用户名: 密码: 验证码:
机械合金化制备Zr-Al-Ni-Cu-Y非晶合金粉末及其低压烧结工艺探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金原子在三维空间呈拓扑无序排列,不存在常规晶态材料固有的晶粒、晶界等缺陷,宏观上呈现出各向同性,具有许多优异的性能,是材料科学界研究的热点领域之一。其中,Zr-A1-Ni-Cu体系因不含贵金属元素及有毒元素,并且具有较高的非晶形成能力而备受关注。然而,用常规模铸法制备Zr-A1-Ni-Cu块体非晶合金需要较为苛刻的工艺条件,难以产业化。机械合金化是一种非平衡态下的粉末固态合金化技术,通过高能球磨使粉末经受反复的变形、冷焊、破碎,最终达到原子级合金化的过程,现已广泛用于非晶合金粉末的制备。本文利用机械合金化的方法,以商业金属元素粉末为原料,合成Zr-A1-Ni-Cu非晶合金粉末,并结合实验和热力学原理对其非晶化的机理进行了探讨。常规模铸法因受熔体冷却速度和合金体系非晶形成能力的影响而使所制备的非晶合金尺寸非常有限,粉末固结工艺可以避免这种缺陷,从而开拓了另一种合成块体非晶合金的路线。基于成本考虑,本文采用常规的低压烧结方式对所制备的Zr-基非晶合金粉末进行烧结处理,探索非晶合金粉末的烧结方法。
     本文利用机械合金化方法成功制备了Zr5oAl15-xNi10Cu25Yx非晶合金粉末,探索了Y取代Al对体系非晶形成能力的影响,确定了Y的最佳添加量,为利用合金元素添加的方法来提高体系的非晶形成能力提供有力的实验证明。研究了外部添加剂对体系热稳定性的影响,确定了体系的最佳添加剂类型及其含量。利用低压烧结处理将非晶合金粉末烧结成型,探索了添加剂类型、含量、烧结温度以及保温时间对制品形貌及基本力学性能的影响。主要结论如下:
     1.利用共晶点原则设计了Zr50Al15Ni10Cu25体系基础组成,并采用正交实验方法法,由机械合金化技术在较低的转速(170r/min)及20:1的球料比条件下球磨60小时后,由商业金属元素粉末合成了Zr50Al15-xNi10Cu25Yx系列非晶合金粉末。
     2.探索了Y元素部分取代A1对体系非晶化的影响,发现添加适量的Y可以增加系统无序度并消除体系中氧杂质的有害作用,提高Zr50Al15-xNi10Cu25Yx体系的非晶形成能力,Y的最佳添加量为1.25at.%,过少或过多的Y引入量都会降低体系的非晶形成能力。
     3.用热力学方法对Y的最佳添加量进行了简单的分析。结果表明,随Y含量的增加,体系的混合焓呈现单调递减趋势,而系统的混合熵则呈现出抛物线形变化规律,在x=7.5时达到最大值,通过对等效自由能数据进行曲线拟合后发现,系统在x=1.20时获得最低的等效自由能,热力学上最有利于非晶合金的形成。
     4.探索了外部添加剂对Zr50A115Ni10Cu25非晶合金体系热稳定性的影响,发现适量(5wt.%)的外部添加剂(Si3N4)能有效提高Zr50A115Nil0Cu25非晶合金粉末的析晶活化能,可以抑制Zr50A115Ni10Cu25系统在升温过程中的析晶,增强体系的热稳定性,有助于非晶合金粉末的加热固结成型。
     5.探索了zr50A115-xNi10Cu25Yx非晶合金粉末的低压烧结工艺,由于实验过程中所采用的烧结温度过高,导致了经低压烧结后非晶合金粉末已完全非晶化,未能成功获得zr50A115-xNi10Cu25Yx块体非晶合金材料。
     6.探索了外部添加剂颗粒在Zr50Al15_xNi10Cu25Yx非晶合金粉末的低压烧结过程中的作用,发现适当的外部添加剂能起到一定的骨架作用,强化非晶基体。其中,以Si3N4的添加总体效果最好,块体样品的最高抗弯强度达115.22MPa。但由于添加物颗粒较粗,手工碾磨的方式很能使其均匀分散在基体粉末中,严重影响制品性能。
Metallic glasses have extraordinary disordered atomic configuration and no crystalline defects such as grain boundaries in conventional crystal metals. The structurally and chemically homogeneous glassy phase characteristics of metallic glasses provide many excellent properties compared to crystalline counterparts. Metallic glasses have been one of research fronts in materials science, of which, Zr-Al-Ni-Cu amorphous alloy has attracted more attentions because there exist no precious metal elements or toxic elements. Furthermore, the alloy has strong glass forming ability. The preparation of metallic glasses by conventional molding is affected by many rigorous preparation requirements, and it is hard to industrialize the production. Mechanical alloying (MA) is a powder metallurgy processing technique that includes repeated cold welding, fracturing and rewelding of powder particles in a high-energy ball mill. Currently, MA has now been widely used to synthesize amorphous alloy powders. In this paper, amorphous Zr-Al-Ni-Cu alloy powders are prepared by MA at low vacuum with commercial pure element powders. The progress and mechanism of amorphization in mechanical alloying has been investigated by X-ray diffractometry, differential scanning calorimetry, scanning/transmission electron microscopy and the corresponding thermodynamic principle.
     It can easily obtain bulk samples with complex shapes by powder consolidation techniques. A number of studies have been carried out on the consolidation of amorphous alloy powders using various consolidation techniques. Powder consolidation is a relatively new method to obtain large-sized amorphous alloy with excellent properties. Based on cost considerations, the high-cost methods such as ultra-high-pressure consolidation, extrusion consolidation and spark-plasma sintering are not adopted in the research. In order to reduce the preparation cost, this paper explores a more economical consolidation method for Zr-based amorphous alloy powders by conventional low-pressure sintering.
     The study successfully prepared Zr-Al-Ni-Cu-Y amorphous alloy powders by mechanical alloying, and explored the beneficial effects of Al partially substituted by Y in Zr5oAl15Ni10Cu25on glass forming ability. The optimum substitution amount of Y is1.25at%, which provides a convincing experimental evidence for improving glass-forming ability of Zr-based amorphous alloy by minor alloying elements additions. The influence of external additive particles on the thermal stability of amorphous powders was investigated, and the optimum type and content of additive particles for Zr-Al-Ni-Cu have been determined. The amorphous alloy powders were consolidated by low-pressure sintering process. And then the paper explored the influence of additive particles and sintering temperature on morphology and mechanical properties of bulk Zr-Al-Ni-Cu-Y composite. The main conclusions of this paper are listed as below.
     1. Numerous experiments have indicated that an amorphous alloy can exhibit high glass forming ability when its composition lies along the binary eutectic line with low melting temperature in hypoeutectic composition. Based on these studies, a new composition Zr5oAl15Ni10Cu25is presented. And Zr5oAl15-xNi10Cu25Yx amorphous alloy powders can be synthesized from low purity commercial powders by mechanical alloying after60hours milled under the condition of low rotational speed (170r/min) and ball-to-powder weight ratio of20:1.
     2. The influence of Al partial substituted by Y in Zr5oAl15Ni10Cu25on glass forming ability is investigated. It can be found out that an appropriate amount of Y addition can make the atoms in Zr5oAl15Ni10Cu25arrange more disordered and scavenge the oxygen impurity in the system via the formation of innocuous yttrium oxides, thus improve the glass forming ability of Zr50Al15-xNi10Cu25Yx. The optimum addition amount of Y is1.25at%. Below or beyond that amount, the glass-forming ability of the system will decline.
     3. In order to optimize the addition amount of yttrium, a simple analysis based on the thermodynamic principle is carried out. It can find that the the mixing enthalpy of the system is monotonously decreased with the Y content increased, but the mixing entropy first increases and then decreases. The maximal mixing entropy appears at x=7.5. As can be seen from the fitting curve of equivalent free energy, free energy approaches to its lowest value at x=1.25, that is to say, the yttrium amount is appropriate for amorphous alloys formation from the point of view of thermodynamic principle.
     4. The impact of external additive particles on the thermal stability of Zr50Al15-xNi10Cu25Yx amorphous alloy has been explored. Results show that an appropriate amount (5wt.%) of the external additive particles (Si3N4) can effectively increase the crystallization activation energy of the amorphous matrix and thus improve the thermal stability. And good thermal ability is helpful for the consolidation of the amorphous alloy powders under heating process.
     5. The consolidation of Zr50Al15-xNi10Cu25Yx amorphous alloy powders by low-pressure sintering has been explored. Because of the sintering temperature is much higher than the crystallization temperature, all amorphous powders have been crystallized in the sintering process and no bulk amorphous alloys are obtained.
     6. The role of external additive particles on consolidating Zr5oAl15-x Ni10Cu25Yx amorphous alloy powders by low-pressure sintering process is investigated. It is found out find that the external additive particles can act as a framework in the amorphous alloy powders, thus strengthen the amorphous matrix. Among the three different additives, Si3N4has the best performance for consolidating Zr50Al15-xNi10Cu25Yx amorphous alloy powders. The highest flexural strength value is up to115.22MPa. Because of the particle size of the additives are large than the amorphous powders, it is hard to disperse the external additive particles homogeneously in the amorphous powders by means of hand milling. The inhomogeneous external particles can greatly restrict the structure and performance of the products.
引文
[1]何圣静,高莉如.非晶态材料及其应用[M].1987,北京:机械工业出版社.
    [2]王一禾,杨膺善.非晶态合金[M].1989,北京:冶金工业出版社.
    [3]Y. T. Cheng, W. L. Johnson. Disordered Materials:A Survey of Amorphous Solids [J]. Science,1987,235(4792):997-1002.
    [4]D. Turnbull. Kinetics of Solidification of Supercooled Liquid Mercury Droplets [J]. J. Chem. Phys.,1952,20(3):411-424.
    [5]H. A. Davies. Amorphous Metallic Alloys [M].1983, London: Butterworths-Heinemann.
    [6]H. S. Chen, J. T. Krause, E. Coleman. Elastic constants, hardness and their implications to flow properties of metallic glasses [J]. J. Non-Cryst. Solids, 1975,18(2):157-171.
    [7]W. H. Kui, A. L. Gree, D. Turnbull. Formation of Bulk Metallic Glass by Fluxing [J]. Appl. Phys. Lett.,1984,45(6):615-616.
    [8]A. Inoue, T. Zhang, T. Masumoto. Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Metallic Mold Casting Method [J]. Mater. Trans., JIM,1990,31(5):425-428.
    [9]A. Inoue, T. Zhang, N. Nishiyama, et al. Preparation of 16 mm Diameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5 Alloy [J]. Mater. Trans., JIM,1993,34(12): 1234-1237.
    [10]X. H. Lin, W. L. Johnson. Formation of Ti-Zr-Cu-Ni bulk metallic glasses [J]. J. Appl. Phys.,1995,78(11):6514-6519.
    [11]W. L. Johnson. Bulk glass-forming metallic alloys:Science and technology [J]. MRS Bull.,1999,24(10):42-56.
    [12]胡壮麒,张海峰.块状非晶合金及其复合材料研究进展[J].金属学报,2010,46(11):1391-1421.
    [13]K. S. Son, X. M. Wang, Y. Yokoyama, et al. Formation, Thermal Stability, and Mechanical Properties of Glassy Zr60Al10Ni10Cu20 Alloy Rods with Diameters of 18 and 20mm [J]. Mater. Trans., JIM,2009,50(8):2021-2027.
    [14]F. Xu, H. B. Lou, X. D. Wang, et al. Glass forming ability and crystallization of Zr-Cu-Ag-Al-Be bulk metallic glasses [J]. J. Alloys Compd.,2011,509(37): 9034-9037.
    [15]H. B. Lou, X. D. Wang, F. Xu, et al.73 mm-diameter bulk metallic glass rod by copper mould casting [J]. Appl. Phys. Lett.,2011,99(5):051910-1-3.
    [16]Q. K. Jiang, X. D. Wang, X. P. Nie, et al. Zr-(Cu,Ag)-Al bulk metallic glasses [J]. Acta mater.,2008,56(8):1785-1796.
    [17]A. L. Greer, E. Ma. Bulk Metallic Glasses:At the Cutting Edge of Metals Research [J]. MRS Bull.,2007,32(8):611-619.
    [18]T. Burgess, M. Ferry. Nanoindentation of metallic glasses [J]. Mater. Today, 2009,12(1-2):24-32.
    [19]M. Li, J. Eckert, L. Kecskes, et al. Mechanical properties of metallic glasses and applications [J]. J. Mater. Res.,2007,22(2):255-257.
    [20]H. J. Leamy, T. T. Wang, H. S. Chen. Plastic Flow and Fracture of Metallic Glass [J]. Metall. Mater. Trans. B,1972,3(3):699-708.
    [21]T. G. Nieh, J. Wadsworth. Homogeneous deformation of bulk metallic glasses [J]. Scr. Mater.,2006,54(3):387-392.
    [22]Y. H. Liu, G Wang, R. J, Wang, et al. Super Plastic Bulk Metallic Glasses at Room Temperature [J]. Science,2007,315:1385-1388.
    [23]A. Inoue, A. Takeuchi. Recent Development and Applications of Bulk Glassy Alloys [J]. Int. J. Appl. Glass Sci.,2010,1(3):273-295.
    [24]H. S. Chen. Effects of composition and structure on magnetic properties of amorphous Fe-P-C alloys [J]. Phys. Stat. Sol. A,1973,17(2):561-566.
    [25]A. Inoue, J. S. Gook. Multicomponent Fe-Based Glassy Alloys with Wide Supercooled Liquid Region before Crystallization [J]. Mater. Trans., JIM, 1995,36(10):1282-1285.
    [26]M. F. Ashby, A. L. Greer. Metallic glasses as structural materials [J]. Scr. Mater.,2006,54(3):321-326.
    [27]U. Kiihn, N. Mattern, A. Gebert, et al. Nanostructured Zr-and Ti-based composite materials with high strength and enhanced plasticity [J]. J. Appl. Phys.,2005,98(5):054307-1-4.
    [28]H. M. Fu, H. F. Zhang, H. Wang, et al. Synthesis and mechanical properties of Cu-based bulk metallic glass composites containing in-situ TiC particles [J]. Scr. Mater.,2005,52(7):669-673.
    [29]R. D. Conner, H. Choi-Yim, W. L. Johnson. Mechanical Properties of Zr57Nb5Al10Cu15.4Ni12.6 Metallic Glass Matrix Particulate Composites [J]. J. Mater. Res.,1999,14(8):3292-3297.
    [30]A. Peker, W. L. Johnson. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 [J]. Appl. Phys. Lett.,1993,63(17):2342-2344.
    [31]T. Zhang, A. Inoue, T. Masumoto. Amorphous Zr-Al-TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K [J]. Mater. Trans., JIM,1991,32(11):1005-1010.
    [32]W. H. Wang, C. Dong, C. H. Shek. Bulk metallic glasses [J]. Mater. Sci. Eng., R,2004,44(2-3):45-89.
    [33]J. F. Loffler. Recent progress in the area of bulk metallic glasses [J]. Z. Metallkd.,2006,97(2):225-233.
    [34]A. Inoue, N. Nishiyama. New Bulk Metallic Glasses for Applications as Magnetic-Sensing, Chemical, and Structural Materials [J]. MRS Bull.,2007, 32(8):651-658.
    [35]H. Kakiuchi, A. Inoue, M. Onuki, et al. Application of Zr-Based Bulk Glassy Alloys to Golf Clubs [J]. Mater. Trans., JIM,2001,42(4):678-681.
    [36]K. Q. Qiu, A. M. Wang, H. F. Zhang, et al. Mechanical properties of tungsten fiber reinforced ZrAlNiCuSi metallic glass matrix composite [J]. Intermetallics,2002,10(11-12):1283-1288.
    [37]J. Y. Suh, B. Lohwongwatana, C. M. Garland, et al. Novel thermoplastic bonding using a bulk metallic glass solder [J]. Scr. Mater.,2008,59(8): 905-908.
    [38]N. Nishiyama, K. Amiya, A. Inoue. Bulk metallic glasses for industrial products; New structural and functional applications [C]. in 2003 MRS Fall Meeting.2004:Materials Research Society
    [39]张博,汪卫华.铈基块体金属玻璃的研究进展[J].科学通报,2007,52(13):1477-1494.
    [40]G. Kumar, H. X. Tang, J. Schroers. Nanomoulding with amorphous metals [J]. Nature,2009,457(12):868-873.
    [41]A. Inoue, X. M. Wang, W. Zhang. Developments and Applications of Bulk Metallic Glasses [J]. Rev. Adv. Mater. Sci.,2008,18(1):1-9.
    [42]N. Nishiyama, K. Amiya, A. Inoue. Novel applications of bulk metallic glass for industrial products [J]. J. Non-Cryst. Solids,2007,353(32-40):3615-3621.
    [43]N. Nishiyama, K. Amiyaa, A. Inoue. Recent progress of bulk metallic glasses for strain-sensing devices [J]. Mater. Sci. Eng., A,2007,449-451:79-83.
    [44]石延平.非晶态合金应力传感器的研究[J].淮海工学院学报,2008,17(3):11-14.
    [45]F. Xie, H. Yang, W. Shen S. Q. Li, et al. Amorphous magnetoelastic sensors for the detection of biological agents [J]. Intermetallics,2009,17(4):270-273.
    [46]郭金花,连法增,倪晓俊,等.块体非晶合金及其涂层的电化学行为[J].功能材料,2007,38(11):1817-1819.
    [47]J. R. Scully, A. Gebert, J. H. Payer. Corrosion and related mechanical properties of bulk metallic glasses [J]. J. Mater. Res.,2007,22(2):302-313.
    [48]袁泉,潘牧,袁润章.非晶态合金催化剂在低温燃料电池中的应用[J].电源技术,2006,30(6):516-518.
    [49]辛全礼,吕志果,郭振美.负载型非晶态合金催化剂的制备、表征及其应用[J].河南化工,2007,24(2):17-19.
    [50]N. DeCristofaro. Amorphous Metals in Electric-Power Distribution Applications [J]. MRS Bull.,1998,23(5):50-56.
    [51]郭世海,张羊换,王煜,等.Fe基非晶合金的恒导磁性能研究[J].功能材料,2007,38(11):1790-1792.
    [52]L. Liu, C. L. Qiu, C. Y. Huang, et al. Biocompatibility of Ni-free Zr-based bulk metallic glasses [J]. Intermetallics,2009,17(4):235-240.
    [53]S. L. Zhu, X. M. Wang, F. X. Qin, et al. A New Ti-Based Bulk Glassy Alloy with Potential for Biomedical Application [J]. Mater. Sci. Eng., A,2007, 459(1-2):233-237.
    [54]李传福,张川江,辛学祥.非晶态合金的制备与应用进展[J].山东轻工业学院学报,2008,22(1):50-53.
    [55]M. Telford. The case for bulk metallic glass [J]. Mater. Today,2004,7(3): 36-43.
    [56]王冠.金属玻璃:比塑料易塑,比不锈钢还刚[EB/OL].北京:科技日报,[2012-2-21].http://www.stdaily.com/kjrb/content/2011-09/14/content_347658.htm.
    [57]张海峰,丁炳哲,胡壮麒.块状金属玻璃研究与进展[J].金属学报,2001,37(11):1131-1141.
    [58]刘金民.Zr基块体非晶合金复合材料的制备与性能[D].沈阳:沈阳工业大学.2010.
    [59]惠希东,陈国良.块体非晶合金[M].1 ed.2007,北京:化学工业出版社.
    [60]S. C. Glade, R. Busch, D. S. Lee, et al. Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys [J]. J. Appl. Phys.,2000,87(10):7242-7248.
    [61]D. R. Uhlmann. A Kinetic Treatment of Glass Formation [J]. J. Non-Cryst. Solids,1972,7(4):337-248.
    [62]D. H. Xu, W. L. Johnson. Crystallization Kinetics and Glass-forming Ability of Bulk Metallic Glasses Pd40Cu30Ni10P20 and Zr41.2Ti13.8Cu12.5Ni10Be22.5 from Classical Theory [J]. Phys. Rev. B,2006,74(2):024207-1-5.
    [63]A. L. Greer. Through a glass, lightly [J]. Nature,1999,402(11):132-133.
    [64]A. Inoue, N. Nishiyama. Flux Treated Pd-Cu-Ni-P Amorphous Alloy Having Low Critical Cooling Rate [J]. Mater. Trans., JIM,1997,38(5):464-472.
    [65]Y. He, T. D. Shen, R. B. Schwarz. Bulk Amorphous Metallic Alloys:Synthesis by Fluxing Techniques and Properties [J]. Metall. Mater. Trans. A,1998,29(7): 1998-1795.
    [66]A. Inoue, H. Kimura, H. Kimura. Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter [J]. Mater. Trans., JIM,1997,38(2):179-183.
    [67]闫志杰,柴跃生.大块非晶合金[M].2005,北京:兵器工业出版社.
    [68]H. S. Chen. Thermodynamic considerations on the formation and stability of metallic glasses [J]. Acta Metall.,1974,22(12):1505-1511.
    [69]A. Inoue, T. Matsuda, T. Matsuda. Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching [J]. Mater. Trans., JIM,1996, 37(2):181-184.
    [70]肖帆,韩明,王小祥.块状非晶合金的研究进展[J].材料科学与工程,1999,17(2):76-80.
    [71]A. Inoue, T. Nakamura, N. Nishiyama, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method [J]. Mater. Trans., JIM,1992,33(10):937-945.
    [72]边赞.大体积非晶材料的研究[D].北京:北京科技大学.2001.
    [73]A. Inoue, T. Zhang. Fabrication of Bulk Glassy Zr55Al10Ni5Cu30 Alloy of 30 mm in Diameter by a Suction Casting Method [J]. Mater. Trans., JIM,1996, 37(2):185-187.
    [74]A. Wang, K. Qiu, X. Pan, et al. Evolution of Semi-Solid Structure of Hypoeutectic White Cast Iron by Rheocasting [C]. in The Fourth Pacific Rim International Conference on Advanced Materials and Processing.2001. Hawaii:Japan Institute of Metals.
    [75]Y. J. Kim, R. Busch, W. L. Johnson, et al. Metallic glass formation in highly undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 during containerless electrostatic levitation processing [J]. Appl. Phys. Lett.,1994,65(17):2136-2138.
    [76]李伏,喻更生,林建国,等.微重力落管法制备Nd60Al10Fe20Co10非晶薄片的磁性能研究[J].湘潭大学自然科学学报,2004,26(4):54-56.
    [77]A. Inoue, Y. Yokoyama, Y. Shinohara, et al. Preparation of Bulky Zr-Based Amorphous Alloys by a Zone Melting Method [J]. Mater. Trans., JIM,1994, 35(12):923-926.
    [78]刘日平,马明臻,王文魁.大块非晶合金连续铸轧技术[P].中国:CN03128762.X.2004-4-7.
    [79]李金富,阎志杰,何顺荣,等.大块非晶合金分步冷却连续铸造方法[P].中国:CN02111709.82003-1-8.
    [80]A. Inoue, T. Zhang. Fabrication of Bulky Zr-Based Glassy Alloys by Suction Casting into Copper Mold [J]. Mater. Trans., JIM,1995,36(9):1184-1187.
    [81]A. Inoue. Stabilization and high strain-rate super-plasticity of metallic supercooled liquid [J]. Mater. Sci. Eng., A,1999,267(1):171-183.
    [82]Y. Kawamura, H. Kato, A. Inoue, et al. Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state [J]. Appl. Phys. Lett.,2008, 67(14):2008-2010.
    [83]高玉来,沈军,孙剑飞,等.大块非晶合金制备新技术——非晶粉末固结成形法[J].材料导报,2002,16(10):31-34.
    [84]邵丙璜,高举贤,李国豪.金属粉末爆炸烧结界面能量沉积机制[J].爆炸与冲击,1989,9(1):17-27.
    [85]S. Ando, Y. Mine, K. Takashima, et al. Explosive compaction of Nd-Fe-B powder [J]. J. Mater. Process. Technol.,1999,85(1-3):142-147.
    [86]唐翠勇,肖志瑜,陈进,等.粉末冶金制备大块非晶合金研究进展[J].材料导报,2010,24(6):93-97.
    [87]M. Krasnowski, A. Antolak-Dudka, T. Kulik. Bulk amorphous Al85Fe15 alloy and Al85Fe15-B composites with amorphous or nanocrystalline-matrix produced by consolidation of mechanically alloyed powders [J]. Intermetallics, 2011,19(8):1243-1249.
    [88]X.J. Gu, F. Ye, F. Zhou, et al. Pressure effect on crystallization of mechanically alloyed amorphous A185Fel5 alloy [J]. Mater. Sci. Eng., A,2000,278(1-2): 61-65.
    [89]郭晟,刘咏,刘祖铭,等.Al-Ni-Y合金雾化粉末的超高压固结成形及其机 理研究[J].粉末冶金材料科学与工程,2005,10(1):40-44.
    [90]H. J. Kim, J. K. Lee, S. Y. Shin, et al. Cu-based bulk amorphous alloys prepared by consolidation of amorphous powders in the supercooled liquid region [J]. Intermetallics,2004,12(10-11):1109-1113.
    [91]Spark Plasma Sintering (SPS/DCS) [EB/OL]. [2012-1-10]. http://thermaltechnology.com/index.php?option=com content&view=article& id=84.
    [92]张久兴,岳明,宋晓艳,等.放电等离子烧结技术与新材料研究[J].功能材料,35(z1):94-105.
    [93]S. Mula, K. Mondal, S. Ghosh, et al. Structure and mechanical properties of Al-Ni-Ti amorphous powder consolidated by pressure-less, pressure-assisted and spark plasma sintering [J]. Mater. Sci. Eng., A,2010,517(16-17): 3757-3763.
    [94]X. Q. Li, C. Yang, W. P. Chen, et al. Microstructure and mechanical properties of SPSed (spark plasma sintered) Ti66Nbi3Cu8Ni6.8Al6.2 bulk alloys with and without WC addition [J]. Mater. Trans., JIM,2009,50(7):1720-1724.
    [95]B. S. Murty. Mechanical alloying—a novel synthesis route for amorphous phases [J]. Bull. Mater. Sci.,1993,16(1):1-17.
    [96]J. Bhatt, B.S. Murty. On the conditions for the synthesis of bulk metallic glasses by mechanical alloying [J]. J. Alloys Compd.,2008,459(1-2): 135-141.
    [97]陈振华,陈鼎.机械合金化与固液反应球磨[M].2006,北京:化学工业出版社
    [98]P. R. Soni. Mechanical Alloying:Fundamentals and Applications [M].1999, Cambridge:Cambridge International Science Publishing.
    [99]李凡,吴炳尧.机械合金化——新型的固态合金化方法[J].机械工程材料,1999,23(4):22-25.
    [100]C. Suryanarayana. Mechanical alloying and milling [J]. Prog. Mater Sci.,2001, 46(1-2):1-184.
    [101]W. Guo, A. Iasonna, M. Magini, et al. Synthesis of amorphous and metastable Ti4oAl6o alloys by mechanical alloying of elemental powders [J]. J. Mater. Sci., 1994,29(9):2436-2444.
    [102]C. Suryanarayana, G.H. Chen, F. H. Froes. Milling maps for phase identification during mechanical alloying [J]. Scripta Metall. Mater.,1992, 26(11):1727-1732.
    [103]C. H. Lee, T. Fukunage, U. Mizutani. Temperature dependence of mechanical alloying and grinding in Ni-Zr, Cu-Ta and Fe-B alloy systems [J]. Mater. Sci. Eng., A,1991,134:1334-1337.
    [104]Y. Qin, L. Chen, H. Shen. In-situ X-ray diffraction examination of nanocrystalline Ag37Cu63 powders synthesized by mechanical alloying [J]. J. Alloys Compd.,1997,256(1-2):230-233.
    [105]C. C. Koch, O. B. Cavin, C. G. Mckamey, et al. Preparation of "amorphous" Ni6oNb40 by mechanical alloying [J]. Appl. Phys. Lett.,1983,43(11): 1017-1019.
    [106]Y. Ogino, T. Yamasaki, S. Maruyama, et al. Non-equilibrium phases formed by mechanical alloying of Cr-Cu alloys [J]. J. Non-Cryst. Solids,1990, 117-118(2):737-740.
    [107]R. B. Schwarz, W. L. Johnson. Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals [J]. Phys. Rev. Lett., 1983,51(5):415-418.
    [108]M. S. Kim, C. C. Koch. Structural development during mechanical alloying of crystalline niobium and tin powders [J]. J. Appl. Phys.,1987,62(8): 3450-3453.
    [109]Y. Chakk, S. Berger, B. Z. Weiss, et al. Solid state amorphization by mechanical alloying-An atomistic model [J]. Acta metall. mater.,1994,42(11): 3679-3685.
    [110]S. Veprek, Z. Iqbal, F. A. Sarott. A thermodynamic criterion of the crystalline-to-amorphous transition in silicon [J]. Philos. Mag. B,1982,45(1): 137-145.
    [111]Y. Zhang, M. X. Pan, D. Q. Zhao, et al. Formation of Zr-based bulk metallic glasses from low purity of materials by yttrium addition [J]. Mater. Trans., JIM, 2000,41(11):1410-1414.
    [112]A. L. Greer. Confusion by design [J]. Nature,1993,366(6453):303-304.
    [113]T. Egami. Atomistic mechanism of bulk metallic glass formation [J]. J. Non-Cryst. Solids,2003,317(1-2):30-33.
    [114]A. Inoue. Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys [J]. Acta mater.,2000,48(1):279-306.
    [115]Y. M. Wang, J. B. Qiang, C. H. Wong, et al. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion [J]. J. Mater. Res.,2003,18(3):642-648.
    [116]I. W. Donald, H. A. Davies. Prediction of glass-forming ability for metallic systems [J]. J. Non-Cryst. Solids,1978,30(1):77-85.
    [117]Y. J. Yang, D. W. Xing, C. P. Li, et al. A new way of designing bulk metallic glasses in Cu-Ti-Zr-Ni system [J]. Mater. Sci. Eng., A,2007,448(1-2):15-19.
    [118]Y. J. Sun, D. D. Qu, Y. J. Huang, et al. Zr-Cu-Ni-Al bulk metallic glasses with superhigh glass-forming ability [J]. Acta Materialia,2009,57(4):1290-1299.
    [119]唐仁政,田荣璋.二元合金相图及中间相晶体结构[M].2009,长沙:中南大学出版社.
    [120]J. Luo, H. P. Duan, C. L. Ma, et al. Effects of Yttrium and Erbium Additions on Glass-Forming Ability and Mechanical Properties of Bulk Glassy Zr-Al-Ni-Cu Alloys [J]. Mater. Trans., JIM,2006,47(2):4.
    [121]S. Deledda, J. Eckert, L. Schultz. Thermal stability of mechanically alloyed Zr-Cu-Al-Ni glass composites containing ZrC particles as a second phase [J]. Scr. Mater.,2002,46(1):31-35.
    [122]M. Seidel, M. Reibold, J. Eckert. Investigations of the solid state reaction process in mechanically alloyed Zr-Al-Cu-Ni bulk metallic glasses by analytical transmission electron microscopy [J]. Fresenius J. Anal. Chem., 1998,361(6-7):740-742.
    [123]丛秋滋.多晶二维X射线衍射[M].1997,北京:科学出版社.
    [124]D. Oleszak, D. Kolesnikov, T. Kulik. Ni59Zr20Ti16Si5 bulk amorphous alloy obtained by mechanical alloying and powder consolidation [J]. Mater. Sci. Eng., A,2007,449-451:1127-1130.
    [125]N. Mehta, A. Kumar. Applicability of Kissinger's relation in the determination of activation energy of glass transition process [J]. J. Optoelectron. Adv. Mater.,2005,7(3):1473-1478.
    [126]H. S. Chen. Correlation between the thermal stability and activation energy of crystallization in metallic glasses [J]. Appl. Phys. Lett.,1976,29(1):12-14.
    [127]A. W. Weeber, H. Bakker. Amorphization by ball milling. A review [J]. Physica B,1988,153(1-3):93-135.
    [128]A. Takeuchi, A. Inoue. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element [J]. Ma,er. Trans., JIM,2005,46(2):2817-2829.
    [129]Z. P. Lu, C. T. Liu, W. D. Porter. Role of yttrium in glass formation of Fe-based bulk metallic glasses [J]. Appl. Phys. Lett.,2003,83(13):2581-2585.
    [130]B. S. Murty, S. Ranganathan, M. M. Rao. Solid state amorphization in binary Ti-Ni, Ti-Cu and ternary Ti-Ni-Cu system by mechanical alloying [J]. Mater. Sci. Eng., A,1992,149(2):231-240.
    [131]A. Takeuchi, A. Inoue. Calculations of Amorphous-Forming Composition Range for Ternary Alloy Systems and Analyses of Stabilization of Amorphous Phase and Amorphous-Forming Ability [J]. Mater. Trans., JIM,2001,42(7): 1435-1444.
    [132]Q. Jiang, B. Q. Chi, J. C. Li. A valence electron concentration criterion for glass-formation ability of metallic liquids [J]. Appl. Phys. Lett.,2003,82(1): 2984-2986.
    [133]王东君.TiCuZrNiSn非晶合金粉末的热稳定性及烧结行为[D].哈尔滨:哈尔滨工业大学.2010.
    [134]聂彦,张磊,龚荣洲,等.过程控制剂对机械合金化制备Fe-Co合金的影响研究[J].功能材料,2004,35(z1):3043-3045.
    [135]戴乐阳,陈清林,林少芬,等.高能球磨中促进粉体细化的主要因素研究[J].材料导报,2009,23(11):59-61.
    [136]J. Dutkiewicz, L. Jaworska, W. Maziarz, et al. Consolidation of amorphous ball-milled Zr-Cu-Al and Zr-Ni-Ti-Cu powders [J]. J. Alloys Compd.,2007, 434-435:333-335.
    [137]J. Robertson, J. T. Im, I. Karaman, et al. Consolidation of amorphous copper based powder by equal channel angular extrusion [J]. J. Non-Cryst. Solids, 2003,317(1-2):144-151.
    [138]D. F. Carroll. Sintering and microstructural development in WC/Co-based alloys made with superfine WC powder [J]. Int. J. Refract. Met. Hard Mater, 1999,17(1-3):123-132.
    [139]D. H. Xiao, Y. H. He, M. Song, et al. Y2O3- and NbC-doped ultrafine WC-lOCo alloys by low pressure sintering [J]. Int. J. Refract. Met. Hard Mater, 2010,28(3):407-411.
    [140]J. Eckert, M. Seidel, A. Kubler, et al. Oxide dispersion strengthened mechanically alloyed amorphous Zr-Al-Cu-Ni composites [J]. Scr. Mater., 1998,38(4):595-602.
    [141]A. Kubler, J. Eckert, L.Schultz. Nanoparticles in an amorphous Zr55AlioNi3oCu5 matrix-The formation of composites by mechanical alloying [J]. Nanostruct. Mater.,1999,12:443-446.
    [142]J. J. Shyu, S. T. Wang. Effect of particle size on the sintering of Li2O-Al2O3-4SiO2-borosilicate glass composites [J]. J. Mater. Sci.,1996, 31(21):5603-5607.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700