用户名: 密码: 验证码:
AlN和BN/AlN复相陶瓷的放电等离子烧结及其组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用放电等离子烧结(SPS)方法制备了AlN陶瓷及BN/AlN复相陶瓷。系统研究了烧结助剂及烧结工艺对AlN陶瓷及BN/AlN复相陶瓷的显微组织结构、热学及介电性能的影响规律,探讨了AlN陶瓷及BN/AlN复相陶瓷的SPS致密化机制,揭示了复合烧结助剂的作用机理。利用后续热处理工艺,对AlN陶瓷及BN/AlN复相陶瓷的显微组织进行调整,改善其热学及介电性能,探讨了热处理工艺的可行性。
     研究发现,采用SPS方法制备AlN陶瓷时,烧结助剂添加量在2~3wt.%左右,在短时间内可以实现液相烧结机制。只加入单一稀土氧化物烧结助剂,AlN陶瓷的晶格参数c轴尺寸数值与热导率变化不一致,烧结助剂对AlN陶瓷晶格纯化效果不明显。晶间相的分布和数量对AlN陶瓷的热学和介电性能有重要影响。以Sm_2O_3为烧结助剂的AlN陶瓷的显微组织均匀,热导率较高。添加不同稀土氧化物的AlN陶瓷热导率与介电性能差别不明显。
     以稀土氧化物和CaF_2为复合烧结助剂不仅可以通过与Al_2O_3反应驱除AlN晶格内部的氧杂质,还可以通过生成可挥发相降低晶间相含量,有效地改善AlN陶瓷的热导率与介电性能。添加复合烧结助剂制备的AlN陶瓷的c轴尺寸变化趋势与热导率变化趋势基本相同,AlN晶格纯化效果显著。当稀土氧化物和CaF_2的比例为2:1时,AlN陶瓷的显微组织结构均匀,晶间相分布合理,AlN晶粒发育完善,具有较好的热学与介电性能,有效地实现了复合烧结助剂的双重作用。HREM分析表明,在SPS快速烧结过程中,复合烧结助剂形成的液相在降温过程中在AlN晶粒之间形成少量非晶物质,对材料的性能有一定的影响。
     引入合适的烧结助剂,采用SPS技术可成功制备致密的BN/AlN复相陶瓷。复合烧结助剂在制备BN/AlN复相陶瓷过程中同样可起到双重效果,对促进材料的致密化和改善材料性能起到了重要的作用。h-BN没有出现定向排列倾向,片状的BN分布在AlN晶粒周围,阻碍了AlN晶粒的生长,对复相陶瓷的性能有影响。随复合烧结助剂添加量的增加,复相陶瓷中AlN晶粒尺寸增加,热导率先上升后下降,介电常数与致密度变化趋势相同,而介电损耗则呈现先下降后上升趋势。BN加入量越多,其交叉堆积现象明显,复相陶瓷显微组织均匀性与致密度均有所下降,介电常数降低而介电损耗增加。
     AlN陶瓷经过热处理后,随着主晶粒的进一步的发育长大,使晶间相的分布向更有利于热导率的方向发展,同时某些晶间相挥发,使晶间相含量降低,材料的组成更加纯净。加入复合烧结助剂的AlN陶瓷,尤其是加入CaF_2多的试样,纯化AlN晶格效果更明显,热导率显著提高。热处理之后的AlN陶瓷介电常数和介电损耗均有所下降。HREM分析表明,即使经过热处理,AlN晶粒之间少量的非晶物质也不能完全排除。
     BN/AlN复相陶瓷经过热处理后,AlN、BN主晶相晶粒尺寸均有所增加,晶间相含量降低,热导率提高。可挥发性晶间相的挥发,使复相陶瓷的致密度下降,介电常数下降。热处理使材料内部缺陷减少,杂质元素含量降低,复相陶瓷的介电损耗有所改善。
AlN ceramics and BN/AlN composites were prepared by Spark Plasma Sintering (SPS) method. The effects of sintering additives and sintering technology on microstructure and thermal and dielectric properties of AlN ceramics and BN/AlN composites were systematically investigated. The densification mechanism during SPS process and the mechanism of multiple component sintering additives were revealed. Mcirostructures were controlled and thermal and dielectric properties of AlN ceramics and BN/AlN composites were improved by heat treatment, and the feasibility of heat treatment technology was investigated.
     The experimental results shows that only 2~3wt.% sintering additive is enough to realize the liquid phase sintering mechanism in the short SPS term. When introducing single sintering additive, the change of the c-axis size is different from that of thermal conductivity of AlN ceramics, and the purifying effect of the sintering additive isn’t obvious. The distribution and content of the secondary phases play important roles on the thermal and dielectric properties of AlN ceramics. The AlN ceramics with uniform microstructures with Sm_2O_3 as sintering additive have higher thermal concuctivity than that of other samples. There is no obvious difference about the thermal conductivity and dielectric property between AlN ceramics with different sintering additives.
     The multiple component sintering additive not only removes oxygen impurity by reacting with Al_2O_3 but also reduces the content of grain boundaries by forming the evaporable secondary phases, thermal conductivity and dielectric property of AlN ceramics are greatly improved. The change of the c-axis size is basically same as that of thermal conductivity of AlN ceramics with multiple component sintering additives, and the purifying effect of the sintering additive is obvious. The sintering additive composition of 2:1(Y_2O_3(Sm_2O_3):CaF_2) is beneficial to improve thermal and dielectric properties of AlN ceramics, which has uniform microstructure, suitable distribution of secondary phase and perfect AlN grain. That is to say, the sintering additive composition of 2:1 is favourable to realize the double effect of multiple component sintering additive. The HREM results show that a little amphous phase existes between AlN grains formes during the liquid cooling process, which has impact on the property on the AlN ceramics.
     Dense BN/AlN composites can be successfully fabricated by SPS method with suitable sintering additives. The multiple component sintering additive can also play double effects during preparing BN/AlN composites, and plays important role on promoting densification process and improving property. H-BN don’t have the tendency of directional arrangement, and the flaky BN grain locates at the around of AlN grains, which inhabites the growth of AlN grain and has impact on the property of materials. The AlN grain size increases and thermal conductivity firstly increases and then reduces with increasing multiple component sintering additive content. The change tendency of dielectric constant is same as that of relative density, but the dielectric loss firstly deduces and then increases. The BN cross stacking tendency is obvious, the uniformity of microstructures decreases, the relative density and dielectric constant reduces and dielectric loss increases with increasing BN content.
     The heat treatment is introduced to lower the content and to modify the distribution of grain boundary, which is beneficial to purify the lattice and accelerate the AlN growth. The AlN ceramics with multiple component sintering additives, especially the speciman introducing more CaF_2, the effect of purify AlN lattice is obvious and thermal conductivity is greatly improved. After the heat treatment, both the dielectric constant and dielectric loss deduces. The HREM result showes that the amphous phase cann’t be removed through the heat treatment.
     Both the size of AlN and BN in the BN/AlN composites increases after heat treatment. In addition, the content of secondary phase deduces and thermal conductivity improves. Because of the evaporating secondary phase, both the relative density and dielectric constant deduces. The dielectric loss is improved because of the decreasing defect and impurity element.
引文
[1] Sheppard L M. Aluminum Nitride: a Versatile but Challenging Material[J]. American Ceramic Society Bulletin, 1990, 69(3): 1801-1812.
    [2] Tummala R R. Cermics and Glass-Ceramics Packaging in the 1990s[J]. Journal of the American Ceramic Society, 1991, 74(6): 895-908.
    [3] Mikijelj B, David K A, Hutcheon R. AlN-Based Lossy Ceramics for High Average Power Microwave Devices: Performance-Property Correlation[J]. Journal of the European Ceramic Society, 2003, 23: 2705-2709.
    [4] Omori M. Sintering, Consolidation, Reaction and Crystal Growth Spark Plasma Syster (SPS)[J]. Materials Science and Engineering A, 2000, 287: 183-188.
    [5] Du X L, Qin M L, Rauf A, et al. Structure and Properties of AlN Ceramics Prepared with Spark Plasma Sintering of Ultra-Fine Powders[J]. Materials Science and Engineering A, 2008, 496: 269-272.
    [6] Kusunose T, Cho M J, Sekino T, et al. Hot-Pressed BN/AlN Composite with Excellent Mechanical and Thermal Properties[J]. Materials Science Forum, 2007, 544-545: 761-764.
    [7] Li H B, Zheng Y T, Han J C, et al. Microstructure, Mechanical Properties and Thermal Shock Behavior of h-BN-AlN Ceramic Composites Prepared by Combustion Synthesis[J]. Journal of Alloys and Compounds, 2011, 509(6): 1661-1664.
    [8] Zhang M, Li M J, Shen Q, et al. Microstructure and Properties of Spark Plasma Sintering BN/AlN Ceramics[J]. Key Engineering Materials, 2006, 313: 105-108.
    [9] Nishimura T, Sekine K, Yamamoto Y. Fine-Grained AlN Ceramics from Nanopowder by Spark Plasma Sintering[J]. Journal of the Ceramic Society of Japan, 2010, 118 (38): 1050-1052.
    [10] Risbud C H, Shan S H. Fast Consolidation of Ceramic Powders[J]. Materials Science & Engineering A, 1995, 204: 146-151.
    [11] Borom M P, Slack G A, Szymasze J W. Thermal Conductivity of Commercial Aluminum Nitride[J]. The Bulletin of the American Ceramic Society, 1972,51(11): 852-856.
    [12] Hundere A M, Einarsrud M A. Microstructure Development in AlN(YF_3) Ceramics[J]. Journal of the European Ceramic Society, 1997, 17: 873-878.
    [13] Tummala R R. Ceramics in Microelectronic Packaging[J]. The Bulletin of the American Ceramic Society, 1988, 67(4):752-758.
    [14] Hou X M, Chou K C. Investigation of Isothermal Oxidation of AlN Ceramics Using Different Kinetic Model[J]. Corrosion Science, 2009, 51(3): 556-561.
    [15] Lim C S. Microstructure and Toughening of SiC-AlN Ceramics Induced by Seeding with Alpha-SiC[J]. Journal of Ceramic Processing Research, 2010, 11(6): 716-720.
    [16] Kida M, Weber L, Monachon C. Thermal Conductivity and Interfacial Conductance of AlN Particle Reinforced Metal Matrix Composites[J]. Journal of Applied Physics, 2011, 109(6): 64-70.
    [17] Medraj M, Balk Y, Thompson W T. Understanding AlN Sintering through Computational Thermodynamics Combined with Experimental Investigation[J]. Journal of Materials Processing Technology, 2005, 161(3): 415-422.
    [18] Hagen E, Grande T, Einarsrud M A. Preparation and Properties of Porous Aluminum Nitride-Silicon Carbide Composite Ceramics[J]. Journal of the American Ceramic Society, 2004, 87(7): 1200-1204.
    [19] Lee S H, Guo S Q, Tanaka H, et al. Thermal Decomposition, Densification and Mechanical Properties of AlN-SiC(-TiB_2) Systems with and without B, B4C and C Additives[J]. Journal of the European Ceramic Society, 2008, 28: 1715-1722.
    [20] Chiu C H, Lin C C. Microstructural Characterization and Phase Development at the Interface between Aluminum Nitride and Titanium after Annealing at 1300-1500°C[J]. Journal of the American Ceramic Society, 2006, 89(4): 1409-1418.
    [21] Liu L, Feng Y P, Shen Z X. Structural and Electronic Properties of h-BN[J]. Physical Review B, 2003, 68(10):104-107.
    [22] Buchheit A A, Hilmas G E, Fahrenholtz W G. Thermal Shock Resistance of an AlN-BN-SiC Ceramic[J]. Journal of the American Ceramic Society, 2009, 92(6): 1358-1361.
    [23] Lee S K, Nakamura K, Kume S, et al. Thermal Conductivity of Hot-Pressed BN Ceramics[J], Materials Science Forum, 2006, 510-511: 398-401.
    [24] Slack G A. The Intrinsic Thermal Conductivity of AlN[J]. Journal of Physics and Chemistry of Solides, 1987, 48(7): 641-647.
    [25] Watari K, Ishizaki K. Phonon Scattering and Thermal Conduction Mechanism of Sintered Aluminum Ceramics[J]. Journal of Materials Science, 1993, 28: 3709-3714.
    [26] Slack G A. Nonmetallic Crystals with High Thermal Conductivity[J]. Journal of Physics and Chemistry of Solides, 1973, 34: 321-335.
    [27]郑锐,席生岐,周敬恩. AlN低温烧结助剂的研究现状[J].稀有金属材料与工程, 2001, 30(5): 396-398.
    [28] Luo X J, Li J, Zhang B L, et al. High Thermal Conductivity Aluminum Nitride Substrates Prepared by Aqueous Tape Casting[J]. Journal of the American Ceramic Society, 2006, 89(3): 836-841.
    [29] Fang Z Y, Liu Y C, Wu Y, et al. Microstructure and Dielectric Dispersion of Low-Temperature Sintered AlN[J]. Journal of Matterials Science Letters, 2000, 19: 95-97.
    [30] Liu Y C, Zhou H P, Wu Y, et al. Improving Thermal Conductivity of Aluminum Nitride Ceramics by Refining Microstructure[J]. Materials Letters, 2000, 43: 114-117.
    [31]伊赫桑·巴伦,程乃良,牛四通,等.纯物质热化学数据手册[M]北京:科学出版社, 2003: 163-165.
    [32] Hundere A M, Einarsrud M A. Microstructure Development in AlN(YF3) Ceramics[J]. Journal of the European Ceramic Society, 1997, 17: 873-878.
    [33] Randa P S, Knudsen A K, Ruh E. Effect of Yttria on the Thermal Conductivity of Aluminum Nitride[J]. Journal of the American Ceramic Society, 1994, 77(7): 1846-1850.
    [34] Du X L, Qin M L, Farid A, et al. Qu X H. Study of Rare-Earth Oxide Sintering Aid Systems for AlN Ceramics[J]. Materials Science & Engineering A, 2007, 460-461: 471-474.
    [35] Makino Y, Yoshioka T, Nakano H, et al. Roles of Rare Earth Oxide Additives in Millimeter-Wave Sintering of AlN[J]. Journal of Rare Earths, 2008, 26: 141-145.
    [36] Qiao L, Zhou H P, Xue H, et al. Effect of Y2O3 on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics[J]. Journal of the European Ceramic Society, 2003, 23: 61-67.
    [37] Kusunose T, Sekino T, Niihara K. Production of a Grain Boundary Phase as Conducting Pathway in Insulating AlN Ceramics[J]. Acta Materialia, 2007, 55: 6170-6175.
    [38] Panchula M L, Ying J Y, Nanocrystalline Aluminum Nitride: II, Sintering and Properties[J]. Journal of the American Ceramic Society, 2003, 86(7): 1121-1127.
    [39] Qiu J Y, Hotta Y, Watari K. Enhancement of Densification and Thermal Conductivity in AlN Ceramics by Addition of Nano-Sized Particles[J]. Journal of the American Ceramic Society, 2006, 89: 377-380.
    [40] Fu R, Chen K. Migration of Liquid Phase in Low Temperature Sintering of AlN[J]. Journal of Materials Science, 2005, 40: 2425-2429.
    [41] Qiu J Y, Hotta Y, Watari K, et al. Fabrication of Fine AlN Particles by Pulverizing with Very Small ZrO_2 Beads[J]. Journal of the American Ceramic Society, 2005, 88: 1676-1679.
    [42] Xu F M, Zhang Z J, Shi X L, et al. Effects of Adding Yttrium Nitrate on the Mechanical Properties of Hot-Pressed AlN ceramics[J]. Journal of Alloys and Compounds, 2011, 152: 123-128.
    [43] Du X L, Qin M L, Farid A, et al. Effects of Heat Treatment on the Properties of Powder Injection Molded AlN Ceramics[J]. Rare Metals, 2008, 27: 70-73.
    [44] Jackson T B, Virkar A V, More K L, et al. High-Thermal-Conductivity Aluminum Nitride Ceramics: The Effect of Thermodynamic, Kinetic, and Microstructural Factors[J]. Journal of the American Ceramic Society, 1997, 80(6): 1421-1435.
    [45] Nakano H, Watari K, Hayashi H, et al. Microstructural Characterization of High-Thermal-Conductivity Aluminum Nitride Ceramic[J]. Journal of the American Ceramic Society, 2002, 85(12): 3093-3095.
    [46] Terao R, Tatami J, Meguro T, et al. Fracture Behavior of AlN Ceramics with Rare Earth Oxides[J]. Journal of the European Ceramic Society, 2002, 22: 1051-1059.
    [47] Li X L, Ma H A, Zheng Y J, et al. AlN Ceramics Prepared by High-PressureSintering with La2O3 as a Sintering Aid[J]. Journal of Alloys and Compounds, 2008, 463: 412-416.
    [48] Honma T, Kuroki Y, Okamoto T. Temperature Dependence of Cathodoluminescence for AlN Ceramics Sintered with Ca_3Al_2O_6[J]. Key Engineering Materials, 2009, 388: 261-264.
    [49] Qiu J Y, Hotta Y, Watari K, et al. Low-Temperature Sintering Behavior of the Nano-Sized AlN Powder Achieved by Super-Fine Grinding Mill with Y2O3 and CaO Additives[J]. Journal of the European Ceramic Society, 2006, 26: 385-390.
    [50] Xi S Q, Liu X K, Li P L, et al. AlN Ceramics Synthesized by Carbothermal Reduction of Mechanical Activated Al_2O_3. Journal of Alloys and Compounds, 2008, 457: 452-456.
    [51] Fang Z Y, Liu Y C, Wu Y, et al. Microstructure and Dielectric Dispersion of Low-Temperature Sintered AlN[J]. Journal of Materials Letters, 2000, 19: 95-97.
    [52] Kurokawa Y, Utsumi K, Takamizawa H. Development and Microstructural Characterization of High-Thermal-Conductivity Aluminum Nitride Ceramics[J]. Journal of the American Ceramic Society, 1988, 71(7): 588-594.
    [53] Chen W W, Miyamoto Y, Matsumoto T, et al. Preparation of AlN Ceramic Bonded Carbon by Gelcasting and Spark Plasma Sintering[J]. Carbon, 2010, 48: 3399-3404.
    [54] Xue J F, Dong M J, Li J, et al. Gelcasting of Aluminum Nitride Ceramics[J]. Journal of the American Ceramic Society, 2010, 93(4): 928-930.
    [55] Molisani A L, Yoshimura H N, Goldenstein H, et al. Effects of CaCO_3 Content on the Densification of Aluminum Nitride[J]. Journal of the European Ceramic Society, 2006, 26: 3431-3440.
    [56] Honma T, Kuroki Y, Okamoto T, et al. Transmittance and Cathodoluminescence of AlN Ceramics Sintered with Ca_3Al_2O_6 as Sintering Additive[J]. Ceramics International, 2008, 34: 943-946.
    [57] Xiong Y, Fu Z Y, Wang H. Microstructure and IR Transmittance of Spark Plasma Sintering Translucent AlN Ceramics with CaF2 Additive[J]. Materials Science and Engineering: B, 2005, 123: 57-62.
    [58] Xiong Y, Fu Z Y, Wang H. Microstructural Effects on the Transmittance ofTranslucent AlN Ceramics by SPS[J]. Materials Science and Engineering: B, 2006, 128: 7-10.
    [59] Xiong Y, Fu Z Y, Wang H, et al. Fabrication of Transparent AlN Ceramics[J]. Journal of Materials Science, 2006, 41: 2537-2539.
    [60] Zhou H P, Liu Y C, Miao W G, et al. Effects of Binary Additives B_2O_3-Y_2O_3 on the Microstructure and Thermal Conductivity of Aluminum Nitride Ceramics[J]. Journal of Materials Science, 1999, 34: 6165-6168.
    [61] Qiao L, Zhou H P, Xue H, et al. Effect of Y2O3 on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics[J]. Journal of the European Ceramic Society, 2003, 23: 61-67.
    [62] Liu Y C, Zhou H P, Qiao L, et al. Low-Temperature Sintering of Aluminum Nitride with YF_3-CaF_2 Binaty Additive[J]. Journal of Materials Science Letters, 1999, 18: 703-704.
    [63] Zhang G H, Hou X M, Chou K C. Kinetics of Non-Isothermal Oxidation of AlN Powder[J]. Journal of the European Ceramic Society, 2010, 30: 629-633.
    [64] Hou X M, Chou K C. Investigation of Isothermal Oxidation of AlN Ceramics Using Different Kinetic Model[J]. Corrosion Science, 2009, 51: 556-561.
    [65] Shirakami T, Urabe K, Nakano H, et al. Microstructural Evolution during Sintering of Aluminum Nitride Ceramics Doped with Alumina and Yttria[J]. Journal of the American Ceramic Society, 2001, 84(3): 631-635.
    [66] Panchula M L, Ying J Y. Nanocrystalline Aluminum Nitride: II, Sintering and Properties[J]. Journal of the American Ceramic Society, 2003, 86(7): 1121-1127.
    [67] Watari K, Hwang H J, Toriyama M,et al. Effective Sintering Aids for Low-Temperature Sintering of AlN Ceramics[J]. Journal of Materials Research, 1999, 14(4): 1409-1417.
    [68]黄小丽,郑永红,胡晓青.复合助剂Y2O3-CaC2对AlN陶瓷热导率的影响[J].兵器材料科学与工程, 2005, 28: 4-6.
    [69]黄小丽,郑永红,胡晓青.复合助剂AlN陶瓷低温烧结的影响[J].北京机械工业学院学报, 2005, 20: 11-17.
    [70]许昕睿,庄汉锐,徐素英,等.添加Y2O3-Dy2O3的AlN陶瓷的烧结特性及显微结构[J].无机材料学报, 1999, 14: 899-994.
    [71] Gonzalez M, Ibarra A. The Dielectric Behavior of CommercialPolycrystalline Aluminum Nitride[J]. Diamond and Related Materials, 2000, 9: 467-471.
    [72] Fesenkl I P, Kuzenkova M A. Low Dielectric Loss Ceramics of AlN Fine and Nanopowders[J]. Powder Metallurgy and Metal Ceramics, 2002, 41: 567-569.
    [73]曲远方.功能陶瓷的物理性能[M].北京:化学工业出版社, 2007, 74-78.
    [74]杜帅,李发,刘征. AlN陶瓷的介电性能[J].硅酸盐学报,1998, 26(4): 496-502.
    [75]方俊鑫,殷之文.电解质物理学[M].北京:科学出版社, 1989: 82-87.
    [76]李标荣,莫以豪,王筱珍.无机介电材料[M].上海:上海科学技术出版社,1986: 27-30.
    [77] Kume S, Yasuoka M, Sang-kee L. Dielectric and Thermal Properties of AlN ceramics[J]. Journal of the European Ceramic Society, 2007, 27(8-9): 2967-2971.
    [78] Wu C C, Chen Y C, Fu Y C, et al. The Dielectric Properties of Epoxy/AlN Composites[J]. Journal of the European Ceramic Society, 2007, 27(13-15): 3839-3842.
    [79] Saib S, Bouarissa N, Rodríguez-Hernández P, et al. Structural and Dielectric Properties of AlN under Pressure[J]. Physica B: Condensed Matter, 2008, 403 (21-22): 4059-4062.
    [80] Wang M C, YangC C, Wu N C. Grain Growth an Deleetric Properties of Liquid Phase Sintered AlN Ceramies with CaCN_2 Additives[J]. Materials Seienes and Engineering A, 2003, 343:97-106.
    [81]姚义俊,李纯成,蒋晓龙,等.稀土氧化物对氮化铝陶瓷介电性能的影响[J].硅酸盐学报,2010, 38: 1982-1985.
    [82] Lin C P, Hsieh Y M, Chu C H. Properties and Microstructure of AlN Prepared Using Alumina Crucible and MoSi_2 Heating Element[J]. Journal of Alloys and Compounds, 2010, 503: 76-81.
    [83] Kume S, Yasuoka M, Omura N, et al. Effect of Zirconia Addition on Dielectric Loss and Microstructure of Aluminum Nitride Ceramics[J]. Ceramics International, 2007, 33: 269-272.
    [84] Kume S, Yasuoka M, Omura N. Dielectric Properties of Sintered Aluminum Nitride[J]. International Journal of Refractory Metals & Hard Materials, 2005,23(12): 382-385.
    [85] Kume S, Yasuoka M, Omura N. Effects of MgO Addition on the Density and Dielectric Loss of AlN Ceramics Sintered in Presence of Y2O3[J]. Journal of the European Ceramic Society, 2005, 25: 2791-2794.
    [86] Kume S, Yasuoka M, Omura N. Effects of Annealing on Dielectric Loss and Microstructure of Aluminum Nitride Ceramics[J]. Journal of the American Ceramic Society, 2005, 88(11): 3229-3231.
    [87] kume S, Yasuoka M, Lee S K, et al. Dielectric and Thermal Properties of AlN Ceramics[J]. Journal of the European Ceramic Society, 2007, 27: 2967-2971.
    [88] Mazdiyasmi K S, Ruhi R. High/Low Modulus Si_3N_4-BN Composite for Improved Dectrical and Thermal Shock Behavior[J]. Journal of the American Ceramic Society, 1981, 64(7): 415-419.
    [89] Mazdiyasmi K S, Ruh R, Hermes E E. Phase Characterization and Properties of AlN-BN Composites[J]. The Bulletin of the American Ceramic Society, 1985, 64(8): 1149-1154.
    [90] Kanai T, Tanemoto K, Kubo H. Hot-Pressed BN-AlN Ceramic Composites of High Thermal Conductivity[J]. Japanese Journal of Applied Physics, 1990, 29(4): 683-687.
    [91] Kanai T, Tanemoto K, Kubo H. Reaction-Bonded Boron Nitride-aluminum Ceramic Composites[J]. Japanese Journal of Applied Physics, 1991, 30(4): 1235-1238.
    [92] Jin H Y, Wang W, Yang J F. Study of Machinable AlN-BN Composites[J]. Materials Letters, 2006, 60(2): 190-193.
    [93] Zhang G J, Yang J F, Motohide A. Reaction Synthesis of Aluminum Nitride-Boron Nitride Composites Based on the Nitridation of Aluminum Boride[J]. Journal of the American Ceramic Society, 2002, 85(12): 2938-2944.
    [94] Zhao H Y, Wang W M, Fu Z Y, et al. Thermal Conductivity and Dielectric Property of Hot-Pressing Sintered AlN-BN Ceramic Composites[J]. Ceramics International, 2009, 35: 105-109.
    [95]秦明礼,曲选辉,何新波. AlN-BN复相陶瓷的结构与性能[J].硅酸盐学报, 2003, 31(10): 913-917.
    [96] Cho W S, Lee Y H, Cho M W. Microstructure and Mechanical Properties ofAlN-BN Based Machinable Ceramics[J]. Key Engineering Materials, 2004, 264-268: 873-876.
    [97] Li H B, Zheng Y T, Han J C. Microstructure, Mechanical Properties and Thermal Shock Behavior of h-BN-AlN Ceramic Composites Prepared by Combustion Synthesis[J]. Journal of Alloys and Compounds, 2011, 509(5): 1661-1664.
    [98] Kanai T, Tanemoto K, Kubo H, Reaction-Bonded Boron Nitride-Alunimum Nitride[J]. Japanese Journal of Applied Physics, 1991, 30(6): 1235-1237.
    [99] Zhang G J, Yang J F, Ando M. Nonoxide-Boron Nitride Composite: in sity Synthesis, Microstructure and Properties[J]. Journal of the European Ceramic Society, 2002, 22: 2551-2554.
    [100] Makarenko G N, Krushinskaya L A, Fedorus V B. Production and Properties of AlN-BN Compsote, Powder Metallurgy and Metal Ceramics, 2011, 49(11-12): 670-674.
    [101] Xu J W, Lee K J, Beck S Y. Mechanical Properties and Machinability of AlN-hBN Ceramics Prepared by Spark Plasma Sintering[J]. Journal of the Ceramic Society of Japan, 2009, 117 (1369): 1028-1031.
    [102]张健,李永利,张久兴. SPS制备BN/AlN复相陶瓷及其性能优化[J].功能材料, 2008, 39: 1183-1185.
    [103] Li M J, Qu X H, Duan B H, et al. Microstructure and Properties of AlN-BN Composite Ceramics, Journal of the Chinese Ceramic Society. 2003, 31(10): 913-917.
    [104] Cho W S, Piao Z H, Lee K J, et al. Microstructure and Mechanical Properties of AlN-hBN Based Machinable Ceramics Prepared by Pressureless Sintering[J]. Journal of the European Ceramic Society, 2007, 27: 1425-1430.
    [105] Zhao H Y, Wang W M, Fu Z Y, et al. Thermal Conductivity and Dielectric Property of Hot-Pressing Sintered AlN-BN Ceramic Composites[J]. Ceramic International, 2009, 35: 105-109.
    [106]杜帅,李发,刘征. AlN-BN复相陶瓷的研究[J].硅酸盐通报, 1995, 3: 31-34.
    [107] Du S, Liu Z, Gao L Q. Dielectric Properties of AlN-BN Composite Ceramics[J]. The Bulletin of the American Ceramic Society, 1997, 76(12): 69-73.
    [108]杜帅,李龙土,刘征. AlN-BN复相陶瓷的介电性能[J].硅酸盐学报, 1997, 254: 433-439.
    [109]李晓云,施书哲,丘泰,等.热压烧结BN-AlN复相陶瓷的制备及介电性能[J].电子元件与材料, 2003, 22(6): 6-8.
    [110]赵海洋,王为民,傅正义,等.氮化铝-氮化硼复相陶瓷的制备与性能[J].硅酸盐学报, 2007, 35: 1595-1599.
    [111] Kusunose T, Cho M J, Sekino T, et al. Hot-Pressed AlN-BN Composite with Excellent Mechanical and Thermal Properties[J]. Materials Science Forum, 2007, 544-545: 761-764.
    [112] Kusunose T, Sekino T, Ando Y, et al. Fabrication of Machinable AlN-BN Composite with High Thermal Conductivity by Pressureless Sintering Turbostratic BN-Coated AlN Nanocomposite Powders[J]. Journal of Materials Research, 2008, 23(1): 236-244.
    [113] Zhang M, Li M J, Shen Q, et al. Microstructure and Properties of Spark Plasma Sintering BN/AlN Ceramics[J]. Key Engineering Materials, 2006, 313: 105-108.
    [114] Zhao Y C, Wang M Z. Effect of Sintering Temperature on the Structure and Properties of Polycrystalline Cubic Boron Nitride Prepared by SPS[J]. Journal of Materials Processing Technology, 2009, 209: 355-359.
    [115] Belmonte M, González-Julián J, Miranzo P, et al. Spark Plasma Sintering: A Powerful Tool to Develop New Silicon Nitride-Based Materials[J]. Journal of the European Ceramic Society, 2010, 30(14): 2937-2946.
    [116] Belmonte M, Osendi M I, Miranzo P. Modeling the Effect of Pulsing on the Spark Plasma Sintering of Silicon Nitride Materials[J]. Scripta Materialia, 2011, 65(3): 273-276.
    [117] Ceja-Cárdenas L, Lemus-Ruíz J, Jaramillo-Vigueras D, et al. Spark Plasma Sintering ofα-Si_3N_4 Ceramics with Al_2O_3 and Y_2O_3 as Additives and its Morphology Transformation[J]. Journal of Alloys and Compounds, 2010, 501(2): 345-351.
    [118] Hu C F, Sakka Y S, Tanaka H, et al. Microstructure and Properties of ZrB_2-SiC Composites Prepared by Spark Plasma Sintering Using TaSi2 as Sintering Additive[J]. Journal of the European Ceramic Society, 2010, 30(12): 2625-2631.
    [119] Khaleghi E, Lin Y S, Meyers M A, et al. Spark Plasma Sintering of Tantalum Carbide[J]. Scripta Materialia, 2010, 63(6): 577-580.
    [120] Omori M. Sintering, Consolidation, Reaction and Crystal Growth Spark Plasma System (SPS)[J]. Materials Science Engineering A, 2000, 287: 183-188.
    [121] Guo W M, Yang Z G, Zhang G J. Comparison of ZrB_2-SiC Ceramics with Yb_2O_3 Additive Prepared by Hot Pressing and Spark Plasma Sintering[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(4): 452-455.
    [122] Frage N, Kalabukhov S, Sverdlov N, et al. Densification of Transparent Yttrium Aluminum Garnet (YAG) by SPS Processing[J]. Journal of the European Ceramic Society, 2010, 30(6): 3331-3337.
    [123] Xu J G, Jiang G J, Li W L, et al. In Situ Synthesis of SiCw/MoSi_2 Composite through SPS Process[J]. Journal of Alloys and Compounds. 2008, 462: 170-174.
    [124] Wan X H, Hu A M, Li M, Chang C K, Mao D L. Performances of CaSiO_3 Ceramic Sintered by Spark Plasma Sintering[J]. Materials Characterization. 2008, 59(3): 256-260.
    [125] Chaim R, Shlayer A, Estournes C. Densification of Nanocrystalline Y2O_3 Ceramic Powder by Spark Plasma Sintering[J]. Journal of the European Ceramic Society, 2009, 29(1): 91-98.
    [126] Long B D, Othman R, Umemoto M, et al. Spark Plasma Sintering of Mechanically Alloyed in Situ Copper–Niobium Carbide Composite[J]. Journal of Alloys and Compounds, 2010, 505(2): 510-515.
    [127] Ran S, Vleugels J, Huang S G, et al. Manipulating Microstructure and Mechanical Properties of CuO Doped 3Y-TZP Nano-Ceramics Using Spark-Plasma Sintering[J]. Journal of the European Ceramic Society, 2010, 30(4): 899-904.
    [128] Ahmed I, Zhang F M, Otterstein E, et al. Processing of Porous Ti and Ti_5Mn Foams by Spark Plasma Sintering[J]. Materials & Design, 2011, 32(1): 146-153.
    [129] Yoon S, Dornseiffer J, Xiong Y, et al. Synthesis, Spark Plasma Sintering and Electrical Conduction Mechanism in BaTiO_3-Cu Composites[J]. Journal ofthe European Ceramic Society, 2011, 31(5): 773-782.
    [130] Sun L, Yang T E, Jia C C, et al. VC, Cr3C2 Doped Ultrafine WC-Co Cemented Carbides Prepared by Spark Plasma Sintering[J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(2): 147-152.
    [131] Xu X R, Zhuang H R, Li W L, et al. Improving Thermal Conductivity of Sm_2O_3-Doped AlN Ceramics by Changing Sintering Conditions[J]. Materials Science & Engineering A, 2003, 342: 104-108.
    [132] Qiao L, Zhou HP, Li CW. Microstructure and Thermal Conductivity of Spark Plasma Sintering AlN Ceramics[J]. Materials Science & Engineering B, 2003, 99: 102-105.
    [133] Li M J, Zhang L M, Shen Q. Microstructure and Properties of Spark Plasma Sintered AlN Ceramics[J]. Journal of Materials Science, 2006, 41: 7934-7938.
    [134] Xiong Y, Fu Z Y, Wang H. Microstructural Effects on the Transmittance of Translucent AlN Ceramics by SPS[J]. Materials Science & Engineering B, 2006, 128: 7-10.
    [135] Xiong Y, Fu Z Y, Wang H. Microstructure and IR Transmittance of Spark Plasma Sintering Translucent AlN Ceramics with CaF2 Additive[J]. Materials Science & Engineering B, 2005, 123: 57-62.
    [136] Xiong Y, Fu Z Y, Wang H, Quan F. Fabrication of Transparent AlN Ceramics[J]. Journal of Materials Sciences, 2006, 41: 2537-2539.
    [137] Khor K A, Yu L G, Murakoshi Y. Spark Plasma Sintering of Sm_2O_3-Doped Aluminum Nitride[J]. Journal of the European Ceramic Society, 2005, 25: 1057-1065.
    [138] Khor K A, Cheng K H, Yu L G, et al. Thermal Conductivity and Dielectric Constant of Spark Plasma Sintered Aluminum Nitride[J]. Materials Science & Engineering A, 2003, 347: 300-305.
    [139] Li Y L, Zhang J, Zhang J X. Fabrication and Thermal Conductivity of BN/AlN Ceramics by Spark Plasma Sintering[J]. Ceramics International, 2009, 35: 2219-2224.
    [140]张健,李永利,张久兴. SPS制备BN/AlN复相陶瓷及其性能优化[J].功能材料, 2008, 39: 1183-1185.
    [141]刘占国. A2Zr2O7稀土锆酸盐材料的组织结构与物理性能研究[D].哈尔滨:哈尔滨工业大学, 2009: 27-28.
    [142]何凤梅,李恩,李仲平,等.高Q腔法介电性能测试系统稳定性研究[J].宇航材料工艺, 2009, 1: 78-81.
    [143] Terao R, Tatami J, Meguro T, et al. Fracture Behavior of AlN Ceramics with Rare Earth Oxides[J]. Journal of the European Ceramic Society, 2002, 22: 1051-1059.
    [144] Fei C L, Zhang Y, Yang Z, et al. Synthesis and Magnetic Properties of Hard Magnetic (CoFe_2O_4)-Soft Magnetic (Fe_3O_4) Nano-Composite Ceramics by SPS Technology[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(13): 1811-1816.
    [145] Khor K A, Yu L G, Murakoshi Y. Spark Plasma Sintering of Sm_2O_3-Doped Aluminum Nitride[J]. Journal of the European Ceramic Society, 2005, 25: 1057-1065.
    [146] Kim H S, Chae J M, Oh Y S, et al. Effect of Carbothermal Reduction on the Thermal and Electrical Conductivities of Aluminum Nitride Ceramics[J]. Ceramics International, 2010, 36: 2039-2045.
    [147] Jackson T B, Virkar A V, More K L, et al. High Thermal Conductivity Aluminium Nitride Ceramics: the Effect of Thermodynamic, Kinetic, and Microstructural Factors. Journal of the American Ceramic Society, 1997, 80(6): 1421-1435.
    [148] Yu D Y, Hundere A M, Ragnvald H, et al. Microstructural Characterization and Microstructural Effects on the Thermal Conductivity of AlN(Y_2O_3) Ceramics[J]. Journal of the European Ceramic Society, 2002, 22: 247-252.
    [149] Qiao L, Zhou H P, Chen K, et al. Effects of Li2O on the Low Temperature Sintering and Thermal Conductivity of AlN Ceramics[J]. Journal of the European Ceramic Society, 2003, 23: 1517-1524.
    [150] Ryota K, Yoshiaki M, Makoto I, et al. Relation between Oxygen Concentration in AlN Lattice and Thermal Conductivity of AlN Ceramics Sintered with Various Sintering Additives[J]. Journal of the Ceramic Society of Japan, 2011, 119(1388): 291-294.
    [151]姚义俊,李纯成,蒋晓龙,等.稀土氧化物对氮化铝陶瓷介电性能的影响[J].硅酸盐学报, 2010, 38(10): 1982-1985.
    [152] Jarrige J, Bouzouita K, Doradoux C, et al. A New Method for Fabrication ofDense Aluminium Nitride Bodies at a Temperature as Low as 1600°C[J]. Journal of the European Ceramic Society, 1993, 12: 279-285.
    [153] Qiu J Y, Hotta Y, Watari K, et al. Low-Temperature Sintering Behavior of the Nano-Sized AlN Powder Achieved by Super-Fine Grinding Mill with Y2O_3 and CaO Additives[J]. Journal of the European Ceramic Society, 2006, 26(4-5): 385-390.
    [154] Boey F, Tok A I Y, Lam Y C, et al. On the Effect of Secondary Phase on Thermal Conductivity of AlN Ceramicsubstrates Using a Microstructural Modeling Approach[J]. Materials Science and Engineering A, 2002, 335: 281-289.
    [155] Tera. R, Tatami J, Meguro T, et al. Fracture Behavior of AlN Ceramics with Rare Earth Oxides[J]. Journal of the European Ceramic Society, 2002, 22: 1051-1059.
    [156] Chae J H, Park J S, Akn J P, et al. Effect of Y_2O_3 Addition on Densification and Thermal Conductivity of AlN Ceramics During Spark Plasma Sintering[J]. Journal of the Korean Ceramic Society, 2008, 45(12): 827-831.
    [157] Zhang Z J, Xu F M, Tan Y, et al. Microstructure and Mechanical Properties of AlN Ceramics Sintered with Yttium Nitride[J]. Materials Science Forum, 2011, 675-677: 159-162.
    [158] Kobayashi R, Moriya Y, Imamura M. Relation Between Oxygen Concentration in AlN Lattice and Thermal Conductivity of AlN Ceramics Sintered with Various Sintering Additives[J]. Journal of the Ceramic Society of Japan, 2011, 119(1388): 291-294.
    [159] Honma T, Kuroki Y, Okamoto T, et al. Temperature Dependence of Cathodolumiescence for AlN Ceramic Sintered with Ca_3Al_2O_6[J]. Key Engineering Materials, 2009, 388: 261-264.
    [160] Qiao L, Zhou H P, Fu R L. Thermal Conductivity of AlN Ceramics Sintered with CaF_2 and YF_3[J]. Ceramics International, 2003, 29: 893-896.
    [161] Alskaiki A, Srivastava G P, Role of Addtives in Enhancing the Thermal Conductivity[J]. Journal of Physics D: Applied Physics, 2008, 41(18): 125-129.
    [162]刘军芳.放电等离子烧结法制备氮化铝透明陶瓷[D].武汉:武汉理工硕士学位论文[D], 2002: 39-41.
    [163] Liang G C, Ling J S, Liang X H. A Study on the Thermal Conductivity of AlN Ceramics Materials[J]. Rare Metal Materials and Engineering, 2004, 33(2): 133-136.
    [164] Axel Berger, Moyiau O. Mcirosturcture of AlN Ceramic with High Thermal Conductivity[J]. Journal of the Ceramic Society of Japan, 1985, 21: 133-139.
    [165]周和平.添加CaF_2-Y_2O_3的AlN陶瓷的显微结构及热导性质[J].无机材料学报, 1995, 12: 339-444.
    [166] Du X L, Qin M L, Sun Y, et al. Structure and Thermal Conductivity of Powder Injection Molded AlN Ceramic[J]. Advanced Powder Technology, 2010, 21(4): 431-434.
    [167] Qiao L, Zhou H P, Chen K X, et al. Effect of Li_2O on the Low Temperature Sintering and Thermal Conductivity of AlN Ceramics[J]. Journal of the European Ceramic Society, 2003, 23: 1517-1524.
    [168] Kim K H, Park J S, Ahn J P. Effects of Y_2O_3 Additions on the Densification and Thermal Conductivity of Spark Plasma Sintering AlN Ceramics[J]. Journal of Ceramic Processing Research, 2009, 10(1): 109-112.
    [169] Do H S, Choi S W, Honq S H. Blue-Emitting AlN: Eu~(2+) Posder Phosphor Prepared by Spark Plasma Sintering[J]. Journal of the American Ceramic Society, 2009, 93(2): 356-358.
    [170] Kume S, Yasuoka M, Omura N, et al. Annealing Effect on Dielectric Property of AlN Ceramics[J]. Journal of the European Ceramic Society, 2006, 26: 1831-1834.
    [171] Cho W S, Cho M W, Lee J H, et al. Effects of h-BN Additive on the Microstructure and Mechanical Properties of AlN-Based Machinable Ceramics[J]. Materials Science and Engineering A, 2006, 418: 61-67.
    [172] Hojo J, Matsuura H, Hotta M. Nano-Grained Microstructure Design of Silicon Carbide Ceramics by SPS Process[J]. Key Engineering Materials, 2009, 403: 177-179.
    [173] Tajika M, Matsubara H, Rafanicllo W. Effect of Grain Contiguity on the Thermal Diffusivity of Aluminum Nitride[J]. Journal of the American Ceramic Society, 1999, 82(6): 1573-1575.
    [174] Kuramoto N, Takada K. Applications of Aluminum Nitride (AlN) Ceramics[J]. Key Engineering Materials, 2003, 247: 467-472.
    [175]关振铎,张中太,焦金生.无机物理材料性能.北京:清华大学出版社, 1992: 119-144.
    [176] Kusunose T, Sekinl T, Kim B S. Properties of Hot-Pressed BN/AlN Nanocomposites[J]. Materisals Science Forum, 2003, 439: 131-136.
    [177] Lipp A, Schwetz K A, Hunold K. Hexagonal Boron Nitride: Fabrication, Properties, and Applications[J]. Journal of the European Ceramic Society, 1989, 5(1): 3-9.
    [178]张联盟,黄学辉,宋晓岚[M].材料科学基础.武汉:武汉理工大学出版社, 2004: 234-242.
    [179] Turkevich V, Taniguchi T, Andteev A, et al. Kinetics and Mechanism of Cubic Boron Nitride Formation in AlN-BN System at 6 GPa[J]. Diamond and Related Materials, 2004, 13: 64-68.
    [180] Zhang T, Jin H Y, Zhao J F. Microstructure of AlN and BN/AlN Laminated Composites Ceramics at High Temperatures[J]. Rare Metal Materials and Engineering, 2009, 38(11): 2008-2011.
    [181] Chen W W, Miyamoto Y, Matsumoto T, et al. Preparation of AlN Ceramic Bonded Carbon by Gelcasting and Spark Plasma Sintering[J]. Carbon, 2010, 48(12): 3399-3404.
    [182] Makarenko G N, Krushinskaya L A, Fedorus V B, et al. Production and Properties of AlN-BN Composite[J]. Powder Metallurgy and Metal Ceramics, 2011, 49(11-12): 670-674.
    [183] Zhang T, Jin H Y, Zhou R, et al. Dielectric Property of Laminated BN/AlN Ceramic Composites[J]. Materials Science Forum, 2009, 620: 359-362.
    [184] Lee H K, Kim D k. Effect of Second Phase After-Heat Treatment on the Thermal Conductivity of AlN Ceramic[J]. Key Engineering Materials, 2009, 403: 61-63.
    [185] Pezzotti G, Nakahira A, Tajika M. Effect of Extended Annealing Cycles on the Thermal Conductivity of AlN/Y_2O_3 Ceramics[J]. Journal of the European Ceramic Society, 2000, 20(9): 1319-1325.
    [186] Li M J, Zhang L M, Shen Q, et al. Effects of Microstructure Modification on Properties of BN/AlN Composites[J]. Materials Science Froum, 2008, 23(1): 121-124.
    [187] Kuzenkova M O, Dub S M, Fesenko I P, et al. High-Temperature Annealingof AlN Ceramics[J]. Sverkhtverdye Materials, 2003, 3: 10-15.
    [188] Zhao H Y, Wang W M, Wang H, et al. Spark Plasma Sintered AlN-BN Composites and its Thermal Conductivity[J]. Key Engineering Materials, 2008, 23(6): 866-869.
    [189] Lee S K, Nakamura K, Kume S, et al. Thermal Conductivity of Hot-Pressed BN Ceramics[J]. Materials Science Forum, 2006, 510: 398-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700