用户名: 密码: 验证码:
多形态AlN、Si_3N_4粉体制备及其导热硅脂复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有优异的导热性,良好的绝缘性,氮化铝、氮化硅作为导热材料有着广阔的应用前景,其作为导热填料应用于导热复合材料也很有吸引力。除了具有高的本征热导率之外,导热填料的晶体形态对复合材料的导热性能有重要的影响。本文主要研究具有不同的结晶形态的氮化铝、氮化硅粉体的制备,并研究利用所制备的陶瓷粉体制备高热导硅脂复合热界面材料。
     利用机械力活化辅助燃烧合成技术制备了高纯度的单相氮化铝、β-氮化硅粉体,研究了机械力活化处理时间、氮气压力和稀释剂含量对燃烧合成结果的影响。研究表明:通过选择适当的稀释剂含量、氮气压力以及机械力活化时间可以有效的控制燃烧合成过程的氮气供应状况以及燃烧温度而获得单相产物;机械力活化可以有效降低体系的激活能。
     利用高温液相辅助修饰的方法处理燃烧合成氮化铝粉体,通过筛选合适的添加剂,控制温度等工艺条件,得到了低氧含量的球形氮化铝粉体。探讨了处理温度、保温时间等参数对氮化铝球形化的影响规律。分析表明:添加剂与表面氧化层反应形成液相,这种液相在表面产生的张力是使AlN球形化的驱动力,表面反应同时消耗了表面氧化层的氧杂质,降低了AlN的氧含量。
     利用悬浮燃烧合成的流态化工艺,合成了AlN晶须。研究表明:该方法合成晶须主要沿<0001>方向生长。“淬火法”研究证实,氮化铝晶须的生长机制主要为VLS机制。
     采用泡沫法成型工艺,燃烧合成了单相氮化硅粉体。研究发现:泡沫法可以有效的降低“微烧结”现象,得到易于粉碎的产物;原料中含有的C元素可以减少合成过程生成的液相量,促使氮化硅晶粒的长度减小,直径增大,端部呈现锥形,添加Ca元素的作用则相反。
     以合成的多形态氮化铝、氮化硅粉体为填料,与二甲基硅油复合制备了导热硅脂。结果表明:通过降低粉体填料本身热阻可以提高导热硅脂的传热性能;通过粒子级配和添加偶联剂可以降低硅脂的粘度进而提高导热硅脂的传热能力。
Because of excellent properties of thermal conductivity and electrical resistance, AlN and Si3N4 ceramics have shown great application potentials as thermal conductive substrate. Besides, the usage as thermal fillers in high thermal conductive composite materials is attractive as well. In addition to the high thermal conductivity, grain morphology of the thermal fillers is of great importance, too. This dissertation deals with the synthesis of AlN and Si3N4 ceramics powders with different grain morphologies by using various improved combustion synthesis methods and the preparation of thermal grease with high thermal conductivity by using the synthesized AlN and Si3N4 ceramics powders as thermal fillers.
     By using mechanical-activation-assistant combustion synthesis method, single phase AlN andβ-Si3N4 ceramics powders with high purity were synthesized. Influence of nitrogen pressure, mechanical dealing time and content of diluents on the results was invetigated. The experiment results showed that, single-phase AlN orβ-Si3N4 ceramics powders could be achieved by chosing appropriate diluents content, nitrogen pressure and mechanical dealing time and effective decrease of the activation energy of Al or Si could be achieved after treating by mechanical-activation process.
     With high-temperature-liquid-assisted sphericizing method, Spherical AlN powders with low oxygen content could be acquired by choosing proper additive, the temperature and the dwell time at chosen temperature. It is revealed that the surface tention, which was causing by eutectic liquid around the AlN particles formed at high temperature, is the driven force to realize the formation of spherical AlN. Oxygen could be removed from the AlN surface because of the reaction between CaO and the oxide surface layer.
     AlN whiskers were prepared with fluidized combustion synthesis method. SEM and TEM analysis results showed that majority of the AlN whiskers grew along <0001> direction. By using quenching method, VLS mechanism was confirmed to be the main growth mechanism of the AlN whiskers.
     Assisted by foaming process, single phaseβ-Si3N4 ceramics powders were synthesized. Results showed that“micro-sinter”phenomenon in the product was alleviated effectively and thus the synthesized product could be easily smashed. The presence of C made the oxygen consumed and, as a result, made theβ-Si3N4 crystal shorter and thicker. However, the presence of Ca madeβ-Si3N4 crystal longer and thiner.
     Thermal grease is prepared by using the synthesized AlN andβ-Si3N4 powders as thermal fillers and combining with silicone oil (polydimethyl siloxane fluid). Results showed that higher thermal conductivity of filler are employed, higher thermal conductive property could be achieved. With addition of proper and appropriate amount of coupling agent and fine particle size fillers, higher thermal conductive properties of thermal grease could be obtained.
引文
[1]田增英主编.苗赫濯著.来自西方的知识:精密陶瓷与应用.北京:科学普及出版社, 1993.
    [2]乔梁.氮化铝陶瓷低温烧结机理的研究: [博士学位论文].北京:清华大学材料科学与工程系, 2002.
    [3]过增元.国际传热学前沿-微尺度传热.力学进展, 2000,30(1):1-6.
    [4]张经国. 90年代的多芯片组件技术.电子元件与材料, 1993, 5:58-61.
    [5] He Y. DSC and DMTA studies of a thermal interface material for packaging high speed microprocessors. Thermochimica Acta, 2002, 392-393:13-21.
    [6]余自力,郭岳,李玉宝.高性能聚苯硫醚电子封装材料.化工新型材料, 2005, 33(4): 10-12.
    [7] Yu S Z, Hing P, Hu X. Dielectric properties of polystyrene aluminum nitride composites. J App l Phys, 2000, 88(1) :398-404.
    [8] Rimdusit S, Ishida H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer, 2000, 41(22):7 941-7 949.
    [9] Borom M P, Slack G A, Szymaszek J W. Thermal conductivity of commercial aluminum nitride. Ceram Bull, 1972, 51:852-856.
    [10] Slack G A. Nonmetallic crystals with high thermal conductivity. J Phys Chem Solids, 1973, 34:321-335.
    [11] Slack G A, Tanzilli R A, Pohl R O, et al. The intrinsic thermal conductivity of AlN. J Phys Chem Solids, 1987, 48:641-647.
    [12] Troczynski T B, Nicholson P S. Effect of additives on the pressureless sintering of aluminum nitride between 1500℃and 1800℃. J Am Ceram Soc, 1989, 72(8):1488-1491.
    [13] Harris J H, Youngman R A, Teller R G. On the nature of the oxygen-related defect in aluminum nitride. J Mater Res, 1990, 5:1763-1773.
    [14] Watari K, Ishizaki K, Fujikawa T. Thermal conduction mechanism of aluminum nitride ceramics. J Mat Sci, 1992, 27:2627-2630.
    [15] Watari K, Ishizaki K, Fujikawa T. Phonon scattering and thermal conduction mechanism of sintered aluminum nitride ceramics. J Mat Sci, 1993, 28:3709-3714.
    [16] Watari K, Hwang H J, Toriyama M, et al. Low-temperature sintering and high thermal conductivity of YLiO2-doped AlN ceramics. J Am Ceram Soc, 1996, 79(7):1979-1981.
    [17] Watari K, Valecilos M C, Brito M E, et al. Densification and thermal conductivity of AlN doped with Y2O3, CaO and Li2O. J Am Ceram Soc, 1996, 79(12):3103-3108.
    [18]吴音,缪卫国,周和平.影响AlN陶瓷热导率的本征氧缺陷.硅酸盐学报, 1997, 25(6):675-678.
    [19] Jackson T B, Virkar A V, More K L, et al. High-thermal-conductivity aluminum nitride ceramics: the effects of thermodynamics, kinetics and microstructural factors. J Am Ceram Soc, 1997, 80(6):1421-1435.
    [20] Liu Y, Wu Y, Zhou H. Microstructure of low-temperature sintered AlN. Mater Lett, 1998, 35:232-235.
    [21]田民波,梁彤翔.高热导AlN新型陶瓷基片及封装材料.半导体情报, 1995, 32:42-52.
    [22] Watari K, Hwang H J, Toriyama M, et al. Effective sintering aids for low-temperature singtering of AlN ceramics. J Mater Res, 1999, 14(4):1409-1417.
    [23]周和平,刘耀诚,吴音.氮化铝陶瓷的研究与应用.硅酸盐学报, 1998, 26:217-222.
    [24] Haggerty J S, Lightfoot A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing. Ceram Eng Sci Proc, 1995, 16(4):475-487.
    [25] Watari K, Hirao K, Brito M E, et al. Hot isostatic pressing to increase thermal conductivity of Si3N4 ceramics. J Mater Res, 1999, 14(4):1538-1541.
    [26] Ishii T, Sato T, Iwata M. Growth mechanism of whiskers and needle crystals(prisms) of aluminum nitride. Min J, 1971, 6:323-329.
    [27]安群力,齐暑华,周文英,等. Si3N 4增强LLDPE复合塑料的热导率.西北工业大学学报, 2008, 26(2):244-248.
    [28]汪雨荻,周和平,乔梁,等. AlN/聚乙烯复合基板的导热性能.无机材料学报, 2000, 15:1030-1036.
    [29] Hardie D, Jack K H. Crystal structure of silicon nitride. Nature, 1957, 180:332-333.
    [30] Turkdogan E T, Bills P M, Tiooett V A. Silicon nitrides: some physicochemical properties. J Appl Chem, 1958, 8:296-302.
    [31] Kohatsu I, Cauley J M. Re-examination of the crystals structure ofα-Si3N4. Mater Res Bull, 1974, 9:917-920.
    [32] Jack K H. Review: SiAlONs and related nitrogen ceramics. J Mater Sci, 1976, 11:1135-1158.
    [33] Grun R. Structure and stability considerations betweenα- andβ-Si3N4. Acta Cryst B, 1979, 35:800-804.
    [34] Zerr A, Miehe G, Serghiou G, et al. Synthesis of cubic silicon nitride. Nature, 1999, 42:340-342.
    [35] Jiang J Z, Stahl K, Berg R W, et al. Structural characterization of cubic silicon nitride. Eurouphsys Lett, 2000, 51(1):62-67.
    [36] Jiang J Z, Kragh F, Frost D J, et al. Hardness and thermal stability of cubic silicon nitride. J Phys: Condens Matter, 2001, 22(13):515-520.
    [37]刘光华.α-SiAlON多形态粉体的合成与自增韧陶瓷的制备: [博士学位论文].北京:清华大学材料科学与工程系, 2007.
    [38] Neto C A. Creep and mechanical behavior of silicon nitride whisker-reinforced silicon nitride composite ceramics[PHD thesis]. Illinois Institute of Technology, 1996.
    [39] Hiroshi K, Yasuhiro N. Molecular dynamics calculation of the ideal thermal conductivity of single-crystalα- andβ-Si3N4. Phys Rev B, 2002, 65: 134110(1-11).
    [40] Hampshire S, Park H K, Thompson D P, et al.α-SiAlON ceramics. Nature, 1978, 274:880-883.
    [41] Naoya S, Stephen J. P, Tim R. G, et al. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature, 2004, 428:730-733.
    [42]方志远.陶瓷基板的金属敷接技术: [硕士学位论文].北京:清华大学材料科学与工程系, 1999.
    [43] Hoffmann M J, Petzow G. Microstructure design of Si3N4 based ceramics // Chen I W, Becher P F, Petzow G, Tungsheng Yen, eds. Silicon Nitride Ceramics Scientific and Technology Advances. Pittsbugh: Materials Research Society, 1993:3-14.
    [44] Park D S, Choi M J, Roh T W, et al. Orientation-dependent properties of silicon nitride with aligned reinforcing grains. J Mater Res, 2000, 15(1):130-135.
    [45] Watari K, Hirao K, Toriyama M. Effect of grain size on the thermal conductivity of Si3N4. J Am Ceram Soc, 1999, 82(3):777-779.
    [46] Suehiro T, Tatami J, Meguro T, et al. Morphology-retaining synthesis of AlN particles by gas reduction–nitridation. Mater Lett, 2002, 57:910–913.
    [47] Weimer A W, Cochran G A, Eisman G A, et al. Rapid process for manufacturing aluminum nitride powder. J Am Ceram Soc, 1994, 77(4):3-7.
    [48] Halil A. Synthesis of Si3N4 by the carbo-thermal reduction and nitridation of diatomite. J Euro Ceram Soc, 2003, 23:2005-2014.
    [49] Cho Y, Charles J. Synthesis of nitrogen ceramic powders by carbothermal reduction and nitridation 1: Silicon nitride. Mater Sci Technol, 1991, 7(4):289-298.
    [50] Andrzej P, Beata S, Grzegorz W, et al. Preparation of silicon nitride powder from silica and ammonia. Ceram Inter, 2002, 28:495-501.
    [51] Itoh T. Preparation of pure alpha-silicon nitride from silicon powder. J Mater Sci Lett, 1991, 10 (1):19-20.
    [52] Scholz H, Greil P. Nitridation reaction of molten Al(Mg, Si) alloys. J Mater Sci, 1991, 26(3):669-673.
    [53] Gerald Z, Ulrich B, Eila E, et al. Synthesis of a-silicon nitride powder by gas-phase ammonolysis of CH3SiCl3. J Euro Ceram Soc, 2001, 21:947-958.
    [54] Yamada T. Preparation and evaluation of sinterable silicon nitride powder by imide decomposition method. Am Ceram Soc Bull, 1993, 72(5):99-106.
    [55] Merzhanov A G. Solid flames: discoveries, concepts, and horizons of cognition. Combust Sci and Tech, 1994, 98:307-336.
    [56] Merzhanov A G. Combustion and plasma synthesis of high-temperature materials. New York: VCH Publication Inc, 1990:40-41.
    [57]殷声.燃烧合成.北京:冶金工业出版社, 1999:219-220.
    [58] Merzhanov A G. Progress in energy and combustion science. Int J of SHS, 1988, 14(1):1-20.
    [59] Browen C R, Derby B. Self-propagating high temperature synthesis of ceramic materials. British Ceramic Transactions, 1997, 96(1):25-27.
    [60]蔡杰,李文兰.自蔓延高温合成法在陶瓷领域的应用.真空电子技术, 1996, 2:39-42.
    [61] Dunmead S D, Munir Z A. Temperature profile analysis in combustion synthesis I: Theory and background. J Am Ceram Soc, 1992, 75(1):175-179.
    [62] Dunmead S D, Munir Z A. Temperature profile analysis in combustion synthesisⅡ: Experimental observations. J Am Ceram Soc, 1992, 75(1):179-186.
    [63] Munir Z A. Self-propagation exothermic reaction: the synthesis of high-temperature materials by combustion. Materials Science Reports, 1989, 3:277-365.
    [64] Merzhanov A G. Combustion and plasma synthesis of high-temperature materials. edited by Munir Z A, 1990:1-51.
    [65] Boddington T, Laye P G, Tiooing J, et al. Kinetic analysis of temperature profiles of pyrotechnic systems. Combust Flame, 1986, 63:350-359.
    [66] Zenin A A. Combustion Explosion. Shock Wave (Engl Tran), 1981, 17(1):63-71.
    [67] Merzhanov A G. Combustion: New manifestations of an ancient process. Blackwell Scientific Publications, 1992:19-39.
    [68] Subrahmanyam J. Review: self-propagating high temperature synthesis. Mater Sci, 1992, 7:6249-6273.
    [69] Merzhanov A G. Worldwide evolution and present status of SHS as a branch of modern R&D (On the 30th Anniversary of SHS). Inter J SHS, 1997, 6(2):119-163.
    [70] Moore J J, Feng H J. Combustion synthesis of advanced materials: Part I: Reaction parameters. Progress in Mater Sci, 1995, 39:243-273.
    [71]任克刚.低成本规模化燃烧合成高性能氮化硅陶瓷粉体的研究: [硕士学位论文].北京:清华大学材料科学与工程系, 2005.
    [72]葛振斌.燃烧合成新型低维多元陶瓷粉体: [硕士学位论文].北京:清华大学材料科学与工程系, 2002.
    [73]李江涛.气固体系自蔓延高温合成氮化物的研究: [博士学位论文].北京:北京科技大学材料科学与工程系, 1995.
    [74]陈克新.自蔓延高温合成氮化铝基陶瓷的研究: [博士学位论文].北京:北京科技大学材料科学与工程系, 1997.
    [75] Patil K C, Aruna S T, Mimani T. Combustion synthesis. Curr Opin Solid State Mater Sci, 1997, 2:158-165.
    [76] Patil K C, Aruna S T, Mimani T. Combustion synthesis: an update. Curr Opin Solid State Mater Sci, 2002, 6:507-512.
    [77] Ekambaram S, Patil K C, Maaza M. Synthesis of lamp phosphors: facile combustion approach. J Alloy Comp, 2005, 393:81-92.
    [78]李文戈.燃烧合成法制备陶瓷及金属陶瓷涂层及其性能研究: [博士学位论文].北京:清华大学材料科学与工程系, 2004.
    [79] Li J T, Ge C C. Investigation on the microstructural aspects of Si3N4 produced by self-propagating high-temperature synthesis. J Mater Sci Lett, 1996, 15:1051-1053.
    [80] Lee W C, Chung S L. Combustion synthesis of Si3N4 powder. J Mater Res, 1997, 12:805-811.
    [81] Hirao K, Miyamoto Y, Koizumi M. Combustion synthesis of silicon nitride powder under high nitrogen pressure. Adv Ceram, 1988, 21:289-300.
    [82] Chen K X, Jin H B, Zhou H P, et al. Combustion synthesis of AlN-SiC solid solution particles. J Euro Ceram Soc, 2000, 20:2601-2606.
    [83] Cao Y G, Ge C C, Zhou Z J, et al. Combustion synthesis ofα-Si3N4 whiskers. J Mater Res, 1999, 14:876-880.
    [84] Wang H B, Han J C, Du S Y. Effect of nitrogen pressure and oxygen-containing impurities on self-propagating high-temperature synthesis of Si3N4. J Euro Ceram Soc, 2001, 21:297-302.
    [85] Chen D Y, Zhang B L, Zhuang H R, et al. Synthesis ofβ-Si3N4 whiskers by SHS. Mater Res Bull, 2002, 37:1481-1485.
    [86] Cano I G, Baelo S P, Rodríguez M A, et al. Self-propagating high-temperature synthesis of Si3N4: role of ammonium salt addition. J Euro Ceram Soc, 2001, 21:291-296
    [87] Juang R C, Lee C J, Chen C C. Combustion synthesis of hexagonal aluminum nitride powders under low nitrogen pressure. Mater Sci Eng A, 2003, 357:219-227.
    [88] Jin H B, Yang Y, Chen Y X, et al. Mechanochemical-activation-assisted combustion synthesis ofα-Si3N4. J Am Ceram Soc, 2006, 89 (3): 1099-1102.
    [89] Merzhanov A G, Borovinskaya I P, Popovleonid S, et al. Method of obtaining silicon nitride with high alpha-phase content. US5032370[P]. 1990-07-18.
    [90] Holt J B, Kingman D D, Bianchini G M. Synthesis of fine-grainedα-silicon nitride by a combustion process. US4944930[P]. 1990-07-31.
    [91] Deidda C, Delogu F, Maglia F, et al. Mechanical processing and self-sustaining high-temperature synthesis of TiC powders. Mater Sci Eng A, 2004, 375-377:800-803.
    [92] Gajovi? A, Furi? K, Toma?i? N, et al. Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures. J Alloys Compd, 2005, 398:188-199.
    [93] Shigeharu K, Sachie N, Tsukio O. Mechanochemical reactions between Ag2O and V2O5 to form crystalline silver vanadates. J Solid State Chem, 2002, 169:139-142.
    [94] Klose E, Blacnik R. Mechanochemical synthesis of bismuth selenides. Thermochimica Acta, 2001, 375:147-152.
    [95] Gutman E M, Eliezer A, Unigovski Y, et al. Mechanoelectrochemical behavior and creep corrosion of magnesium alloys. Mater Sci Eng A, 2001, 302:63-67.
    [96] Suryanarayana C, Ivanov E, Boldyrev V V. The science and technology of mechanical alloying. Mater Sci Eng A, 2001, 304-306:151-158.
    [97] Streletskii A N, Kolbanev I V, Borunova A B, et al. Mechanochemical activation of aluminum: 1. joint grinding of aluminum and graphite. Colloid Journal, 2004, 66(6):729-735.
    [98] Streletskii A N, Pivkina A N, Kolbanev I V, et al. Mechanochemical activation of aluminum: 2. size, shape, and structure of particles. Colloid Journal, 2004, 66(6):736-744.
    [99] Streletskii A N, Kolbanev I V, Borunova A B, et al. Mechanochemical activation of aluminum: 3. kinetics of interaction between aluminum and water. Colloid Journal, 2005, 67(5):631-637.
    [100] Yoshikazu K, Masaki I, Atsuo Y, et al. Mechanochemical effect on low temperature synthesis of AlN by direct nitridation method. Solid State Ionics, 2004, 172:185-190.
    [101] Tong W P, Tao N R, Lu K, et al. Nitriding iron at lower temperature. Science, 2003, 299(5607):686-688.
    [102] Delogu F, Mulas? G, Schiffini L, et al. Mechanical work and conversion degree in mechanically induced processes. Mater Sci Eng A, 2004, 382:280-287.
    [103] Feng D, Aldrich C. A comparison of the flotation of ore from the merensky reef after wet and dry grinding. Inter J Mineral Processing, 2000, 60:115-129.
    [104] Varma A, Lebrt J P. Combustion synthesis of advanced materials. Chem Eng Sci, 1992, 47(9-11):2179-2183.
    [105]金涌,祝京旭,汪展文,等.流态化工程原理.北京:清华大学出版社, 2001:3-13.
    [106] Luca M, Paolo L, Tim E, et al. A revised mono-dimensional particle bed model for fluidized beds. Chem Eng Sci, 2006, 61:1958-1972.
    [107] Giovanna B, Paola L, David N, et al. The influence of fines size distribution on the behavior of gas fluidized beds at high temperature. Powder Tech, 2006, 163:88-97.
    [108] Reyes L I, Sánchez I, Gutiérrez G. Air-driven reverse buoyancy. Physica A, 2005, 358:466-474.
    [109] Xu C, Cheng Y, Zhu J. Fluidization of fine particles in a sound field and identification of group C/A particles using acoustic waves. Powder Tech, 2006, 161:227-234.
    [110] Johansson K, Wachem B G M, Almstedt A E. Experimental validation of CFD models for fluidized beds: Influence of particle stress models, gas phase compressibility and air inflow models. Chem Eng Sci, 2006, 61:1705-1717.
    [111] Daizo K, Octave L. Fluidized reactor models. 1. for bubbling beds of fine, intermediate, and large particles. 2. for the lean phase: freeboard and fast fluidization. Ind Eng Chem Res, 1990, 29(7):1226-1234.
    [112] Akihl J. Microwave-assisted combustion synthesis of tantalum nitride in a fluidized bed. J Am Ceram Soc, 2003, 86(2):222-226.
    [113] Liu Y D, Kimura S. Fluidized-bed nitridation of fine silicon powder. Powder Tech, 1999, 106:160-167.
    [114] Koike J, Kimura S. Mechanism of nitridation of silicon powder in a fluidized-bed reactor. J Am Ceram Soc, 1996, 79(2):365-270.
    [115]祝少军.氮化硅闪速燃烧合成机理研究: [博士学位论文].北京:北京科技大学材料科学与工程系, 2005.
    [116] Gonzenbach U T, Studart A R, Gauckler L J, et al. Ultrastable particle-stabilized foams. Angew Chem Int Ed, 2006, 45:3526-3530.
    [117] Gonzenbach U T, Studart A R, Gauckler L J, et al. Macroporous ceramics form particle-stabilized wet foams. J Am Ceram Soc, 2007, 90(1):16-22.
    [118]阳范文,赵耀明. 21世纪我国电子封装行业的发展机遇和挑战.半导体情报, 2001, 38(4):15-18.
    [119]余自力,郭岳,李玉宝.高性能聚苯硫醚电子封装材料.化工新型材料, 2005, 33(4):10-12.
    [120]李晓云,张之圣,曹俊峰.环氧树脂在电子封装中的应用及发展方向.电子元件与材料, 2003, 22(2):36-37.
    [121] Yu S Z, Hing P, Hu X. Dielectric properties of polystyrene aluminum nitride composites. J Appl Phys, 2000, 88(1):398-404.
    [122] Rimdusit S, Ishida H. Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins. Polymer, 2000, 41(22):7941-7949.
    [123]霍尔曼.传热学.北京:人民教育出版社, 1979:49-52.
    [124]关振铎,张中太,焦金生.无机材料物理性能.北京:清华大学出版社, 2000:131-150.
    [125]黄昆,韩汝琦.固体物理学.北京:高等教育出版社, 1991.
    [126] Warren M, Rohsenow H. Handbook of Heat Transfer. Science Press, 1985.
    [127]屠传经,沈珞婵,吴子静.热传导.北京:高等教育出版社, 1992:20-22.
    [128] Sheppard L M. Aluminum nitride: a versatile but challenging material. Ceram Bull, 1990, 69(11):1801-1812.
    [129] Haggerty J S, Lightfoot A. Opportunities for enhancing the thermal conductivities of SiC and Si3N4 ceramics through improved processing. Ceram Eng Sci Proc, 1995, 16(4):475-487.
    [130] Maxwell J C. A treatise on electricity and magnetism. Oxford University Press, 1873.
    [131] Bruggeman D A G. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen I: dielektrizitatskonstanten und leitfahigkeiten der mischkorper aus isotropen substanzen. Annalen der Physik Leipzig, 1935, 24:636-679.
    [132] Hamilton R L, Crosser O K. Thermal conductivity of heterogeneous two-component systems. I & EC Fundamentals. 1962, 1(3):187-191.
    [133] Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems I: the electric conductivity of a suspension of homogeneous spheroids. Phys Rev, 1924, 24:575-587.
    [134] Lu S, Lin H. effective thermal conductivity of composites containing aligned spherical inclusions of finite conductivity. J Appl Phys, 1996, 79(9):6761-6769.
    [135] Agari Y, Uno T. Estimation on thermal conductivities of filled polymer. J Appl Polym Sci, 1986, 32(5):705-709.
    [136] Agari Y, Ueda A, Nagai S, et al. Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers. J Appl Polym Sci, 1991, 43(6):1117-1124.
    [137] Ervin V J, Klett J W, Mundt C M. Estimation of the thermal conductivity of composites. J Mater Sci, 1999, 34(14):3545-3553.
    [138] Nan C W, Birringer R. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Physics, 1997, 81(10):6692-6699.
    [139] Olson J R. Thermal conductivity of fibrous insulating materials. Am Ceram Soc Bull, 1997, 76(3):439-446.
    [140] Okamoto S, Ishida H. New theoretical equation for thermal conductivity of two-phase systems. J Appl Polym Sci, 1999, 72(13):1689-1697.
    [141] Bigg D M. Metal-filled polyers. New York: Marcel Dekker, 1986.
    [142] Cumberland D J, Crawford R J. Handbook of powder technology. Amsterdam: Elsevier science Publishers, 1987.
    [143] Xu Y S, Chung D D L, Cathleen M. Thermal conductivity aluminum nitride polymer material composites. Composites, Part A, 2001, 32(12):1749-1757.
    [144] Miller M G, Keith J M, King J. Measuring thermal conductivities of anisotropic synthetic graphite-liquid crystal polymer composites. Polym Composites, 2006, 27(4):388-394.
    [145] Jagota A, Hui C Y. Effective thermal conductivity of a packing of spheres. J Appl Mechanics, Transactions ASME, 1990, 57(3):789-791.
    [146] Aduda B O. Effective thermal conductivity of loose particulate systems. J Mater Sci, 1996, 31(24):6441-6448.
    [147]吕鑫.放电等离子烧结及热处理氮化硅陶瓷显微结构及性能研究: [硕士学位论文].北京:清华大学材料科学与工程系, 2005.
    [148]周和平. Si3N4的X射线定量相分析方法介绍.硅酸盐学报, 1980(12), 8(4):414-424.
    [149] Enayati M H, Schumacher P, Cantor B. Amorphization of Ni60Nb20Zr20 by mechanical alloying. Mater Sci Eng A, 2004, 812-814:375-377.
    [150] Kosova N V, Uvarov N F. Mechanochemical synthesis of LiMnO4 cathode materials for lithium batteries. Solid State Ionics, 2000, 135:107-115.
    [151] Belyaev E, Mamylov S. Mechanochemical synthesis and properties of thermoelectric materialsβ-FeSi2. J Mater Sci, 2000, 35:2029-2035.
    [152] Tsuchida T, Hasegawa T, Inagaki M. Self-combustion reactions induced by mechanical activation: formation of aluminum nitride from aluminum-graphite powder mixture. J Am Ceram Soc, 1994, 77:3227-3231.
    [153] Tsuchida T, Hasegawa T, Kitagawa T. Aluminum nitride synthesis in air from mechanically activated aluminum and graphite mixture. J Euro Ceram Soc, 1997, 17:1793-1795.
    [154] Chen S L. Kinetics of chemically activated combustion synthesis alpha-silicon nitride under controlled temperature. J Inorganic Mater, 2004, 19(6):1345-1352.
    [155] Crider J F. Self-propagating high temperature synthesis-a soviet method for producing ceramic materials. Ceram Eng Sci Proc, 1982, 3(9-10):19-28.
    [156] Zuhair A M, Umberto A M. Self-propagating exothermic reactions: the synthesis of high-temperature materials by combustion. Mater Sci Reports, 1989, 3:277-365.
    [157]江国键,庄汉锐,李文兰,等.高压氮气中自蔓延燃烧合成氮化铝及其显微结构.粉末冶金技术, 1998, 16(1):26-32.
    [158]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社, 1998.
    [159]田近正彦,高热传导性树脂组成物.日本,平2-133450, 1990-5-22.
    [160] Levin E M, Robbins C R, McMurdie H F. Phase diagrams for ceramists. 4th ed. Ohio, Am Ceram Soc, 1979.
    [161]闵乃文.晶体生长的物理基础.上海:上海科学技术出版社, 1982.
    [162]姚连增.晶体生长基础.合肥:中国科技大学出版社, 1995.
    [163] Lifshitz I M, Slyozov V V. The kinetics of precipitation from supersaturated solid solution. J Phys Chem Solids, 1961, 19:35-50.
    [164] Wanger C. Theory of precipitate change by redissolution (Ostwald ripening). Z Electrochem, 1961, 65:581-591.
    [165] Li L, Chung D D L. Thermal conducting polymer-matrix composites containing both AlN particles and SiC whiskers. J Electronic Mater, 1994, 23(6):557-564.
    [166]陈璐. AlN晶须制备及有机复合材料研究: [硕士学位论文].北京:清华大学材料科学与工程系, 1998.
    [167] Kohn J A, Cotter P G, Potter R A. synthesis of aluminum nitride monocrystals. Am Mineral, 1956, 41:355-358.
    [168]林煌.凝胶注模成型颗粒稳定型多孔陶瓷: [硕士学位论文].北京:清华大学材料科学与工程系, 2007.
    [169]章莉娟,郑忠.胶体与界面化学.广州:华南理工大学出版社, 2005.
    [170] Cano I G, Rodriguez M A. Synthesis ofβ-silicon nitride by SHS: fiber growth. Script Mater, 2004, 50(3):383-386.
    [171] Chen D Y, Zhang B L, Zhuang R H, et al. Preparation and growth mechanism ofβ-Si3N4 rod-like crystals by combustion synthesis. Mater Lett, 2002, 5(2):399-402.
    [172] Kramer M, Hoffman M J Petzow G. Grain growth studies of silicon nitride dispersed in an oxynitride glass. J Am Ceram Soc, 1993, 76:2778-2784.
    [173] Ziegler A, Idrobo J C, Cinibulk M K. Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science, 2004, 306:1768-1770.
    [174] Wang L L, Tien T Y, Chen I W. Formation ofβ-silicon nitride crystals from (Si, Al, Mg, Y)(O,N) liquid: I, Phase, composition, and shape evolutions. J Am Ceram Soc, 2003, 86:1578-1585.
    [175] Wang L L, Tien T Y, Chen I W. Formation ofβ-silicon nitride crystals from (Si, Al, Mg, Y)(O,N) liquid: II, Population dynamics and coarsening kinetics. J Am Ceram Soc, 2003, 86:1586-1591.
    [176] Kramer M, Wittmuss D, Kuppers H, et al. Relations between crystal structure and growth morphology ofβ-Si3N4. J Cryst Growth, 1994, 140:157-166.
    [177]幸松民,王一璐.有机硅合成工艺及产品应用:北京,化学工业出版社, 2006.
    [178]王家俊.聚酰亚胺/氮化铝复合材料的制备与性能研究: [博士学位论文].杭州:浙江大学高分子复合材料研究所, 2001.
    [179]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性.北京:化学工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700