruger P E, et al. Coordination complexes incorporating pyrophosphate:Structural overview and exploration of their diverse magnetic, catalytic and biological properties [J]. Coordination Chemistry Reviews,2010, 254(7-8):890-915.
    [163]Xue Y J, Hou H B, Zhu S J. Characteristics and mechanisms of phosphate adsorption onto basic oxygen furnace slag [J]. Journal of Hazardous Materials, 2009,162(2-3):973-980.
    [164]Yang Y, Zhao Y Q, Babatunde A Q, et al. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge [J]. Separation and Purification Technology,2006,51(2):193-200.
    [165]Zhao Y, Yue Q, Li Q, et al. The regeneration characteristics of various red mud granular adsorbents (RMGA) for phosphate removal using different desorption reagents [J]. Journal of Hazardous Materials,2010,182(1-3):309-316.
    [166]Apak R, Tutem E, Hugul M, et al. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes) [J]. Water Research,1998, 32(2):430-440.
    [167]Bothe J V, Brown P W. Arsenic immobilization by calcium arsenate formation [J]. Environmental Science & Technology,1999,33(21):3806-3811.
    [168]国家环境保护总局,水和废水监测分析方法委员会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002,12:246-248.
    [169]中国人民共和国环境保护行业标准HJ/T 299-2007,固体废物毒性浸出方法-硫酸硝酸法[M].国家环境保护总局,2007.
    [170]中华人民共和国国家标准GB5085.3-2007,危险废物鉴别标准-浸出毒性鉴别[M].国家环境保护总局,2007.
    [171]中华人民共和国国家标准GB3838-2002,地表水环境质量标准[M].国家环境保护总局,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700