用户名: 密码: 验证码:
金属氧化物薄膜晶体管器件的稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜晶体管(Thin-Film Transistors,TFT)是场效应晶体管的一种,其制作方法是在衬底基板上沉积各种功能薄膜叠加而成,如绝缘层、半导体有源层及金属电极层。薄膜晶体管是液晶和有源矩阵有机发光二极管显示器的核心部件,其对显示器件的工作性能起到至关重要的作用。薄膜晶体管的背板技术中,非晶硅TFT迁移率较低,多晶硅TFT均匀性差及制备成本高,微晶硅TFT面临严峻工艺重复性难题,新兴有机材料TFT以其独特的有机物特性虽然展现了巨大潜力,但其迁移率及稳定性仍不尽理想。以上背板技术的缺点都限制TFT在显示器件中的应用。氧化物TFT背板技术是目前发现的最适合用于平板显示器件,但实用型的金属氧化物薄膜晶体管的发展依然遇到很多瓶颈。而唯有解决了这些技术瓶颈问题,TFT背板技术才能真正面向产业化。因此,有必要对氧化物TFT进行更深层次的研究和论证。本论文集中于氧化物薄膜晶体管器件的稳定性研究及其背板技术的开发,以器件稳定性为契机,从绝缘层、有源层及钝化层等功能薄膜材料以及相互界面之间的影响的角度出发,研究了器件稳定性与薄膜材料及其相互界面的关系,并从实用性角度致力于将氧化物TFT发展为背板技术的主流。
     首先研究了阳极氧化铝基栅绝缘层的金属氧化物薄膜晶体管器件性能及器件稳定性。实验中对比以阳极氧化Al2O3及PECVD沉积SiO2为栅绝缘层IZO-TFTs的NBIS稳定性,Al2O3栅绝缘层的IZO-TFTs器件,其Von在NBIS测试下向正向漂移;SiO2栅绝缘层的TFT器件,其Von向负向漂移。负向的Von漂移归结于空穴捕获原理,而正向的Von漂移是由于栅极电子注入到栅绝缘层。本文提出三种改善NBIS稳定性的方法:其一,Al2O3与IZO间插入一层SiO2,双层绝缘层结构有助改善器件NBIS稳定性,同时此器件有优异PBIS稳定性;其二,制备双栅极结构金属氧化物薄膜晶体管,通过版图设计顶栅遮光单元,阻挡光照入射到TFT器件;其三,利用掺杂型阳极氧化铝能带修饰提高氧化物TFT的NBIS稳定性,目前工作还在进行。高稳定性的阳极氧化铝基栅绝缘层金属氧化物薄膜晶体管的研发成功,预示着其在平板显示领域将发挥巨大潜力。
     而阳极氧化铝基双栅极结构的金属氧化物薄膜晶体管的成功开发,一方面有效地解决了器件NBIS稳定性,另一方面双栅极结构金属氧化物TFT能对器件阈值电压进行线性调控。研究表明,通过在一端栅极施加恒定电压,双栅极结构的TFT器件具有良好的阈值电压调控特性,这些可归结于底栅与顶栅间形成了交互作用的垂直电场。因而,双栅极结构IZO-TFTs器件也可应用于补偿像素电路,有效地改善OLED器件的亮度均匀性。从中看到,双栅极结构的TFT器件在将来的平板显示领域中展现了其不可或缺的作用。
     强调有源层薄膜的退火处理对金属氧化物薄膜晶体管器件性能及器件稳定性的影响。文中采用两步退火法成功制备高性能金属氧化物薄膜晶体管。在ESL沉积前先对IZO薄膜在O2气氛下进行前退火处理,一方面改善TFT基板器件均匀性,另一方面TFT器件的PBS,NBIS及TS稳定性也明显提高,这是因为前退火能有效减少有源层体内或绝缘层/有源层界面的缺陷密度。通过计算FRs,薄膜经过前退火处理后缺陷态也明显减小。研究也发现,前退火条件中的退火温度及退火气氛均对TFT器件性能产生影响。
     文中探讨了钝化层技术对金属氧化物薄膜晶体管器件性能及器件稳定性的影响。有机旋涂薄膜作为钝化层的IZO-TFTs器件,无法获得可控TFT性能;而通过PECVD沉积SiO2薄膜作为器件钝化层,器件性能及器件稳定性大幅提高。文中着重讨论不同温度沉积SiO2钝化层对TFT器件性能及器件稳定性的影响。SiO2沉积温度为210℃时,器件具有较佳器件性能,然而低温沉积SiO2作为器件钝化层,IZO-TFTs正栅偏压稳定性较差。通过XPS分析,SiO2沉积温度不仅影响IZO薄膜的氢含量,而且对IZO薄膜内氧空位及以弱键形式结合的氧杂质含量均存在影响。而弱键结合的氧杂质是影响IZO-TFTs器件正栅偏压稳定性的重要因素。再者,SiO2沉积过程是一个多因素相关而相互影响成膜过程,SiO2沉积功率、沉积压力及气体流量比均造成TFT器件性能差异。
     基于金属氧化物TFT的背板技术已展示了其在平板显示领域中蓬勃发展的活力,开展和推进金属氧化物TFT基础性的研究工作,显得尤为重要而迫切。文中最后从新材料开发、器件可靠性、低成本、高分辨率及驱动芯片设计等角度引出氧化物TFT背板技术的下一步研究方向,寻找新型高性能氧化物TFT开发思路及发展方向。
Thin-Film Transistors (TFT), as a kind of field-effect transistors, are fabricated on thesubastrate with depositing variable functional film continuously, such as semiconductor active,dielectric, and metal electrodes. As a core component in liquid-crystal displays and organiclight-emitting diodes, the performance of TFT is of vial importance to the dislay quality. Thesupporting backplane technology for the TFT, recently, is diversified. In particular, it is a goodprospect to predict the metal oxide semiconductor could provide a solution to the intrinsicproblems including the inferior mobility of amorphous silicon TFTs, non-uniformity of lowtemperature poly-silicon, and bad processing-repeatability of micro-silicon. The rise oforganic TFT represents a potential direction, but the poor mobility and reliability stillbarricade its further development. However, like the other TFTs’ technologies before beingintegrated into commercial products, metal oxide TFTs also suffer from the materials’ intrinsiccapabilities and limiting factors, such as material fabrication and device stability. Nowadays,the investigation of metal oxide TFTs is all in the early stages, and the physical mechanismsare not yet clear. What is more, the restraint of the developing metal oxide TFTs intoutility-type is complicated and variable. From this viewpoint, it is urgent to deepen theunderstanding and argumentation of metal oxide TFTs when targeted as the mainstream ofbackplane technology. So in this doctoral dissertation, we focus on the developments ofhighly-stable metal oxide thin-films transistor and its backplane technology.
     Firstly, we shed light on the device performance and stability of metal oxide TFTs basedon anodic aluminum oxide gate dielectrics. Via the comparison of the negative biasillumination stress (NBIS) stability of metal oxide TFTs based on PECVD-deposited SiO2andanodic Al2O3gate dielectric, it was proved that the negative Vonshift for SiO2-based TFTduring NBIS was due to the hole trapping phenomenon, and the positive Vonshift for anodicAl2O3-based TFT was due to the electron injection from gate to dielectric. Thus, threemethods have been proposed to enhance the stability of TFT with Al2O3gate dielectric:(1)insert a SiO2layer between Al2O3and IZO, the NBIS stability of IZO-TFTs was greatlyimproved, accompanying with a high stability under PBIS;(2) fabricate dual-gate structuremetal oxide TFTs, barricading the illumination lighting in to the IZO film via layout design oflight shielding unit by top gate;(3) modify the band structure of anodic Al2O3dielectric, usingthe doping effect of anodic Al2O3to improve the NBIS stability, and the work is on.Highly-stable metal oxide thin-films transistor based on anodic Al2O3dielectric has beensuccessfully fabricated, making a hint in the potential applications in LCDs and OLEDs.
     Secondly, dual gate indium zinc oxide thin-film transistors have already provided a goodsolution to the NBIS stability, and from another point of view, dual structure TFTs have greatadvantages in threshold voltage modulation. It is shown that the threshold voltage of TFTscould been linearly modulated with respect to the applied top gate voltage due to themodification of vertical electric field distribution between the bottom and top gate. Owning toits linear controllability of threshold voltage, it is believed that the dual gate structure will betentatively introduced in the application of compensation pixel circuit, making an accessiblepath for developing highly-efficient AMOLEDs with TFT backplane, which has highimmunity to the threshold voltage variation.
     Thirdly, highly-stable IZO-TFTs using a two-step-annealing method were fabricated. Itwas shown that the pre-annealing step before ESL deposition in O2atmosphere can greatlyimprove the uniformity of IZO-TFTs. Furthermore, the electrical stability against PBS, NBIS,and TS was greatly improved for TFTs with pre-annealing step, owing to the fewer trap statesat the gate insulator/channel interface or in the semiconductor film. The calculated FRsconfirmed that the pre-annealing step can reduce the trap states. In addition, annealingtemperature and ambient in the pre-annealing step make a great impact on the performance ofmetal oxide TFTs. Therefore, the pre-annealing step is essential and indispensable in oxideTFT fabrication.
     Fourthly, we comprehensively study the effect of passivation technology on theperformance and stability of metal oxide TFTs. IZO-TFTs with spin-coating organic film aspassivation hardly show switchable TFT performance, but with SiO2deposited by PECVD aspassivation, the performance of IZO-TFTs has greatly improved. In this work, the influence ofthe deposition temperature of the SiO2passivation on the active layer was investigated. It isfound that the TFT passivated by210°C-SiO2has the lowest conductivity, lowest turn-onvoltage (|Von|), and highest mobility. However, the IZO-TFTs with SiO2deposited at lowertemperature are less stable under positive bias stress (PBS). By using X-ray PhotoelectronSpectroscopy (XPS) analysis, it is found that the deposition temperature of the SiO2passivation will influence on not only the hydrogen content, but also the amount of oxygenvacancies and loosely bound oxygen impurities in the bulk IZO film. The loosely boundoxygen impurities in IZO act as an acceptor-type trap owning to its lower migration barriersheight, resulting in positive Vonshift under PBS. Meanwhile, we have found that thedeposition of SiO2passivation is a multi-factors related and influenced process, such as thepower, gas pressure, and SiH4/N2O gas ratio will deeply affect the performance of IZO-TFTs.
     TFT backplane technology based on metal oxide semiconductor has shown us a flourishing vitality in the application of flat panel displays, as a result, the fundamentalinvestigation of metal oxide TFTs is urgent and significant. At the end of this doctoraldissertation, we try to emphasize on the novel materials exploitation, device reliability, lowcost, high resolution, and driving IC design, which leads to the further research with thedesitination of highly-performance metal oxide thin-film transistors.
引文
[1] Voss D.. Organic electronics: Cheap and cheerful circuits[J]. Nature,2000,407:442-445
    [2] Lilienfeld J. E.. Device for controlling Electric current[P].美国:1,900,018,1933
    [3] Lechner B. J.; Marlowe F. J.; Nester E. O., et al. Liquid Crystal Matrix Displays[J]., Proc.IEEE,1971,59:1566
    [4] Baude P. F.; Ender D. A.; Haase M. A., et al.Pentacene-based radio-frequencyidentification circuitry[J]. Appl. Phys. Lett.,2003,82(22):3964-3966
    [5] Brody T. P.; Asars J. A.; Dixon G. D.. A6″×6″20Lines-per-Inch Liquid Crystal DisplayPanel[J]. SID Digest,1973:179-182
    [6] Yu J. B.; Byun H. G.; So M., et al. Analysis of diabetic patient's breath with conductingpolymer sensor array[J]. Sensors&Actuators B,2005,108(1-2):305-308
    [7] Weimer P. K.. The TFT-A New Thin-Film Transistor[J]. Proc. IEEE,1962,50:1462
    [8] Ha S. C.; Kim Y. S.; Yang Y., et al.Integrated and microheater embedded gas sensor arraybased on the polymer composites dispensed in micromachined wells[J]. Sensors&Actuators B,2005,105(2):549-555
    [9] Kagan C. R.; Andry P..薄膜晶体管(TFT)及其在平板显示中的应用[M].北京:电子工业出版社,2008:10-11
    [10] OLED的现状与发展.国际光电与显示网
    [11] Tang C. W.; Vanslyke S. A.. Organic electroluminescent diodes[J]. Appl. Phys. Lett.,1987,51:913-915
    [12] Burroughes J. H.; Bradley D. D. C.; Brown A. R., et al. Light-emitting diodes based onconjugated polymers[J]. Nature,1990,347:539-541
    [13]陈志强;刘晓彦.低温多晶硅(LTPS)显示技术[M].北京:科学出版社,2006年4月:245-271
    [14] Okutani S.; Kamiura N.; Sano H., et al. A20.8-inch WXGA Full Color AMOLEDDisplay by Integrating Scattering Reflector with Micro-Bumps[J]. SID Digest,2007:173-176
    [15] Braun D.; Heeger A. J.. Visible light emission from semiconducting polymer diodes[J].Appl. Phys. Lett.,1991,58:1982-1984
    [16] Lecomber P. G.; Spear W. E.; Ghaith A.. Amorphous Silicon Field-Effect Device andPossible Application[J]. Electron. Lett.,1979,15:179-182
    [17] Depp S. W.; Juliana A.; Huth B. G.. Polysilicon FET Devices for Large AreaInput/Output Applications[J]. Proc.1980Int. Electron Device Mtg,1980:703-704.
    [18] Okabe T.; Yaneda T.; Aita T., et al. Microcrystalline Silicon Thin Film Transistors byExcimer Laser Annealing for Large-Sized TFT-LCDs[J]. IDW,2009:257-260
    [19] Moriguchi M.; Saitoh Y.; Yoshida T., et al. Gate Driver and Data Switching CircuitIntegrated LCD Panel by High Performance Bottom Gate Microcrystalline Si TFT[J].IDW,2009:253-256
    [20] Oana Y.. A240×360Element Active Matrix LCD with Integrated Gate-Bus DriversUsing PolySi TFTs[J]. SID Digest,1986:293-296
    [21] Tsumura A.; Koezuka H.; Ando T.. Field-effect transistor with a polythiophene thinfilm[J]. Appl. Phys. Lett.,1986,49(18):1210-1212
    [22] Garnier F.; Hajlaoui R.; Yassar A., et al. All-polymer field-effect transistor realized byprinting techniques[J]. Science,1994,256:1684-1686
    [23] Haddon R. C.; Perel A. S.; Morris R. C., et al. C60thin film transistor[J]. Appl. Phys.Lett.,1995,67(1):121-123
    [24] Lin Y. Y.; Gundlach D. J.; Nelson S. F., et al. Stacked pentacene layer organic thin-filmtransistors with improved characteristics[J]. IEEE Electron Device Letters,1997,18(12):606-608
    [25] Jurchescu O. D.; Baas J.; Palstra T. M.. Effect of impurities on the mobility of singlecrystal pentacene[J]. Appl. Phys. Lett.,2004,84(16):3061-3063
    [26] Hoffman R.L.; Norris B.J.; Wager J. F.. ZnO-based transparent thin-film transistors[J].Appl. Phys. Lett.,2003,82:733
    [27] Nomura K.; Ohta H.; Ueda K., et al. Thin-Film Transistor Fabricated inSingle-Crystalline Transparent Oxide Semiconductor[J]. Science,2003,300:1269
    [28] Nomura K.; Ohta H.; Takagi A., et al. Room-temperature fabrication of transparentflexible thin-film transistors using amorphous oxide semiconductors[J]. Nature,2004,432:488-492
    [29] Pang H.; Rajan K.; Silvernail J., et al. Recent progress of flexible AMOLED displays[J].Proc. SPIE7956, Advances in Display Technologies; and E-papers and Flexible Displays,2011,79560J
    [30] Shih T.-H.; Tsai T.-T.; Chen K.-C., et al.9.3: A32-inch Active-Matrix OrganicLight-Emitting Diode Television Panel Driving by Amorphous Indium-Gallium-ZincOxide Thin-Film Transistors[J]. SID Symposium Digest of Technical Papers,2012,43:92-94
    [31] Wang L.; Yoon M. H.; Lu G., et al.. High performance transparent inorganic-organichybrid thin film n type transistors[J]. Nature Materials,2006,5:893-900
    [32] Vygranenko Y.; Wang K.; Nathan A.. Stable indium oxide thin-film transistors with fastthreshold voltage recovery[J]. Appl. Phys. Lett.,2007,91:263508
    [33] Wang Y.; Ren F.; Lim W.; Norton D. P., et al. Room temperature deposited indium zincoxide thin film transistors[J]. Appl. Phys. Lett.,2007,90:232103
    [34] Yabuta H.; Sano M.; Abe K., et al.. High-mobility thin-film transistor with amorphousInGaZnO4channel fabricated by room temperature rf-magnetron sputtering[J], Appl.Phys.Lett.,2006,89:112123
    [35] Lim W.; Jang J. H.; Kim S.H., et al. High performance indium gallium zinc oxide thinfilm transistors fabricated on polyethylene terephthalate substrates[J]. Appl. Phys. Lett.,2007,93:082102
    [36] Presley R. E.; Hong D.; Chiang H. Q., et al.. Transparent ring oscillator based on indiumgallium oxide thin-film transistors[J]. Solid State electronics,2006,50:500-503
    [37] Chiang H. Q.; Wager J. H.; Hoffman R. L., et al.. High mobility transparent thin-filmtransistors with amorphous zinc tin oxide channel layer[J]. Appl. Phys.Lett.,2005,86:013503
    [38] Cho D. H.; Yang S.; Byun C., et al. Transparent Al-Zn-Sn-O thin film transistorsprepared at low temperature[J]. Appl. Phys. Lett.,2008,93:142111
    [39] Matsuoka K.; Kina O.; Koutake M., et al. High Resolution200ppi LCD Driven byEntirely Printed Organic TFT[J]. IDW’09,2009:717-720
    [40] Lee H. N.; Kyung J.; Kang S. K., et al.3.5Inch QCIF+AM-OLED Panel Based onOxide TFT Backplane [J]. SID DIGEST,2007:1826-1829
    [41]王中健;王龙彦;马仙梅等.透明非晶态氧化物半导体薄膜晶体管的研究进展[J].液晶与显示,2009,24:210-216
    [42]谢强;李宏建;黄永辉等.几种OLED有源驱动电路中像素单元电路的分析[J].液晶与显示,2004,19(6):462-467
    [43] Hayashi R.; Sato A.; Ofuji M., et al. Improved Amorphous In2Ga2Zn2O TFTs [J].SIDDIGEST,2008:621-624
    [44] Park S. K.; Ryu M.; Hwang C., et al. Transparent ZnO Thin Film Transistor for theApplication of High Aperture Ratio Bottom Emission AM-OLED Display[J]. SIDDIGEST,2008:629-632
    [45] Carcia P. F.; McLean R. S.; Reilly M. H., et al.. A comparison of zinc oxide thin-filmtransistors on silicon oxide and silicon nitride gate dielectrics[J]. J. Appl. Phys.,2007,102:074512
    [46] Wager J. F.. Amorphous Oxide Semiconductor Thin-Film Transistors: Performance&Manufacturability for Display Applications[J]. SID DIGEST,2009:181-184
    [47] Jeong J. K.; Jeong J. H.; Choi J. H., et al.12.1-Inch WXGA AMOLED Display Drivenby Indium-Gallium-Zinc Oxide TFTs Array[J]. SID DIGEST,2007:1-4
    [48] Wager J. F.. Transparent electronics-display applications[J]. SID DIGEST,2007:1824-1825
    [49] Lee H. N.; Kyung J.; Kang S. K., et al.3.5Inch QCIF+AM-OLED Panel Based onOxide TFT Backplane[J]. SID DIGEST,2007:1826-1829
    [50] Park S. K.; Hwang C.; Lee J., et al. Transparent ZnO Thin Film Transistor Array for theApplication of Transparent AM-OLED Display[J]. SID DIGEST,2006:25-29
    [51] Wagner S.; Gleskova H.; Cheng I.-C., et al. Silicon for thin-film transistors[J]. Thin SolidFilms,2003,430:15
    [52] Risteska A.; Chan K.-Y.; Gordijn A., et al. Electrical Stability of High-MobilityMicrocrystalline Silicon Thin-Film Transistors[J]. Journal of Display Technology,2012,8:27
    [53] Chan K.-Y.; Gordijn A.; Stiebig H., et al. Ambipolar characteristics of microcrystallinesilicon thin-film transistors[J]. Physica Status Solidi (c),2010,7:1144
    [54] Fujisaki Y.; Kumaki D.; Nakajima Y., et al. Stable bottom-contact organic thin-filmtransistor array with fluoropolymer dielectric for flexible displays[J]. IDW,2009:721-724
    [55] Na J.; Kitamura M.; Arakawa Y.. High field-effect mobility amorphous InGaZnOtransistors with aluminum electrodes[J]. Appl. Phys. Lett.,2008,93:063501
    [56] Ishii H.; Sugiyama K.; Ito E.,et al. Energy Level Alignment and Interfacial ElectronicStructures at Organic/Metal and Organic/Organic Interfaces[J]. Adv. Mater.(Weinheim,Ger.),1999,11:605
    [57] Sakata J.; Ohara H.; Sasaki M., et al. Development of4.0-in. AMOLED Display withDriver Circuit using Amorphous In-Ga-Zn-Oxide TFTs[J]. IDW’09:689-692
    [58] Sze S. M.. Physics of Semiconductor Devices[J]. Wiley,1981,2:442
    [59] Dhananjay; Krupanidhi S. B.. Low threshold voltage ZnO thin film transistor with aZn0.7Mg0.3O gate dielectric for transparent electronics[J]. J. Appl. Phys.,2007,101:123717
    [60] Nomura K.; Ohta H.; Ueda K., et al. All oxide transparent MISFET using high-kdielectrics gates[J]. Microelectr. Eng.,2004,72:294
    [61] Park J.-S.; Jeong J. K.; Mo Y.-G., et al. Impact of high-k TiOxdielectric on deviceperformance of indium-gallium-zinc oxide transistors[J]. Appl. Phys. Lett.,2009,94:042105
    [62] Yan J.; Chen H.; Yeh S., et al.3.1-inch Flexible Top-Emitting AMOLED on PlasticSubstrate Driven by Organic Thin Film Transistors[J]. SID DIGEST,2009:986-987
    [63] Blanchet G. B.; Fincher C. R.; Lefenfeld M.. Contact resistance in organic thin filmtransistors[J]. Appl. Phys. Lett.,2004,84(2):296-298
    [64] Park J.; Kim C.; Kim S., et al. Source/Drain Series-Resistance Effects in AmorphousGallium-Indium Zinc-OxideThin Film Transistors[J]. IEEE Electron Device Letters,2008,29:8
    [65] Matsuoka K.; Kina O.; Koutake M., et al. High Resolution200ppi LCD Driven byEntirely Printed Organic TFT[J]. IDW,2009:717-720
    [66] Shimura Y.; Nomura K.; Yanagi H., et al. Specific contact resistances betweenamorphous oxide semiconductor In-Ga-Zn-O and metallic electrodes[J]. Thin Solid Films,2008,516:5899
    [67] Hosono H.. Ionic amorphous oxide semiconductors: Material design, carrier transport,and device application[J]. J. Non-Cryst. Solid.,2006,352:851-858
    [68] Hosono H.; Yasukawa M.; Kawazoe H.. Novel oxide amorphous semiconductors: transparent conducting amorphous oxides [J]. J. Non-Cryst. Solid.,1996,203:334-344
    [69]王中健;王龙彦;马仙梅等.透明非晶态氧化物半导体薄膜晶体管的研究进展[J].液晶与显示,2009,24(2):210-216
    [70]林明通;余峰;张志林.氧化锌基薄膜晶体管最新研究进展[J].光电子技术,2008,28(4):217-231
    [71] Wager J. F.. Amorphous Oxide Semiconductor Thin-Film Transistors: Performance&Manufacturability for Display Applications[J]. SID DIGEST,2009:181-183
    [72] Hosono H.. Recent progress in transparent oxide semiconductors: Materials and devicesapplication [J]. Thin Solid Films,2007,515(15):6000-6014
    [73] Nomura K.; Takagi A.; Kamiya T., et al. Amorphous oxide semiconductors forhigh-performance flexible thin-film transistors[J]. Jpn. J. Appl. Phys.,2006,45(5B):4303-4308
    [74] Kumomi H.; Nomura K.; Kamiya T., et al. Amorphous oxide channel TFTs[J]. Thin SolidFilms,2008,516:1516-1522
    [75] Kawazoe H.; Yasukawa M.; Hyodou H., et al. P-type electrical conduction in transparentthin films of CuAlO2[J]. Nature,1997,389:939-942
    [76] Narushima S.; Ueda K.; Mizoguchi H., et al. P-type amorphous oxide semiconductor,ZnRh2O4, and room temperature fabrication of amorphous oxide P-N hetero-junctiondiodes[J]. Adv. Mater.,2003,15:1409
    [77] Lee M.; Shih C.; Chen J.. Excellent Performance of Indium-Oxide-based Thin-FilmTransistors by DC Sputtering[J]. SID DIGEST,2009:191-193
    [78] Suresh A.; Wellenius P.; Dhawan A.. Room temperature pulsed laser deposited indiumgallium zinc oxide channel based transparent thin film transistors[J]. Appl. Phys. Lett.,2007,90:123512
    [79] Levy D.; Freeman D.; Nelson S., et al. Stable ZnO thin film transistors by fast open airatomic layer deposition[J]. Appl. Phys. Lett.,2008,92:192101
    [80] Huby N.; Ferrari S.; Guziewicz E., et al. Electric behavior of zinc oxide layers grown bylow temperature atomic layer deposition[J]. Appl. Phys. Lett.,2008,92:023502
    [81] Kim J. B.; Fuentes-Hernandez C.; Potscavage W. J., et al. Low-voltage InGaZnOthin-film transistors with Al2O3gate insulator grown by atomic layer deposition[J]. Appl.Phys. Lett.,2009,94:142107
    [82] Ryu M.; Park K.; Seon J., et al. AMOLED Driven by Solution-Processed OxideSemiconductor TFT[J]. SID DIGEST,2009:188-190
    [83] Lai Y.; Yu C.; Chang F., et al. Solution Processed IGZO-TFTs with Various GateInsulator Layer Applied to Active Matrix LCD[J]. IDW,2009:1697-1700
    [84] Banger K.; Yamashita Y., Mori K., et al. Low-temperature, high-performancesolution-processed metal oxide thin-film transistors formed by a ‘sol-gel on chip’process[J]. Nat. Mater.,2011,10:45-50
    [85] Ohara H.; Sasaki T.; Noda K., et al.4.0in. QVGA AMOLED Display usingIn-Ga-Zn-Oxide TFTs with a Novel Passivation Layer[J]. SID DIGEST,2009:284-287
    [86] Cho D.; Yang S.; Park S. K., et al. Al and Sn-doped Zinc Indium Oxide Thin FilmTransistors for AMOLED Back-Plane[J]. SID DIGEST,2009:280-283
    [87] Cross R. B. M.; DeSouza M. M.. Investigating the stability of zinc oxide thin filmtransistors[J]. Appl. Phys. Lett.,2006,89:263513
    [88] Lee J.-M.; Cho I.-T.; Lee J.-H., et al. Bias-stress-induced stretched-exponential timedependence of threshold voltage shift in InGaZnO thin film transistors[J]. Appl. Phys.Lett.,2008,93:093504
    [89] Fujii M.; Yano H.; Hatayama T., et al. Thermal analysis of degradation inGa2O3–In2O3–ZnO thin-film transistors[J]. Jpn. J. Appl. Phys.,2008,47:6236
    [90] Lopes M. E.; Gomes H. L.; Medeiros M. C. R., et al. Gate-bias stress in amorphous oxidesemiconductors thin-film transistors[J]. Appl. Phys. Lett.,2009,95:063502
    [91] Hoffman R.; Emery T.; Yeh B., et al.21.4: Zinc Indium Oxide Thin-Film Transistors forActive-Matrix Display Backplane[J]. Proc. Soc. Inform. Display Int. Symp. Dig. Tech.,2009,40:288
    [92] Triska J.; Conley J. F.; Presley R., et al. Bias stress stability of zinc-tin-oxide thin-filmtransistors with Al2O3gate dielectrics[J]. J. Vac. Sci. Technol. B,2010,28:C5
    [93] Seo S. J.; Choi C. G.; Hwang Y. H., et al. High performance solution-processedamorphous zinc tin oxide thin film transistor[J]. J. Phys. D: Appl. Phys.,2009,42:035106
    [94] Nomura K.; Kamiya T.; Hirano M., et al. Origins of threshold voltage shifts inroom-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors[J]. Appl.Phys. Lett.,2009,95:013502
    [95] Hosino K.; Hong D.; Chiang H. Q., et al. Constant-voltage-bias stress testing of a-IGZOthin-film transistors[J]. IEEE Trans. Electron. Dev.,2009,56:1365
    [96] Riedl T.; Gorrn P.; Holzer P., et al. Ultra-high long-term stability of oxide-TTFTs undercurrent stress[J]. Phys. Stat. Sol.,(RRL)2007,1:175
    [97] Oh M. S.; Lee K.; Song J. H., et al. Improving the Gate Stability of ZnO Thin-FilmTransistors with Aluminum Oxide Dielectric Layers[J]. J. Electrochem. Soc.,2008,155:H1009
    [98] Powell M. J.; van Berkel C.; French I. D., et al. Bias dependence of instabilitymechanisms in amorphous silicon thin-film transistors[J]. Appl. Phys. Lett.,1987,51:1242
    [99] Powell M. J.. et al. The physics of amorphous-silicon thin-film transistors[J]. IEEE Trans.Electron. Dev.,1989,36:2753
    [100] Flewitt A. J.; Dutson J. D.; Beecher P., et al. Stability of thin film transistorsincorporating a zinc oxide or indium zinc oxide channel deposited by a high ratesputtering process[J]. Semicond. Sci. Technol.,2009,24:085002
    [101] Suresh A.; Muth J. F.. Bias stress stability of indium gallium zinc oxide channel basedtransparent thin film transistors[J]. Appl. Phys. Lett.,2008,92:033502
    [102] Lee K. H.; Jung J. S.; Son K. S., et al. The effect of moisture on the photon-enhancednegative bias thermal instability in Ga-In-Zn-O thin film transistors[J]. Appl. Phys. Lett.,2009,95:232106
    [103] Seo H.-S.; Bae J.-U.; Kim D.-H., et al. Reliable Bottom Gate AmorphousIndium-Gallium-Zinc Oxide Thin-Film Transistors with TiOxPassivation Layer[J].Electrochem. Solid-State Lett.,2009,12:H348
    [104] Feng T. Z.; Abe K.; Kumomi H., et al. Electrical Instability of RF Sputter AmorphousIn-Ga-Zn-O Thin-Film Transistors[J]. J. Display Technol.,2009,5:452
    [105] Shin J.-H.; Lee J.-S.; Hwang C.-S. Light Effects on the Bias Stability of TransparentZnO Thin Film Transistors[J]. ETRI J.,2009,31:62
    [106] Ji K. H.; Kim J.-I.; Mo Y.-G., et al. Comparative Study on Light-Induced Bias StressInstability of IGZO Transistors With SiNxand SiO2Gate Dielectrics [J]. IEEE ElectronDevice Lett.,2010,31:1404
    [107] Jung J. S.; Son K. S.; Lee K.-H., et al. The Effect of Passivation Layers on the NegativeBias Instability of Ga-In-Zn-O Thin Film Transistors under Illumination[J]. Appl. Phys.Lett.,2010,96:193506
    [108] Jeong J. K.; Yang H. W.; Jeong J. H., et al. Origin of threshold voltage instability inindium-gallium-zinc oxide thin film transistors [J]. Appl. Phys. Lett.,2008,93:123508
    [109] Liu P. T.; Chou Y. T.; Teng L. F., et al. Environment-dependent metastability ofpassivation-free indium zinc oxide thin film transistor after gate bias stress[J]. Appl. Phys.Lett.2009,95:233504
    [110] Park J. S.; Kim T. S.; Son K. S., et al. The influence of SiOxand SiNxpassivation on thenegative bias stability of Hf-In-Zn-O thin film transistors under illumination[J]. Appl.Phys. Lett.,2010,96:262109
    [111] Jung J. S.; Lee K.-H.; Son K. S., et al. The Effect of Passivation Layers on the NegativeBias Instability of Ga-In-Zn-O Thin Film Transistors under Illumination[J]. Electrochem.Solid-State Lett.,2010,13:H376
    [112] Son K.-S.; Jung J.-S.; Lee K.-H., et al. Highly Stable Double-Gate Ga-In-Zn-OThin-Film Transistor [J]. IEEE Electron Device Lett.,2010,31:812
    [113] Kwon J.; Jung J.; Son K., et al. The impact of gate dielectric materials on thelight-induced bias instability in Hf-In-Zn-O thin film transistor[J]. Appl. Phys. Lett.,2010,97:183503
    [114] Park J.; Kim T.; Son K., et al. Ti/Cu bilayer electrodes for SiNx-passivated Hf-In-Zn-Othin film transistors: Device performance and contact resistance[J]. Appl. Phys. Lett.,2010,96:262109
    [115]Xia D.; and Xu J.. High mobility and low operating voltage ZnGaO and ZnGaLiOtransistors with spin-coated Al2O3as gate dielectric[J]. J. Phys. D: Appl. Phys.,2010,43:442001
    [116] Lan L.F.; Peng J. B.. High-Performance Indium-Gallium-Zinc Oxide Thin-FilmTransistors Based on Anodic Aluminum Oxide[J]. IEEE Trans. Electron Devices,2011,58:1452
    [117] Shin J.; Lee J.; Hwang C., et al. Light Effects on the Bias Stability of Transparent ZnOThin Film Transistors[J]. ETRI J.,2009,31:62
    [118] Park J.; Kim T.; Son K., et al. Influence of Illumination on the Negative-Bias Stabilityof Transparent Hafnium-Indium-Zinc Oxide Thin-Film Transistors[J]. IEEE ElectronDevice Lett.,2010,31:440
    [119] Yang S.; Cho D.; Ryu M., et al. Improvement in the photon-induced bias stability ofAl-Sn-Zn-In-O thin film transistors by adopting AlOxpassivation layer[J]. Appl. Phys.Lett.,2010,96:213511
    [120] Jeong J.; Yang H.; Jeong J., et al. Origin of threshold voltage instability inindium-gallium-zinc oxide thin film transistors[J]. Appl. Phys. Lett.,2008,93:123508
    [121] Lee K.; Jung J.; Son K., et al. The effect of moisture on the photon-enhanced negativebias thermal instability in Ga-In-Zn-O thin film transistors[J]. Appl. Phys. Lett.,2009,95:232106
    [122] Robertson J.. Band offsets of wide-band-gap oxides and implications for futureelectronic devices[J]. J. Vac. Sci. Technol. B,2000,18:1785–1791
    [123] Yasuno S.; Kita T.; Morita S., et al. Transient photoconductivity responses in amorphousIn-Ga-Zn-O films[J]. J. Appl. Phys.,2012,112:053715
    [124] Vieira S. M. C.; Hsieh G.-W.; Unalan H. E., et al. Thin-film transistors based onpoly(3,3’”-dialkyl-quarterthiophene) and zinc oxide nanowires with improved ambientstability[J]. Appl. Phys. Lett.,2011,98:102106
    [125] Kim W.-S.; Shin S.-Y.; Lee S.-H., et al. High stability of amorphous hafnium-zinc-tinoxide thin film transistors[J]. Curr. Appl. Phys.,2012,12:S17-S20
    [126] Kwon J.-Y.; Jung J. S.; Son K. S., et al. The impact of gate dielectric materials on thelight-induced bias instability in Hf-In-Zn-O thin film transistor[J]. Appl. Phys. Lett.,2010,97:183503
    [127] Park S. H.; Mativenga M.; Jang J.. Increase of mobility in dual gateamorphous-InGaZnO4thin-film transistors by pseudo-doping[J]. Appl. Phys. Lett.,2013,103:043509
    [128] Choi J. Y.; Kim S. S.; Lee S. Y.. Effect of hafnium addition on Zn-Sn-O thin filmtransistors fabricated by solution process[J]. Appl. Phys. Lett.,2012,100:022109
    [129] Park J.-S.; Jeong J. K.; Mo Y.-G., et al. Control of threshold voltage in ZnO-based oxidethin film transistors[J]. Appl. Phys. Lett., vol.93, no.3, pp.033513, Jul.2008.
    [130] Baek C.; Seo S.-M.. Vertical organic inverter with stacked pentacene thin filmtransistors[J]. Appl. Phys. Lett.,2009,94:153305
    [131] Lee S. M.; Ryoo C. I.; Park J. W., et al.9.3: Control of Threshold Voltage in BackChannel Etch Type Amorphous Indium Gallium Zinc Oxide Thin Film Transistors[J].SID Int. Symp. Digest Tech. Papers,2011,42:104-106
    [132] Jang J.; Sun J.; Zhou B., et al. Self-Assembled In-Plane Gate Oxide-BasedHomojunction Thin-Film Transistors[J]. IEEE Electron Device Lett.,2011,32:500-502
    [133] Lan L. F.; Peng J. B.. High-Performance Indium-Gallium-Zinc Oxide Thin-FilmTransistors Based on Anodic Aluminum Oxide[J]. IEEE Trans. Electron Devices,2011,58:1452-1455
    [134] Xu H.; Lan L. F.; Xu M., et al. High performance indium-zinc-oxide thin-filmtransistors fabricated with a back-channel-etch-technique[J]. Appl. Phys. Lett.,2011,99:253501
    [135] Lan L. F.; Xu M.; Peng J. B., et al. Influence of source and drain contacts on theproperties of the indium-zinc oxide thin-film transistors based on anodic aluminum oxidegate dielectrics[J]. J. Appl. Phys.,2011,110:103703
    [136] Zan H.-W.; Chen W.-T.; Yeh C.-C., et al. Dual gate indium-gallium-zinc-oxide thin filmtransistor with an unisolated floating metal gate for threshold voltage modulation andmobility enhancement[J]. Appl. Phys. Lett.,2011,17:153506
    [137] Robertson J.. Band offsets of wide-band-gap oxides and implications for futureelectronic devices[J]. J. Vac. Sci. Technol. B,2000,18:1785-1791
    [138] Kamiya T.; Nomura K.; Hosono H.. Origin of definite Hall voltage and positive slope inmobility-donor density relation in disordered oxide semiconductors[J]. Appl. Phys. Lett.,2010,96:122103
    [139] Tripathi A. K.; Smits E. C. P.; Loth M., et al. Charge transport in solution processablepolycrystalline dual-gate organic field effect transistors[J]. Appl. Phys. Lett.,2011,98:202106
    [140] Maddalena F.; Spijkman M.; Brondijk J. J., et al. Device characteristics of polymerdual-gate field-effect transistors[J]. Org. Electron.,2008,9:839-846
    [141] Fossum J. G.; Lim H.-K.; Ortiz-Conde A.. Linear-Region Conductance of Thin-film SOIMOSFET’s with Grain Boundaries[J]. IEEE Electron Device Lett.,1983,4:239-242
    [142] Takechi K.; Nakata M.; Azuma K., et al. Dual-Gate Characteristics of AmorphousInGaZnO4Thin-Film Transistors as Compared to Those of Hydrogenated AmorphousSilicon Thin-Film Transistors[J]. IEEE Trans. Electron Device Lett.,2009,56:2027-2033
    [143] Kamiya T.; Nomura K.; Hosono H.. Present status of amorphous In-Ga-Zn-O thin-filmtransistors[J]. Sci. Technol. Adv. Mater.,2010,11:044305
    [144] Wasapinyokul K.; Milne W. I.; Chu D. P.. Origin of the threshold voltage shift oforganic thin-film transistors under light illumination[J]. J. Appl. Phys.,2011,109:084510
    [145] Barquinha P.; Pimentel A.; Marques A., et al. Effect of UV and visible light radiation onthe electrical performances of transparent TFTs based on amorphous indium zincoxide[J]. J. Non-Cryst. Solids,2006,352:1756-1760
    [146] Li M.; Lan L. F.; Xu M., et al. Gate bias stress stability under light irradiation forindium zinc oxide thin-film transistors based on anodic aluminium oxide gatedielectrics[J]. J. Phys. D: Appl. Phys.,2011,44:455102
    [147] Lee J.-H.; Kim J.-H.; Han M.-K.. A New a-Si:H TFT Pixel Circuit Compensating theThreshold Voltage Shift of a-Si:H TFT and OLED for Active Matrix OLED[J]. IEEEElectron Device Lett.,2005,26:897-899
    [148] Lin C.-L.; Chen Y.-C.. A Novel LTPS-TFT Pixel Circuit Compensating for TFTThreshold-Voltage Shift and OLED Degradation for AMOLED[J]. IEEE Electron DeviceLett.,2007,28:129-131
    [149] Wu W.-J.; Zhou L.; Yao R.-H., et al. A New Voltage-Programmed Pixel Circuit forEnhancing the Uniformity of AMOLED Displays[J]. IEEE Electron Device Lett.,2011,32:931-933
    [150] Tai Y.-H.; Chen B.-T.; Kuo Y.-J., et al. A New Pixel Circuit for Driving OrganicLight-Emitting Diode With Low Temperature Polycrystalline Silicon Thin-FilmTransistors[J]. IEEE/OSA J.Display Technol.,2005,1:100-104
    [151] Chou L.-S.; Chiu H.-L.; Chen B.-C., et al.56.4: Dual-Gate IGZO TFT forThreshold-Voltage Compensation in AMOLED Pixel Circuit[J]. SID Int. Symp. DigestTech. Papers,2012,43:768-771
    [152] Ide K., Yutomo K., Nomura K., et al. Effects of excess oxygen on operationcharacteristics of amorphous In-Ga-Zn-O thin-film transistors[J]. Appl. Phys. Lett.,2011,99:093507
    [153] Tsai C.-T.; Chang T.-C.; Chen S.-C., et al. Influence of positive bias stress on N2Oplasma improved InGaZnO thin film transistor[J]. Appl. Phys. Lett.,2011,96:242105
    [154] Nomura K.; Kamiya T.; Hosono H.. Effects of Diffusion of Hydrogen and Oxygen onElectrical Properties of Amorphous Oxide Semiconductor In-Ga-Zn-O[J]. ECS J. SolidState Sci. Technol.,2013,2:P5
    [155] Huang S.-Y.; Chang T.-C.; Chen M.-C., et al. Device characteristics of amorphousindium gallium zinc oxide thin film transistors with ammonia incorporation[J].Solid-State Electronics,2011,61:96-99
    [156] Rim Y. S.; Jeong W.; Ahn B. D., et al. Defect reduction in photon-accelerated negativebias instability of InGaZnO thin-film transistors by high-pressure water vaporannealing[J]. App. Phy. Lett.,2013,102:14
    [157] Huang Y.-C.; Yang P.-Y.; Huang H.-Y., et al. Effect of the Annealing Ambient on theElectrical Characteristics of the Amorphous InGaZnO Thin Film Transistors[J]. Journalof Nanoscience and Nanotechnology,2012,7:5625-5630
    [158] Fuh C.-S.; Sze S. M.; Liu P.-T., et al. Role of environmental and annealing conditions onthe passivation-free In-Ga-Zn-O TFT[J]. Thin Solid Films,2011,520:1489-1494
    [159] Wang Y.; Liu S. W.; Sun X. W., et al. Highly transparent solution processed In-Ga-Znoxide thin films and thin film transistors[J]. Journal of Sol-Gel Science and Technology,2010,55:322-327
    [160] Teng L.-F.; Liu P.-T.; Lo Y.-J., et al. Effects of microwave annealing on electricalenhancement of amorphous oxide semiconductor thin film transistor[J]. Appl. Phys. Lett.,2012,101:13
    [161] Teng L.-F.; Liu P.-T.; Wang W.-Y.. Electrical Performance Enhancement of Al-Zn-Sn-OThin Film Transistor by Supercritical Fluid Treatment[J]. IEEE Electron Device Letters,2013,34:1154-1156
    [162] Park J. C.; Kim S.; Kim S., et al. Highly Stable Transparent Amorphous OxideSemiconductor Thin-Film Transistors Having Double-Stacked Active Layers[J]. Adv.Mater.,2010,22:5512
    [163] Banger K.K.; Yamashita Y.; Mori K., et al. Low-temperature, high-performancesolution-processed metal oxide thin-film transistors formed by a ‘sol-gel on chip’ process[J].Nature Mater.,2011,10:45
    [164] Kim S.; Kim S.; Kim C. J., et al. The influence of visible light on the gate biasinstability of In-Ga-Zn-O thin film transistors[J]. Solid-state Electron.,2011,62:77
    [165] Luo D. X.; Lan L. F.; Xu M., et al. High reliability amorphous oxide semiconductorthin-film transistors gated by buried thick aluminum[J]. Phys. Status Solidi. RRL.,2012,6:403
    [166] Yasuno S.; Kita T.; Morita S., et al. Transient photoconductivity responses in amorphousIn-Ga-Zn-O films[J]. J. Appl. Phys.,2012,112:053715
    [167] Lee S. M.; Yu C. G.; Cho W.-J., et al. Hot carrier degradation of InGaZnO thin filmtransistors under light illumination at the elevated temperature[J]. Solid-state Electron.,2012,72:88
    [168] Kwon J.-Y.; Jung J. S.; Son K. S., et al. The impact of gate dielectric materials on thelight-induced bias instability in Hf-In-Zn-O thin film transistor[J]. Appl. Phys. Lett.,2010,97:183503
    [169] Lan L. F.; Xu M.; Peng J. B., et al. Influence of source and drain contacts on theproperties of the indium-zinc oxide thin-film transistors based on anodic aluminum oxidegate dielectrics[J]. J. Appl. Phys.,2011,110:103703
    [170] Li M.; Lan L. F.; Xu M., et al. Impact of Deposition Temperature of the Silicon OxidePassivation on the Performance of Indium Zinc Oxide Thin-Film Transistors[J]. Jpn. J.Appl. Phys.,2012,51:076501
    [171] Sung S.-Y.; Choi J. H.; Han U. B., et al. Effects of ambient atmosphere on the transfercharacteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxidethin-film transistors[J]. Appl. Phys. Lett.,2010,96:102107
    [172] Luo D. X.; Lan L. F.; Xu M., et al. Role of Rare Earth Ions in Anodic Gate Dielectricsfor Indium-Zinc-Oxide Thin-Film Transistors[J]. J. Electrochem. Soc.,2012,159:H502
    [173] Nomura K.; Kamiya T.; Hosono H.. Highly stable amorphous In-Ga-Zn-O thin-filmtransistors produced by eliminating deep subgap defects[J]. Appl. Phys. Lett.,2011,99:053505
    [174] Lan L. F.; Zhao M. J.; Xiong N. N., et al. Low-Voltage, High-StabilityIndium-Zinc-Oxide Thin-Film Transistor Gated by Anodized Neodymium-DopedAluminum[J]. IEEE Electron. Device Lett.,2012,33:827
    [175] Xu H.; Lan L. F.; Xu M., et al. High performance indium-zinc-oxide thin-filmtransistors fabricated with a back-channel-etch-technique[J]. Appl. Phys. Lett.,2011,99:253501
    [176] Zhao M. J.; Lan L. F.; Xu H., et al. Wet-Etch Method for Patterning Metal ElectrodesDirectly on Amorphous Oxide Semiconductor Films[J]. ECS Solid State Lett.,2012,1:P82
    [177] Chung W.-F.; Chang T.-C.; Li H.-W., et al. Environment-dependent thermal instabilityof sol-gel derived amorphous indium-gallium-zinc-oxide thin film transistors[J]. Appl.Phys. Lett.,2011,98:152109
    [178] Nomura K.; Kamiya T.; Hirano M., et al. Origins of threshold voltage shifts inroom-temperature deposited and annealed a-In-Ga-Zn-O thin-film transistors[J]. Appl.Phys. Lett.,2009,95:013502
    [179] Lee S.; Jeon Y. W.; Kim S., et al. Comparative study of quasi-static and normalcapacitance–voltage characteristics in amorphous Indium-Gallium-Zinc-Oxide thin filmtransistors[J]. Solid-state Electron.,2011,56:95
    [180] Noh H.-K.; Chang K. J.; Ryu B., et al. Electronic structure of oxygen-vacancy defects inamorphous In-Ga-Zn-O semiconductors[J]. Phys. Rev. B,2011,84:115205
    [181] Chowdhury M. D. H.; Ryu S. H.; Migliorato P., et al. Effect of annealing time on biasstress and light-induced instabilities in amorphous indium-gallium-zinc-oxide thin-filmtransistors[J]. J. Appl. Phys.2011,110:114503
    [182] Takechi K.; Nakata M.; Eguchi T., et al. Temperature-Dependent TransferCharacteristics of Amorphous InGaZnO4Thin-Film Transistors[J]. Jpn. J. Appl. Phys.,2009,48:011301
    [183] Ryu M. K.; Yang S.; Park S.-H. K., et al. Impact of Sn/Zn ratio on the gate bias andtemperature-induced instability of Zn-In-Sn-O thin film transistors[J]. Appl. Phys. Lett.,2009,95:173508
    [184] Pichon L.; Mercha A.; Carin R.. Analysis of the activation energy of the subthresholdcurrent in laser-and solid-phase-crystallized polycrystalline silicon thin-filmtransistors[J]. Appl. Phys. Lett.,2000,77:576
    [185] Kim D. H.; Jung H. K.; Kim D. H., et al. Effect of interface states on the instabilityunder temperature stress in amorphous SiInZnO thin film transistor[J]. Appl. Phys. Lett.,2011,99:162101
    [186] Ji K. H., Kim J.-I.; Jung H. Y., et al. The effect of density-of-state on the temperatureand gate bias-induced instability of InGaZnO thin film transistors[J]. J. Electrochem.Soc.,2010,157:H983
    [187] Globus T.; Slade H. C.; Shour M., et al. Density of Deep Bandgap States in AmorphousSilicon From the Temperature Dependence of Thin Film Transistor Current[J]. Res. Soc.Symp. Proc.,1994,336:823
    [188] Huang S.; Chang T.; Chen M., et al. Effects of Ambient Atmosphere on ElectricalCharacteristics of Al2O3Passivated InGaZnO Thin Film Transistors duringPositive-Bias-Temperature-Stress Operation[J]. Electrochem. Solid-State Lett.,2011,14:H177
    [189] Tai Y.-H.; Chiu H.-L.; Chou L.-S., et al. The Deterioration of a-IGZO TFTs Owing tothe Copper Diffusion after the Process of the Source/Drain Metal Formation [J]. J.Electrochem. Soc.,2012,159:J200
    [190] Chesterfield R. J.; McKeen J. C.; Newman C. R., et al. Organic Thin Film TransistorsBased on N-Alkyl Perylene Diimides: Charge Transport Kinetics as a Function of GateVoltage and Temperature[J]. Phys. Chem. B,2004,108:19281
    [191] Seo S.; Choi C.; Hwang Y., et al. High performance solution-processed amorphous zinctin oxide thin film transistor[J]. J. Phys. D: Appl. Phys.,2009,42:035106
    [192] Park W.; Shin H.; Ahn B., et al. Investigation on doping dependency ofsolution-processed Ga-doped ZnO thin film transistor[J]. Appl. Phys. Lett.,2008,93:083508
    [193] Kim W.-S.; Moon Y.-K.; Lee S., et al. Amorphous indium gallium zinc oxidesemiconductor thin film transistors using O2plasma treatment on the SiNXgateinsulator[J]. Phys. Status Solidi (RRL),2009,3:239
    [194] Cho D.; Yang S.; Byun C., et al. Transparent Al-Zn-Sn-O thin film transistors preparedat low temperature[J]. Appl. Phys. Lett.,2008,93:142111
    [195] Jeong J.; Yang H.; Jeong J., et al. Origin of threshold voltage instability inindium-gallium-zinc oxide thin film transistors [J]. Appl. Phys. Lett.,2008,93:123508
    [196] Kwon J.-Y.; Lee D.-J.; Kim K.-B.. Review Paper: Transparent Amorphous OxideSemiconductor Thin Film Transistor[J]. Electron. Mater. Lett.,2011,7:1-11
    [197] Kamiya T.; Nomura K.; Hosono H.. et al. Present status of amorphous In-Ga-Zn-Othin-film transistors [J]. Sci. Technol. Adv. Mater.,2010,11:044305
    [198] Park J.; Kim S.; Kim C., et al. High-performance amorphous gallium indium zinc oxidethin-film transistors through N2O plasma passivation[J]. Appl. Phys. Lett.,2008,93:053505
    [199] Jo J.; Seo O.; Choi H., et al. Enhancement-Mode ZnO Thin-Film Transistor Grown byMetalorganic Chemical Vapor Deposition[J]. Appl. Phys. Express,2008,1:041202
    [200] Hong J.; Kim S.; Kim K.. Preparation of SiO2Passivation Thin Film for Improved theOrganic Light-Emitting Device Life Time[J]. Jpn. J. Appl. Phys.,2011,50:08KE02
    [201] Kim Y.-J.; Lee J.-S.; Lee Y.-U., et al. Investigation of Indium Diffusion intoSolution-processed Oxide TFTs with ZTO Active Layer and IZO Source/DrainElectrodes[J]. ECS Trans.,2011,35:341-346
    [202] Ohara H.; Sasaki T.; Noda K., et al.21.3:4.0In. QVGA AMOLED Display UsingIn-Ga-Zn-Oxide TFTs with a Novel Passivation Layer[J]. SID Symposium Digest ofTechnical Papers,2009,40:284-287
    [203] Qiang S.; Xie Y.; Cai S., et al. High performance tetrathienoacene-DDP based polymerthin-film transistors using a photo-patternable epoxy gate insulating layer[J]. OrganicElectronics,2014,15:991-996
    [204] Zhong J. Z. Z.; den Boer W.; Byun Y. H., et al.35.3: A High-Aperture andHigh-Reliability Full-Color TFT-LCD[J]. SID Symposium Digest of Technical Papers,1998,29:971-974
    [205] Nayak P. K.; Pinto J. V.; Goncalves G., et al. Environmental, Optical, and ElectricalStability Study of Solution-Processed Zinc-Tin-Oxide Thin-Film Transistors[J]. Journalof Display Technology,2011,7:640-643
    [206] Selvarasah S.; Li X.; Busnaina A., et al. Parylene-C passivated carbon nanotube flexibletransistors[J]. Appl. Phys. Lett.,2010,97:153120
    [207] Seo H.; Bae J.; Kim D., et al. Reliable Bottom Gate Amorphous Indium-Gallium-ZincOxide Thin-Film Transistors with TiOxPassivation Layer[J]. Electrochem. Solid-StateLett.,2009,12:H348
    [208] Yang S.; Cho D.; Ryu M., et al. Improvement in the photon-induced bias stability ofAl-Sn-Zn-In-O thin film transistors by adopting AlOxpassivation layer[J]. Appl. Phys.Lett.,2010,96:213511
    [209] Park J.; Kim T.; Son K., et al. The influence of SiOxand SiNxpassivation on thenegative bias stability of Hf-In-Zn-O thin film transistors under illumination[J]. Appl.Phys. Lett.,2010,96:262109
    [210] Olziersky A.; Barquinha P.; VilàA., et al. Insight on the SU-8resist as passivation layerfor transparent Ga2O3-In2O3-ZnO thin-film transistors[J]. J. Appl. Phys.,2010,108:064505
    [211] Cho D.-H.; Yang S.; Byun C., et al. Transparent Al-Zn-Sn-O thin film transistorsprepared at low temperature[J]. Appl. Phys. Lett.,2008,93:142111
    [212] Yang S.; Hwang C.-S.; Lee J.-I., et al. Water-related abnormal instability of transparentoxide/organic hybrid thin film transistors[J]. Appl. Phys. Lett.,2011,98:103515
    [213] Voigt M.; Bergmaier A.; Dollinger G., et al. Correlation of chemical composition andelectrical properties of rf sputtered alumina films[J]. J. Vac. Sci. Technol. A,2009,27:234
    [214] Fukuda K.; Ibarakia N.. Si TFTs with Stacked Gate Insulator ofCVD-SiO2/PECVD-SiNx[J]. Electronics and Communications in Japan (Part II:Electronics),1993,76:11-19
    [215] Barquinha P.; Vilà A.; Gon alves G., et al. Gallium-Indium-Zinc-Oxide-BasedThin-FilmTransistors: Influence of the Source/Drain Material[J]. IEEE Transactions onElectron Devices,2008,55:4
    [216] Martin S.; Chiang C. S.; Nahm J. Y., et al. Influence of the amorphous silicon thicknesson top gate thin-film transistor electrical performances[J]. Jpn. J. Appl. Phys.,2001,40:530
    [217] Lan L. F.; Xu M.; Peng J. B., et al. Influence of source and drain contacts on theproperties of the indium-zinc oxide thin-film transistors based on anodic aluminum oxidegate dielectrics[J]. J. Appl. Phys.,2011,110:103703
    [218] Van de Walle C.. Hydrogen as a Cause of Doping in Zinc Oxide[J]. Phys. Rev. Lett.,2002,85:1012
    [219] Gonzalez C.; Pincock J.. Identification of the α and β Anomers of1-(2-Deoxy-d-Erythro-Pentofuranosyl)-Oxaluric Acid at the Site of Riboflavin-mediatedPhotooxidation of′Guanine in2-Deoxyguanosine andThymidylyl-(3′-5′)-2′-Deoxyguanosine[J]. Photochem. Photobiol.,2006,82:191
    [220] Chen M.; Pei Z.; Sun C., et al. Surface characterization of transparent conductive oxideAl-doped ZnO films[J]. J. Cryst. Growth,2000,220:254
    [221] Lee K.; Kim K.; Heo K., et al. Effects of UV light and carbon nanotube dopant onsolution-based indium gallium zinc oxide thin-film transistors[J]. Curr. Appl. Phys.,2011,11:280
    [222] Chong E.; Jo K.; Lee S.. High stability of amorphous hafnium-indium-zinc-oxide thinfilm transistor[J]. Appl. Phys. Lett.,2010,96:152102
    [223] Chong E.; Chun Y.; Lee S.. Amorphous silicon-indium-zinc oxide semiconductor thinfilm transistors processed below150°C[J]. Appl. Phys. Lett.,2010,97:102102
    [224] Nomura K.; Kamiya T.; Ikenaga E., et al. Depth analysis of subgap electronic states inamorphous oxide semiconductor, a-In-Ga-Zn-O, studied by hard x-ray photoelectronspectroscopy [J]. J. Appl. Phys.,2011,109:073726
    [225] Shin J.; Lee J.; Hwang C., et al. Light Effects on the Bias Stability of Transparent ZnOThin Film Transistors[J]. ETRI. J.,2009,31:62
    [226] Park J.; Kim T.; Son K., et al. Influence of Illumination on the Negative-Bias Stabilityof Transparent Hafnium-Indium-Zinc Oxide Thin-Film Transistors[J]. IEEE ElectronDevice Lett.,2010,31:440
    [227] Cross R.; De Souza M.. Investigating the stability of zinc oxide thin film transistors[J].Appl. Phys. Lett.,2006,89:263513
    [228] Park J.; Jeong J.; Chung H., et al. Electronic transport properties of amorphousindium-gallium-zinc oxide semiconductor upon exposure to water[J]. Appl. Phys. Lett.,2008,92:072104
    [229] Yang S.; Ji K.; Kim U., et al. Suppression in the negative bias illumination instability ofZn-Sn-O transistor using oxygen plasma treatment[J]. Appl. Phys. Lett.,2011,99:102103
    [230] Ji K.; Kim J.; Jung H., et al. Effect of high-pressure oxygen annealing on negative biasillumination stress-induced instability of InGaZnO thin film transistors[J]. Appl. Phys.Lett.,2011,98:103509
    [231] Chung W.; Chang T.; Li H., et al. Environment-dependent thermal instability of sol-gelderived amorphous indium-gallium-zinc-oxide thin film transistors[J]. Appl. Phys. Lett.,2011,98:152109
    [232] Fujii M.; Uraoka Y.; Fuyuki T., et al. Experimental and Theoretical Analysis ofDegradation in Ga2O3-In2O3-ZnO Thin-Film Transistors[J]. Jpn. J. Appl. Phys.,2009,48:04C091
    [233] Fung T.; Chuang C.; Chen C., et al. a-InGaZnO TFT Current-Scaling Pixel ElectrodeCircuit for AM-OLEDs[J]. AM-FPD’08Dig. Tech. Pap.,2008,251
    [234] Takechi K.; Nakata M.; Eguchi T., et al. Temperature-Dependent TransferCharacteristics of Amorphous InGaZnO4Thin-Film Transistors[J]. Jpn. J. Appl. Phys.,2009,48:011301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700