用户名: 密码: 验证码:
大规模集成电路用同族元素掺杂直拉硅单晶的微缺陷及其缺陷工程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超大规模集成电路的高速发展对硅单晶材料提出了愈来愈严格的要求,控制和消除直拉硅中的微缺陷是硅材料开发面临的最关键的问题。随着直拉硅单晶的大直径化,硅中氧含量有所下降,而当代集成电路以超浅结为特征,其制造工艺的热预算显著降低,这两方面都不利于直拉硅中的氧沉淀,从而削弱了硅片的内吸杂能力,使得传统的内吸杂工艺受到了挑战。另一方面,在大直径直拉硅中形成的空洞型缺陷(Void)若得不到有效的控制,将会影响金属-氧化物-半导体(MOS)器件的栅极氧化层完整性(GOI),从而降低集成电路的成品率。利用共掺杂技术来调控硅中的微缺陷和增强硅片的内吸杂能力是目前硅材料研究的热点,开发新型共掺杂直拉硅单晶具有重要的理论意义和实用价值,是目前和今后国际硅材料界重要的研究领域之一。
     本文在生长同族元素(锗、碳)掺杂的新型直拉硅单晶的基础上,系统的研究了掺锗直拉(GCZ)硅和高碳含量的直拉(H[C]CZ)硅中的氧沉淀行为以及Void产生和消除的规律,揭示了同族元素杂质影响直拉硅中微缺陷行为的机理;同时,研究了适用于这两种新型直拉硅片的内吸杂工艺,取得了如下所述的创新结果:
     (1)研究了微量锗杂质影响直拉硅中氧沉淀的规律,发现掺锗可以促进原生氧沉淀的形成并在很宽的温度范围(650-1150℃)内促进后续退火过程中的氧沉淀。揭示了微量锗杂质影响直拉硅中氧沉淀的机理,指出GCZ硅中形成的Ge-V和Ge-V-O等锗关复合体可以作为氧沉淀的异质形核核心,从而促进氧沉淀的形成。同时,发现掺锗能显著降低直拉硅中氧沉淀的高温热稳定性,指出这是由于GCZ硅中形成了小尺寸的氧沉淀和片状氧沉淀所致。
     (2)研究了基于普通炉退火(CFA)和快速热退火(RTA)处理的适用于GCZ硅片的内吸杂工艺。发现掺锗能促进直拉硅片在高-低-高三步退火过程中的氧沉淀从而提高体微缺陷(BMD)密度并同时减小洁净区(DZ)宽度。通过RTA预退火结合低-高两步退火或高温单步退火的热处理工艺,在GCZ硅片中形成高密度的BMD和宽度合适的DZ,这有助于减小集成电路制作过程中内吸杂工艺的热预算。同时,明确指出:通过上述两种工艺形成的DZ中不存在微小氧沉淀,并且GCZ硅片体内BMD区吸除金属沾污的能力优于普通直拉(CZ)硅片。
     (3)研究了适用于H[C]CZ硅片的内吸杂工艺及其氧沉淀规律,发现高浓度碳杂质可以在内吸杂工艺过程中促进硅中的氧沉淀。揭示了碳影响氧沉淀的机理,指明H[C]CZ硅中形成的C(3)中心和C-V等碳关复合体会促进氧沉淀的生成。并且通过基于CFA和RTA处理的内吸杂工艺在H[C]CZ硅片中形成了没有微小氧沉淀的DZ和具有比CZ硅片更高密度的BMD。该结果为H[C]CZ硅片在集成电路制造中的可能应用提供了理论依据。
     (4)研究了微量锗杂质和高浓度碳杂质对直拉硅中Void形成的影响。与CZ硅片相比,GCZ硅片中形成了更高密度的小尺寸Void和更低密度的大尺寸Void,而H[C]CZ硅片中具有更低密度的大尺寸Void,指出这是由于在晶体生长冷却过程中Void形成之前,锗和碳杂质与空位形成复合体从而降低了硅中空位浓度,使得Void形成温度降低所致。此外,微量锗杂质或高浓度碳杂质的引入都可以降低Void的高温热稳定性,这有助于消除硅片近表面区域中的Void,从而提高MOS器件的GOI。
     (5)研究了微量锗杂质对直拉硅片机械性能的影响,发现掺锗有利于在硅中形成高密度的小尺寸氧沉淀,它们可以钉扎位错从而抑制位错攀移,并由此降低硅片在器件制造过程中的弯曲度和翘曲度,这有利于提高集成电路制造的成品率。
     (6)根据第一性原理计算,指出直拉硅中的同族元素(锗、碳)杂质可以与空位和间隙氧原子形成复合体。基于实验提供的证据,认为这些复合体可以在晶体生长冷却过程中的高温阶段形成,这一方面消耗了部分空位从而促进高密度小尺寸Void的形成;另一方面,这些复合体在很宽的温度范围内可以作为异质形核核心而促进氧沉淀。同样的,这些复合体也可以在RTA处理的高温过程中形成,并促进后续退火过程中的氧沉淀。在理论和实验工作的基础上,建立了同族元素杂质影响直拉硅中微缺陷(氧沉淀和Void)形成的物理模型。
With the rapid development of ultra large-scale integrated circuits(ICs),the requirements on silicon materials become increasingly stringent.The control and elimination of microdefects in Czochralski(CZ)silicon is the most important issue for the development of silicon materials.For the larger diameter CZ silicon wafers, the oxygen concentration is reduced to a certain extent.Moreover,the thermal budget for the manufacturing of contemporary IC featuring super-shallow junction is significantly lowered.The two regards as mentioned above are not favorable for oxygen precipitation and therefore the internal gettering(IG)capability for CZ silicon wafers so that the traditional IG process is challenged.On the other hand,the gate oxide integrity(GOI)of metal-oxide-semiconductor(MOS)devices and furthermore the yield of IC will be deteriorated by the void defects commonly existing in large diameter silicon wafers.Addressing the control of microdefects and the enhancement of IG capability,the strategy of co-doping in CZ silicon has been developed.
     In this dissertation,based on the growth of new type CZ silicon crystals doped with iso-group elements(germanium and carbon),the oxygen precipitation behavior and the formation and elimination of void defects in both the lightly germanium doped CZ(GCZ)silicon and high-carbon-content CZ(H[C]CZ)silicon have been intensively investigated.Moreover,the mechanisms for the effect of germanium and carbon on the oxygen precipitation and grown-in defects in CZ silicon have been reasonably exploited.Furthermore,the IG processes appropriate for GCZ and H[C] CZ silicon wafers have been well developed.Listed below are the most important results achieved in this work.
     (1)The effects of germanium on oxygen precipitation in CZ silicon have been investigated.It is found that the formation of grown-in oxygen precipitates and oxygen precipitation during the post-growth anneals in a wide temperature range of 650-1150℃can be enhanced by the germanium-doping in CZ silicon.It is suggested that the germanium-related complexes generated during the crystal growth,such as Ge-V and Ge-V-O complexes,act as the heterogeneous nucleation centers for oxygen precipitates in GCZ silicon.Moreover,it is found that the thermal stability of oxygen precipitates at high temperature for GCZ silicon is remarkably weakened,which is attributed to the small precipitates and plate-like precipitates formed in GCZ silicon.
     (2)The IG processes for GCZ silicon wafer based on the conventional furnace anneal(CFA)and rapid thermal anneal(RTA)have been developed.With the three-step of high-low-high anneal,the density of bulk microdefects(BMDs)is increased and the denuded zone(DZ)is narrowed in the GCZ silicon wafer with respect to the conventional CZ silicon wafer,which is ascribed to the enhancement of oxygen precipitation by the germanium doping.It is also found that a high density of BMDs and a DZ with a desirable width can be generated in GCZ silicon wafer subjected to the low-high two step anneal or a single high temperature anneal following a RTA at high temperature,meaning that the RTA-based IG processes feature substantially lower thermal budget.Note that it has been definitely clarified that there are hardly tiny oxygen precipitates existing in the DZ formed by the CFA- and RTA-based IG processes for GCZ silicon wafer and,moreover,the IG capability of GCZ silicon wafer is superior to that of CZ silicon wafer.
     (3)The effects of high-content carbon on oxygen precipitation in H[C]CZ silicon have been investigated and,furthermore,the IG processes for H[C]CZ silicon wafers have been developed.It is found that oxygen precipitation occurring in the IG processes is enhanced by the high-content carbon,due to the formation of carbon-related complexes,including C(3)center and C-V complexes,in H[C]CZ silicon. On the other hand,both the DZ without tiny oxygen precipitates and a higher density of BMDs with respect to that of CZ wafer can be generated in H[C]CZ silicon wafer through the CFA- and RTA-based IG process,which sheds light on the application of H[C]CZ silicon wafer in the manufacturing of IC.
     (4)The influences of the light germanium-doping and the heavy carbon-doping on the formation of void defects in CZ silicon have been investigated.It is found that the small-sized voids in a higher density and the large-sized voids in a lower density are generated in GCZ silicon wafer while the large-sized voids in a lower density are formed in H[C]CZ silicon wafer,with respect to those in CZ silicon wafer.It is believed that during the post-cooling of crystal growth the interaction of germanium or carbon and vacancy to form the complexes prior to the formation of voids consumes a number of vacancies,therefore,the formation of voids in GCZ and H[C]CZ silicon shifts to a lower temperature,thus leading to generating smaller but denser voids. Moreover,the voids in GCZ and H[C]CZ silicon wafers can be annihilated at lower temperatures with respect to those in CZ silicon wafer,which facilitates to increase the GOI of MOS devices.
     (5)The effect of light germanium-doping on the mechanical properties of CZ silicon wafer has been tentatively investigated.Due to the high density of small-sized oxygen precipitates preformed in GCZ silicon,the climbing of dislocations can be suppressed by the pinning effect of small-sized oxygen precipitates on the dislocations.As a result,the warp and bow of CZ silicon wafer doped with the germanium can be significantly reduced during the thermal cycles of device fabrication, which is beneficial for the elimination of voids within the near-surface region of silicon wafer.
     (6)According to the computation based on first principle,it is theoretically pointed out that the interaction among the germanium/carbon,oxygen and vacancy and therefore the formation of complexes in specific structures are thermodynamically favorable.Based on the experimental evidences,it is believed that such complexes can be formed in silicon during the post-crystal-growth cooling process.On one hand,the complexes consumes a part of vacancies in silicon involved during the crystal growth,thus leading to smaller voids in higher density;on the other hand, they can act as the heterogeneous nucleation centers for the enhanced oxygen precipitation. Likewise,the germanium and carbon related complexes can be also formed during the RTA process,which also promote oxygen precipitation during the subsequent anneals.With the theoretical and experimental works,a qualitative model for elucidating the mechanism for the effects of germanium and carbon on the behaviors of microdefects(oxygen precipitate and void)in CZ silicon has been tentatively developed.
引文
[1]http://www.itrs.net/Common/20051TRS/Home2005.htm
    [2]S.M.Hu,Dislocation pinning effect of oxygen atoms in silicon.Applied Physics Letters,(1977),31,53.
    [3]R.Falster,V.V.Voronkov,On the properties of the intrinsic point defects in silicon:A perspective from crystal growth and wafer processing.Physica Status Solidi B-Basic Research,(2000),222(1),219-244.
    [4]S.Jana,S.Dost,V.Kumar,F.Durst,A numerical simulation study for the Czochralski growth process of Si under magnetic field.International Journal of Engineering Science,(2006),44(8-9),554-573.
    [5]J.Ryuta,E.Morita,T.Tanaka,Y.Shimanuki,Crystal-originated singularities on Si wafer surface after SC1 cleaning,Jpn.J.Appl.Phys,(1990),29,L1947-L1949.
    [6]Z.H.Wang,R.A.Brown,Simulation of almost defect-free silicon crystal growth.Journal of Crystal Growth,(2001),231(4),442-447.
    [7]Y.Yanase,H.Nishihata,T.Ochiai,H.Tsuya,Atomic force microscope observation of the change in shape and subsequent disappearance of crystal-originated particles after hydrogen atmosphere thermal annealing.Japanese Journal of Applied Physics,(1998),37(1),1.
    [8]D.Graf,U.Lambert,R.Schmolke,R.Wahlich,W.Siebert,E.Daub,W.yon Ammon,Film or layer made of semi-conductive material and method for producing said film or layer The Electrochem.Soc.Proc.,(2000),2000,319.
    [9]V.V.Voronkov,R.Falster,Effect of doping on point defect incorporation during silicon growth.Microelectronic Engineering,(2001),56(1-2),165-168.
    [10]J Chen,D Yang,X Ma,H Li,D Que,Intrinsic gettering based on rapid thermal annealing in germanium-doped Czochralski silicon.Journal of Applied Physics,(2007),101(3),033526.
    [11]A.Karoui,G.A.Rozgonyi,Oxygen precipitation in nitrogen doped Czochralski silicon wafers.Ⅱ.Effects of nitrogen and oxygen coupling.Journal of Applied Physics,(2004),96(6),3264-3271.
    [12]M.Akatsuka,K.Sueoka,Pinning effect of punched-out dislocations in carbon-,nitrogen-or boron-doped silicon wafers.Japanese Journal of Applied Physics Pan 1-Regular Papers Short Notes & Review Papers,(2001),40(3A),1240-1241.
    [13]N.Fujita,R.Jones,S.Oberg,P.R.Briddon,Nitrogen related shallow thermal donors in silicon.Applied Physics Letters,(2007),91(5),051914.
    [14]D Yang,X Yu,X Ma,J.Xu,L Li,D Que,Germanium effect on void defects in Czochralski silicon.Journal of Crystal Growth,(2002),243(3-4),371-374.
    [15]J.Chert,D.Yang,H.Li,X.Ma,D.Tian,L.Li,D.Que,Crystal-originated panicles in germanium doped Czochralski silicon crystal.Journal of Crystal Growth,(2007),306(2),262-268.
    [16]J Chen,D Yang,X Ma,D Que,Effect of carbon doping on oxygen precipitation behavior in internal gettering processing for Czochralski silicon.Journal of Crystal Growth,(2006),290(1),61-66.
    [17]J.Chen,D Yang,X Ma,D Que,Denuded zone in Czochralski silicon wafer with high carbon content.Journal of Physics-Condensed Matter,(2006),18(49),11131-11138.
    [18]J.S.Kilby,E.Keonjian,Design of a semiconductor solid-circuit adder.Electron Devices,IEEE Transactions on,(1960),7(2),114-114.
    [19]E.Moore Gordon,Cramming more components onto integrated circuits.Electronics,(1965),38(8),114-117.
    [20]S.E.Thompson,S.Parthasarathy,Moore's law:the future of Si microelectronics.Materials Today,(2006),9(6),20-25.
    [21]S.Tyagi,C.Auth,P.Bai,G.Curello,H.Deshpande,S.Gannavaram,O.Golonzka,R.Heussner,R.James,C.Kenyon,An advanced low power,high performance,strained channel 65nm technology.Electron Devices Meeting,2005.IEDM Technical Digest.IEEE International,(2005),245-247.
    [22]http://www.intel.com/technology/silicon/65nm technology.htm
    [23]W.yon Ammon,E.Dornberger,P.O.Hansson,Bulk properties of very large diameter silicon single crystals.Journal of Crystal Growth,(1999),199,390-398.
    [24]杨德仁,阙端麟,深亚微米集成电路用硅单晶材料.材料导报,(2002),16(002),1-4.
    [25]M.leong,B.Doris,J.Kedzierski,K.Rim,M.Yang,Silicon Device Scaling to the Sub-10nm Regime.Science,(2004),306(5704),2057-2060.
    [26]T.Sinno,E.Dornberger,W.yon Ammon,R.A.Brown,F.Dupret,Defect engineering of Czochralski single-crystal silicon.Materials Science and Engineering:R:Reports,(2000),28(5),149-198.
    [27]J.Vanhellemont,C.Claeys,Gettering and Defect Engineering in the Semiconductor Mater.Sci.Forum(1989),38-41,171.
    [28]X.Huang,T.Taishi,I.Yonenaga,K.Hoshikawa,Dislocation-free czochralski silicon crystal growth without dash necking Jpn.J.Appl.Phys.,Part,(2000),1(40),12.
    [29]J.L.Lindstrom,L.I.Murin,T.Hallberg,V.P.Markevich,B.G.Svensson,M.Kleverman,J.Hermansson,Defect engineering in Czochralski silicon by electron irradiation at different temperatures.Nuclear Instruments & Methods in Physics Research,(2002),186,121-125.
    [30]R.Hoelzl,K.J.Range,L.Fabry,J.Hage,V.Raineri,Gettering efficiencies of polysilicon-,stacking fault-and He-implanted backsides for Cu and Ni.Materials Science and Engineering:B,(2000),73(1),95-98.
    [31]F.Bialas,R.Winkler,H.Dietrich,Intrinsic gettering of 300 mm CZ wafers.Microelectronic Engineering,(2001),56(1-2),157-163.
    [32]T.Sugano,The progress and impact of semiconductor device and processingtechnology innovation in Japan.Proceedings of the IEEE,(1998),86(1),138-149.
    [33]A.Karoui,R.Zhang,G.A.Rozgonyi,T.Ciszek,Silicon Crystal Growth and Wafer Processing for High Efficiency Solar Cells and High Mechanical Yield.(2001):NCPV,NREL/CP-520-31057,Lakewood,CO,14-17 Oct.2001.
    [34]R.Falster,V.V.Voronkov,Intrinsic point defects and their control in silicon crystal growth and wafer processing.MRS BULLETIN,(2000),29.
    [35]W.G.Pfonn,Principles of Zone-Melting.Transactions,(1953),194,747.
    [36]J.Czochralski,Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle.Z.Phys.Chem,(1918),92,219-221.
    [37]X.T.Meng,S.Charalambous,M.Chardalas,S.Dedoussis,C.A.Eleftheriadis,A.K.Liolios,Annealing behaviour of defects in neutron transmutation doped silicon.Radiation Effects and Defects in Solids, (1995), 133(1), 97-101.
    [38] W. C. Dash, Growth of Silicon Crystals Free from Dislocations. Journal of Applied Physics, (1959), 30,459.
    [39] W. Zulehner, Historical overview of silicon crystal pulling development. Materials Science & Engineering B, (2000), 73(1-3), 7-15.
    [40] S. Chandrasekhar, K. M. Kim, Growth of large diameter necks for large size CZ silicon, in Semiconductor silicon, H. R. Huff, H. Tsuya, U. Gssele, Editors. (1998), Electrochem. Soc: Pennington. p. 411-417.
    [41] Y. Shiraishi, K. Takano, J. Matsubara, T. Iida, N. Takase, N. Machida, M. Kuramoto, H. Yamagishi, Growth of silicon crystal with a diameter of 400mm and weight of 400kg. Journal of Crystal Growth, (2001), 229(1), 17-21.
    [42] T. Iida, N. Machida, N. Takase, K. Takano, J. Matsubara, Y. Shiraishi, M. Kuramoto, H. Yamagishi, Development of crystal supporting system for diameter of 400mm silicon crystal growth. Journal of Crystal Growth, (2001), 229(1), 31-34.
    [43] T. Abe, Innovated Silicon Crystal Growth and Wafering Technologies. Electrochemical Society Proceedings, (1997), 97(3), 123-133.
    [44] X. Huang, T. Taishi, K. Hoshikawa, Dislocation-free CZ-Si crystal growth without the thin Dash-neck. International Journal of Materials and Product Technology, (2005), 22(1/2/3), 64-83.
    [45] V. V. Kalaev, Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400mm diameter Si Cz crystal growth. Journal of Crystal Growth, (2007), 303(1), 203-210.
    [46] Y. Xu, C. Liu, H. Wang, W. Sun, W. Zhang, Growth of semiconductor crystals under the equivalent micro-gravity. Microelectronic Engineering, (2003), 66(1-4), 542-546.
    [47] B. H. Dennis, G. S. Dulikravich, Magnetic field suppression of melt flow in crystal growth. International Journal of Heat and Fluid Flow, (2002), 23(3), 269-277.
    [48] T. Munakata, S. Someya, 1. Tanasawa, Effect of high frequency magnetic field on CZ silicon melt convection. International Journal of Heat & Mass Transfer, (2004), 47(21), 4525-4533.
    [49] G. Miiller, J. J. Metois, P. Rudolph, Modeling of fluid dynamics in the Czochralski Growth of Semiconductor Crystals. Crystal Growth: From Fundamentals to Technology, (2004), 2, 5.
    [50] K. S. Choe, Growth striations and impurity concentrations in HMCZ silicon crystals. Journal of Crystal Growth, (2004), 262(1-4), 35-39.
    [51] A. Krauze, A. Muiznieks, A. Mulbauer, T. Wetzel, W. von Ammon, Numerical 3D modelling of turbulent melt flow in large CZ system with horizontal DC magnetic field-I: flow structure analysis. Journal of Crystal Growth, (2004), 262(1-4), 157-167.
    [52] V. Savolainen, J. Heikonen, J. Ruokolainen, O. Anttila, M. Laakso, J. Paloheimo, Simulation of large-scale silicon melt flow in magnetic Czochralski growth. Journal of Crystal Growth, (2002), 243(2), 243-260.
    [53] H. P. Yu, Y. K. Sui, F. Y. Zhang, X. A. Chang, G. P. An, Numerical simulation of a czochralski silicon crystal growth with a large diameter 300mm under a cusp magnetic field. Journal of Inorganic Materials, (2005), 20(2), 453-458.
    [54] W. Masahito, E. Minom, W. Wei, Controlling oxygen concetration and distritution in 200mm diameter Si crystal using the elec tromagnetic Czochralski (EMCZ) method. J Crystal Growth, (2002), 237, 1.
    [55]L.J.Liu,S.Nakano,K.Kakimoto,Investigation of oxygen distribution in electromagnetic CZ-Si melts with a transverse magnetic field using 3D global modeling.Journal of Crystal Growth,(2007),299(1),48-58.
    [56]H.P.Yu,Y.K.Sui,J.Wang,F.Q.Zhang,X.L.Dal,Optimal control of oxygen concentration in a magnetic Czochralski crystal growth by response surface methodology.Journal of Materials Science & Technology,(2006),22(2),173-178.
    [57]H.Hirata,K.Hoshikawa,The Dissolution Rate of Silica in Molten Silicon.Jpn.J.Appl.Phys.,(1980),19(8),1573-1574.
    [58]S.Togawa,K.Izunome,S.Kawanishi,S.I.Chung,S.Kimura,K.Terashima,Oxygen transport from a silica crucible in Czochralski silicon growth.Journal of Crystal Growth,(1996),165(4),362-371.
    [59]阙端麟,陈修治,硅材料科学与技术.(2000),杭州:浙江大学出版社.
    [60]W.Zulehner,D.Huber,Czochralski-grown Silicon.(1982):Springer-Verlag.
    [61]S.Matsumoto,I.Ishihara,H.Kaneko,H.Harada,T.Abe,Growth characteristics of oxide precipitates in heavily doped silicon crystals.Applied Physics Letters,(1985),46,957.
    [62]K.Kakimoto,K.W.Yi,M.Eguchi,H.Noguchi,Oxygen transport mechanism in Si melt during single crystal growth in the Czochralski system.Journal of Crystal Growth,(1996),165(4),358-361.
    [63]W.Kaiser,P.H.Keck,C.F.Lange,Infrared Absorption and Oxygen Content in Silicon and Germanium.Physical Review,(1956),101(4),1264-1268.
    [64]W.Kaiser,P.H.Keck,Oxygen Content of Silicon Single Crystals.Journal of Applied Physics,(1957),28,882-887.
    [65]J.Hoste,C.Vandecasteele,The determination of trace-elements by charged-particle activation-analysis.Nucl.Instrum.Meth,(1989),B41-42 1182.
    [66]H.Erramli,M.A.Misdaq,G.Blondiaux,C.Maddalon-Vinante,D.Barbier,Oxygen profiling in Czochralski-grown silicon substrates submitted to a rapid thermal annealing by using charged particles activation analysis.Nucl.Instrum.Meth,(1998),145(4),562-566.
    [67]F.Shimura,T.Higuchi,R.S.Hockett,Outdiffusion of oxygen and carbon in Czochralski silicon.Applied Physics Letters,(1988),53,69.
    [68]J.Chen,D.Yang,X.Ma,R.Fan,D.Que,Enhanced oxygen out-diffusion in silicon crystal doped with germanium.Journal of Applied Physics,(2007),102,066102.
    [69]J.A.J.Tejada,A.Godoy,J.E.Carceller,J.A.L.Villanueva,Effects of oxygen related defects on the electrical and thermal behavior of a n(+)-p junction.Journal of Applied Physics,(2004),95(2),561-570.
    [70]O.Prakash,S.Singh,Oxygen related donors in Czochralski-grown silicon annealed at 465-650℃.Journal of Physics and Chemistry of Solids,(1999),60(3),353-358.
    [71]D.Wruck,P.Gaworzewski,Electrical and infrared spectroscopic investigations of oxygen related donors in silicon.Phys.Stat.Sol.(a),(1979),56(2),557-564.
    [72]V.V.Emtsev,B.A.Andreev,V.Y.Davydov,D.S.Poloskin,G.A.Oganesyan,D.I.Kryzhkov,V.B.Shmagin,A.Misiuk,C.A.Londos,Stress-induced changes of thermal donor formation in heat-treated Czochralski-grown silicon.Physica B,(2003),340,769-772.
    [73]X Ma,X Yu,R Fan,D Yang,Formation of pnp bipolar structure by thermal donors in nitrogen containing p-type Czochralski silicon wafers.Applied Physics Letters,(2002),81(3),496-498.
    [74] J. Qian, Z Wang, S Wan, L Lin, A novel model of "new donors"in Czochralski-grown silicon. Journal of Applied Physics, (1990), 68,954.
    [75] R.C.Newman, R.Jones, Diffusion of oxygen in silicon, in Semiconductors and Semimetals, F.Shimara, Editor. (1994), Academic: San Diego, CA. p. 289-352.
    [76] A. Borghesi, B. Pivac, A. Sassella, A. Stella, Oxygen precipitation in silicon. Journal of Applied Physics, (1995), 77,4169.
    [77] T. Y. Tan, E. E. Gardner, W. K. Tice, Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si. Applied Physics Letters, (1977), 30, 175.
    [78] U. Gosele, K. Y. Ahn, B. P. R. Marioton, T. Y. Tan, S. T. Lee, Do oxygen molecules contribute to oxygen diffusion and thermal donor formation in silicon? Applied Physics A, (1989), 48(3), 219-228.
    [79] A. S. Oates, M. J. Binns, R. C. Newman, R. C. Tucker, J. G Wilkes, A. Wilkinson, The mechanism of radiation-enhanced diffusion of oxygen in silicon at room temperature. Journal of Physics C: Solid State Physics, (1984), 17(32), 5695-5705.
    [80] A. Ourmazd, W. Schroter, A. Bourret, Oxygen-related thermal donors in silicon: A new structural and kinetic model. Journal of Applied Physics, (1984), 56, 1670.
    [81] T. Ono, G A. Rozgonyi, E. Asayama, H. Horie, H. Tsuya, K. Sueoka, Oxygen diffusion in heavily antimony-, arsenic-, and boron-doped Czochralski silicon wafers. Applied Physics Letters, (1999), 74, 3648.
    [82] Y. L. Huang, Y. Ma, R. Job, W. R. Fahrner, E. Simoen, C. Claeys, The lower boundary of the hydrogen concentration required for enhancing oxygen diffusion and thermal donor formation in Czochralski silicon. Journal of Applied Physics, (2005), 98(3), 033511.
    [83] W. Wijaranakula, Oxygen diffusion in carbon-doped silicon. Journal of Applied Physics, (1990), 68, 6538.
    [84] 张维连, 檀柏梅,CZSi 中 Ge 增强氧外扩散现象. 半导体杂志, (1999), 24(004), 15-17.
    [85] X Yu, D Yang, X Ma, H. Li, Y Shen, D Tian, L Li, D Que, Intrinsic gettering in germanium doped Czochralski crystal silicon crystals. Journal of Crystal Growth, (2003), 250, 359-363.
    [86] Y. Yatsurugi, N. Akiyama, Y. Endo, T. Nozaki, Concentration, Solubility, and Equilibrium Distribution Coefficient of Nitrogen and Oxygen in Semiconductor Silicon. Journal of The Electrochemical Society, (1973), 120, 975.
    [87] R. C. Newman, Oxygen diffusion and precipitation in Czochralski silicon. Journal of Physics-Condensed Matter, (2000), 12(25), R335-R365.
    [88] Jr. C. Mikkelsen, Oxygen, Carbon, Hydrogen, and Nitrogen in Silicon, in Impurities in Sil-cion, J. I.C. Mikkelsen, S. J. Pearton, J. W. Corbett, S.J.Pennycook, Editors. (1986), Materials Research society: Princeton, N.J. p. 19.
    [89] K. Nakamura, T. Saishoji, T. Kubota, T. Iida, Y. Shimanuki, T. Kotooka, J. Tomioka, Formation process of grown-in defects in Czochralski grown silicon crystals. Journal of Crystal Growth, (1997), 180(1), 61-72.
    [90] H. Zimmermann, H. Ryssel, Gold and platinum diffusion: The key to the understanding of intrinsic point defect behavior in silicon. Applied Physics A, (1992), 55(2), 121-134.
    [91] M. Jacob, P. Pichler, H. Ryssel, R. Falster, Determination of vacancy concentrations in the bulk of silicon wafers by platinum diffusion experiments. Journal of Applied Physics, (1997), 82, 182.
    [92] O. V. Aleksandrov, A. A. Krivoruchko, Out-diffusion of impurity via the kick-out mechanism during gettering. Semiconductors, (2007), 41(9), 1048-1055.
    [93] V. V. Voronkov, R. Falster, Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon. Journal of Crystal Growth, (1999), 204(4), 462-474.
    [94] J. R. Patel, Impurity clustering effects on dislocation generation in silicoa Discussions of the Faraday Society, (1964), 38,201-210.
    [95] T. Abe, T. Samizo, S. Maruyama, Etch Pits Observed in Dislocation Free Silicon Crystals. Jpn. J. Appl. Phys, (1966), 5,458.
    [96] K. V. Ravi, The heterogeneous precipitation of silicon oxides in silicoa Journal of The Electrochemical Society, (1974), 121, 1090-1098.
    [97] P. M. Fahey, P. B. Griffin, J. D. Plummer, Point defects and dopant diffusion in silicon. Reviews of Modern Physics, (1989), 61(2), 289-384.
    [98] V. V. Voronkov, R. Falster, Vacancy-type microdefect formation in Czochralski silicoa Journal of Crystal Growth, (1998), 194(1), 76-88.
    [99] V. V. Voronkov, R. Falster, Nucleation and growth of faceted voids in silicon crystals. Journal of Crystal Growth, (1999), 199, 399-403.
    [100] V. V. Voronkov, R. Falster, Properties of vacancies and self-interstitials in silicon deduced from crystal growth, wafer processing, self-diffusion and metal diffusion. Materials Science and Engineering B, (2006), 134(2-3), 227-232.
    [101] J. Vanhellemont, O. De Gryse, P. Clauws, Extended defects in silicon: an old and new story. Gettering and Defect Engineering in Semiconductor Technology, (2004), 95-96, 263-272.
    [102] K. Sueoka, N. Ikeda, T. Yamamoto, S. Kobayashi, Growth Process of Polyhedral Oxide Precipitates in Czochralski Silicon Crystals Annealed at 1100℃. Jpn. J. Appl. Phys, (1994), 33, L1507-L1510.
    [103] A. Taguchi, H. Kageshima, K. Wada, First-principles investigations of nitrogen-doping effects on defect aggregation processes in Czochralski Si. Journal of Applied Physics, (2005), 97(5), 053514.
    [104] F. Shimura, Redissolution of precipitated oxygen in Czochralski-grown silicon wafers. Applied Physics Letters, (1981), 39, 987.
    [105] F. Shimura, Oxygen in silicon, in Semiconductors and semimetals, R. K. Willardson, E. R. Weber, A. C. Beer, Editors. (1994), Academic Press: New York. p. 434.
    [106] H. Chiou, The effects of preheatings on axial oxygen precipitation uniformity in Czochralski silicon crystals. Journal of The Electrochemical Society, (1992), 139(6), 1680-1684.
    [107] F. Shimura, Carbon enhancement effect on oxygen precipitation in Czochralski silicon. Journal of Applied Physics, (1986), 59, 3251.
    [108] X Yu, D Yang, X Ma, J Yang, L Li, D Que, Grown-in defects in nitrogen-doped Czochralski silicon. Journal of Applied Physics, (2002), 92(1), 188-194.
    [109] C. Cui, D Yang, X Ma, R Fan, D Que, Oxygen precipitation in neutron-irradiated Czochralski silicon annealed at elevated temperature. Physica Status Solidi a-Applications and Materials Science, (2005), 202(13), 2442-2447.
    [110] R. Falster, V. V. Voronkov, The engineering of intrinsic point defects in silicon wafers and crystals. Materials Science and Engineering B, (2000), 73(1-3), 87-94.
    [111] C. Y. Kung, Effect of thermal history on oxygen precipitates in Czochralski silicon annealed at 1050℃. Journal of Applied Physics, (1989), 65,4654.
    [112] J. Chen, D. Yang, H. Li, X. Ma, D. Que, Germanium effect on as-grown oxygen precipitation in Czochralski silicon. Journal of Crystal Growth, (2006), 291(1), 66-71.
    [113] E. M. Murray, Denuded zone formation in p(100) silicoa Journal of Applied Physics, (1984), 55, 536.
    [114] H. Li, D Yang, X Ma, X Yu, D Que, Germanium effect on oxygen precipitation in Czochralski silicon. Journal of Applied Physics, (2004), 96(8), 4161-4165.
    [115] S. Isomae, S. Aoki, K. Watanabe, Depth profiles of interstitial oxygen concentrations in silicon subjected to three-step annealing. Journal of Applied Physics, (1984), 55, 817.
    [116] N. Yamamoto, P. M. Petroff, J. R. Patel, Rod-like defects in oxygen-rich Czochralski grown silicoa Journal of Applied Physics, (1983), 54, 3475.
    [117] R.Messoloras, R.C.Newman, R.J.Stewart, J.H.Tucker, Is enhanced interstitial oxygen diffusion necessary to explain the kinetics of precipitation in silicon at temperatures below 650 degrees C. Semicond.Sci.Tech., (1984), 2, 14-19.
    [118] A. Ourmazd, D. W. Taylor, J. A. Rentschler, J. Bevk, Si-SiO_2 transformation: Interfacial structure and mechanism. Physical Review Letters, (1987), 59(2), 213-216.
    [119] K. H. Yang, H. F. Kappert, G. H. Schwuttke, Minority Carrier Lifetime in Annealed Silicon Crystals Containing Oxygen. Physica Status Solidi(a), (1978), 50(1), 221-235.
    [120] F. A. Ponce, S. Hahn, Microscopic aspects of oxygen precipitation in silicon. Materials Science and Engineering B, (1989), 4(1-4), 11-17.
    [121] M. Koizuka, H. Yamada-Kaneta, Gap states caused by oxygen precipitation in Czochralski silicon crystals. Journal of Applied Physics, (1998), 84, 4255.
    [122] K. Sueoka, N. Ikeda, T. Yamamoto, Morphology and size distribution of oxide precipitates in as-grown Czochralski silicon crystals. Applied Physics Letters, (1994), 65, 1686.
    [123] O. De Gryse, P. Clauws, J. Van Landuyt, O. Lebedev, C. Claeys, E. Simoen, J. Vanhellemont, Oxide phase determination in silicon using infrared spectroscopy and transmission electron microscopy techniques. Journal of Applied Physics, (2002), 91, 2493.
    [124] K. Sueoka, M. Akatsuka, M. Okui, H. Katahama, Computer Simulation for Morphology, Size, and Density of Oxide Precipitates in CZ Silicon. Journal of The Electrochemical Society, (2003), 150, G469.
    [125] K. Sueoka, N. Ikeda, T. Yamamoto, S. Kobayashi, Morphology and growth process of thermally induced oxide precipitates in Czochralski silicon. Journal of Applied Physics, (1993), 74, 5437.
    [126] X. M. Huang, T. Taishi, I. Yonenaga, K. Hoshikawa, Dislocation-free Czochralski Si crystal growth without dash necking using a heavily B and Ge codoped Si seed. Japanese Journal of Applied Physics, (2000), 39( 11B), L1115-L1117.
    [127] S. Kishino, Y. Matsushita, M. Kanamori, T. Iizuka, Thermally Induced Microdefects in Czochralski-Grown Silicon: Nucleation and Growth Behaviour. Jpn. J. Appl. Phys., (1982), 21(1), 1-12.
    [128] X Yu, X Ma, C Li, J Yang, D Yang, Grown-in defects in heavily boron-doped Czochralski silicon. Japanese Journal of Applied Physics, (2004), 43(7A), 4082-4086.
    [129] D Yang, G. Wang, J. Xu, D Li, D Que, C. Funke, H. J. Moeller, Influence of oxygen precipitates on the warpage of annealed silicon wafers. Microelectronic Engineering, (2003), 66(1-4), 345-351.
    [130] T. Fukuda, A. Ohsawa, Mechanical strength of silicon crystals with oxygen and/or germanium impurities. Applied Physics Letters, (1992), 60, 1184.
    [131] X. M. Huang, T. Sato, M. Nakanishi, T. Taishi, K. Hoshikawa, High strength Si wafers with heavy B and Ge codoping. Japanese Journal of Applied Physics, (2003), 42(12B), L1489-L1491.
    [132] J. Osaka, N. Inoue, K. Wada, Homogeneous nucleation of oxide precipitates in Czochral-ski-grown silicon. Applied Physics Letters, (1980), 36,288.
    [133] A. J. R. de Kock, W. M. van de Wijgert, The influence of thermal point defects on the precipitation of oxygen in dislocation-free silicon crystals. Applied Physics Letters, (1981), 38, 888.
    [134] N. I. Puzanov, A. M. Eidenzon, The effect of thermal history during crystal growth on oxygen precipitation in Czochralski-grown silicon. Semicond. Sci. Technol, (1992), 7,406-413.
    [135] J. Vanhellemont, O. De Gryse, P. Clauws, Critical precipitate size revisited and implications for oxygen precipitation in silicon. Applied Physics Letters, (2005), 86,221903.
    [136] J. Vanhellemont, C. Claeys, A theoretical study of the critical radius of precipitates and its application to silicon oxide in silicon. Journal of Applied Physics, (1987), 62, 3960.
    [137] J. Vanhellemont, C. Claeys, Erratum: "A theoretical study on the critical radius of precipitates and its application to silicon oxide in silicon"[J. Appl. Phys.[bold 62], 3960 (1987)]. Journal of Applied Physics, (1992), 71, 1073.
    [138] K. Sueoka, M. Akatsuka, M. Yonemura, T. Ono, E. Asayama, Y. Koike, S. Sasamistu, Effect of heavy carbon, nitrogen and boron doping on oxygen precipitation behavior in silicon epitaxial wafers. Solid State Phenomena, (2002), 82, 84.
    [139] M. Sanati, S. K. Estreicher, Boron-oxygen complexes in Si. Physica B-Condensed Matter, (2006), 376, 133-136.
    [140] M. Mikelsen, J. H. Bleka, J. S. Christensen, E. V. Monakhov, B. G. Svensson, J. Harkonen, B. S. Avset, Annealing of the divacancy-oxygen and vacancy-oxygen complexes in silicon. Physical Review B, (2007), 75(15), 233202.
    [141] S. M. Hu, Precipitation of oxygen in silicon: Some phenomena and a nucleation model. Journal of Applied Physics, (1981), 52, 3974.
    [142] M.Shrems, Simulation of oxygen precipitation, in Oxygen in silicon, F.Shimura, Editor. (1994), Academic Press: New York. p. 401.
    [143] T. Y. Tan, C. Y. Kung, Oxygen precipitation retardation and recovery phenomena in Czochralski silicon: Experimental observations, nuclei dissolution model, and relevancy with nucleation issues. Journal of Applied Physics, (1986), 59, 917.
    [144] W. E. Bailey, R. A. Bowling, K. E. Bean., Getting of Carbon and Oxygen in Silicon Processing. J . Electrochem. Soc, (1985), 132, 1721.
    [145] M. Kanamori, H. Tsuya, Microdefects Formed in Carbon-Doped CZ Silicon Crystals by Oxygen Precipitation Heat Treatment Jpn. J. Appl. Phys, (1985), 24, 557-563.
    [146] G Kissinger, A. Huber, K. Nakai, O. Lysytskij, T. Muller, H. Richter, W. von Ammon, Investigation of Ostwald ripening in nitrogen doped Czochralski silicon. Applied Physics Letters, (2005), 87, 101904.
    [147] A. Hara, M. Aoki, T. Fukuda, A. Ohsawa, Hydrogen effects on oxygen precipitation in Czochralski silicon crystals. Journal of Applied Physics, (1993), 74,913.
    [148] E. Simoen, C. Claeys, J. M. Rafi, A. G. Ulyashin, Thermal donor formation in direct-plasma hydrogenated n-type Czochralski silicon. Materials Science and Engineering B-Solid State Materials for Advanced Technology, (2006), 134(2-3), 189-192.
    [149]K.Tanahashi,H.Yamada-Kaneta,Aggregation of nitrogen on oxygen precipitate in annealed Czochralski silicon wafer observed by secondary ion mass spectroscopy measurement.Japanese Journal of Applied Physics,(2006),45(4-7),L148-L150.
    [150]K.Nakai,Y.Inoue,H.Yokota,A.Ikari,J.Takahashi,A.Tachikawa,K.Kitahara,Y.Ohta,W.Ohashi,Oxygen precipitation in nitrogen-doped Czochralski-grown silicon crystals.Journal of Applied Physics,(2001),89,4301.
    [151]L Jiang,D Yang,X Yu,X Ma,J.Xu,D Que,Effect of nitrogen on oxygen precipitation in Czochralski silicon during high-temperature annealing.Acta Physica Sinica,(2003),52(8),2000-2004.
    [152]L.Li,D.Yang,Transmission electron microscopic observation of oxygen precipitates in nitrogen-doped silicon.Microelectronic Engineering,(2001),56(1-2),205-208.
    [153]D Yang,D Que,Influence of dislocations on nitrogen-oxygen complex in silicon.Physica Status Solidi a-Applied Research,(1999),171(1),203-207.
    [154]W.Wijaranakula,Morphology of oxide precipitates in Czochralski silicon degenerately doped with boron.Journal of Applied Physics,(1992),72,4026.
    [155]S.Hahn,F.A.Ponce,W.A.Tiller,V.Stojanoff,D.A.P.Bulla,W.E.Castro Jr,Effects of heavy boron doping upon oxygen precipitation in Czochralski silicon.Journal of Applied Physics,(1988),64,4454.
    [156]M.Franz,K.Pressel,A.Barz,P.Dold,K.W.Benz,Shallow donors in Ge-rich GeSi bulk crystals.Applied Physics Letters,(1999),74(18),2708-2710.
    [157]E.Corbin,M.J.Shaw,M.R.Kitchin,M.Jaros,J.Konie,H.Presting,Structure and doping optimization of SiGe heterojunction internal photoemission detectors for mid-infrared applications.Optical Engineering,(2001),40(12),2753-2762.
    [158]P.Boher,J.L.Stehle,E.Fogarassy,A new process to manufacture thin SiGe and SiGeC epitaxial films on silicon by ion implantation and excimer laser annealing.Applied Surface Science,(1999),139,199-205.
    [159]Dashevskii M.Ya,Dokuchaeva A.A,Sadilov S.I,On the solubility of oxygen in silicon doped with germanium.Izvestiya Akademii Nauk SSSR Neorganicheskie Materialy,(1989),25(4),673-674.
    [160]Dashevskii M.Ya,Lymar S.G,Dokuchaeva A.A,Influence of germanium on the behavior of oxygen in silicon,Izvestiya Akademii Nauk SSSR Neorganicheskie Materialy,(1985),21(11),1827-1830.
    [161]张维连,李嘉席,掺锗CZSi原生晶体中氧的微沉淀.半导体学报,(2002),23(010),1073-1077.
    [162]张维连,檀柏梅,锗对CZSi巾氧沉淀成核和沉淀形态的影响.固体电子学研究与进展,(2001),21(001),92-96.
    [163]Yu.M Babitskii,N.I Gorbacheva,P.M.Grinshtein,Kinetics of generation of low-temperature oxygen donors in silicon containing isovalent impurities.Fizika i Tekhnika Poluprovodnikov,(1988),22(2),307-312.
    [164]Yu.M Babitskii,P.M Grinshtein,M.A llin,Behavior of oxygen in silicon doped with isovalent impurities.Fizika i Tekhnika Poluprovodnikov,(1985),15(11),198 192-1985.
    [165]D.I Brinkevich,N.I Gorbacheva,V.V Petrov,Thermal-defect formation in silicon doped with germanium.Izvestiya Akademii Nauk SSSR Neorganicheskie Materialy,(1989),25(8),1376-1378.
    [166] H Li, D Yang, X Yu, X Ma, D Tian, L Li, D Que, The effect of germanium doping on oxygen donors in Czochralski-grown silicoa Journal of Physics-Condensed Matter, (2004), 16(32), 5745-5750.
    [167] F. Shimura, J. P. Baiardo, P. Fraundorf, Infrared absorption study on carbon and oxygen behavior in Czochralski silicon crystals. Applied Physics Letters, (1985), 46, 941.
    [168] 杨德仁,姚鸿年,微氮硅单晶中氧沉淀.半导体学报,(1994),15(006),422-428.
    
    [169] H. Yamanaka, N. Miyamoto, Enhancement and Suppression Effect of Carbon Atoms on Oxygen Aggregation and New Donor Formation in Silicon Crystals Preannealed at Low Temperatures. Jpn. J. Appl. Phys, (1995), 34,4606-4620.
    [170] G. S. Oehrlein, J. L. Lindstrom, J. W. Corbett, Carbon-oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon. Applied Physics Letters, (1982), 40, 241.
    [171] F. Shimura, R. S. Hockett, D. A. Reed, D. H. Wayne, Direct evidence for co-aggregation of carbon and oxygen in Czochralski silicoa Applied Physics Letters, (1985), 47, 794.
    [172] J. R. Matlock, Carbon and oxygen impurity in Czochralski silicon, in Defects in Silicon, W. M. Bullis, L. C. Kimerling, Editors. (1983), ECS: NJ. p. 3.
    [173] S. S. Tang, T. Y. Shen, Y. Z. Li, Influence of carbon on oxygen precipitation nucleation in Czochralski silicon. Chinese J. Semicond, (1986)(7), 489.
    [174] P. Fraundorf, G. K. Fraundorf, F. Shimura, Clustering of oxygen atoms around carbon in silicon. Journal of Applied Physics, (1985), 58,4049.
    [175] A. A. Istratov, E. R. Weber, Electrical properties and recombination activity of copper, nickel and cobalt in silicon. Applied Physics A, (1998), 66(2), 123-136.
    [176] K. Honda, A. Ohsawa, N. Toyokura, Breakdown in silicon oxides—correlation with Cu precipitates. Applied Physics Letters, (1984), 45,270.
    [177] K. Honda, T. Nakanishi, A. Ohsawa, N. Toyokura, Catastrophic breakdown in silicon oxides: The effect of Fe impurities at the SiO-Si interface. Journal of Applied Physics, (1987), 62, 1960.
    [178] H. Wendt, H. Cerva, V. Lehmann, W. Pamler, Impact of copper contamination on the quality of silicon oxides. Journal of Applied Physics, (1989), 65, 2402.
    [179] K. Sumino, Basic aspects of impurity gettering. Microelectronic Engineering, (2003), 66(1-4), 268-280.
    [180] P. Zhang, H. Vainola, A. A. Istratov, E. R. Weber, The thermal stability of iron precipitates in silicon after internal gettering. Physica B-Condensed Matter, (2003), 340, 1051-1055.
    [181] D. Gilles, E. R. Weber, S. K. Hahn, Mechanism of internal gettering of interstitial impurities in Czochralski-grown silicon. Physical Review Letters, (1990), 64(2), 196-199.
    [182] H. Hieslmair, A. A. Istratov, S. A. McHugo, C. Flink, T. Heiser, E. R. Weber, Gettering of iron by oxygen precipitates. Applied Physics Letters, (1998), 72, 1460.
    [183] B. Shen, T. Sekiguchi, J. Jablonski, K. Sumino, Gettering of copper by bulk stacking faults and punched-out dislocations in Czochralski-grown silicon. Journal of Applied Physics, (1994), 76, 4540.
    [184] A. Ourmazd, W. Schroter, Phosphorus gettering and intrinsic gettering of nickel in silicon. Applied Physics Letters, (1984), 45, 781.
    [185] Q Shui, D Yang, L Li, X Pi, D Que, Intrinsic gettering of Czochralski silicon annealed in argon and nitrogen atmosphere. Physica B-Condensed Matter, (2001), 307(1-4), 40-44.
    [186] K. Yamamoto, S. Kishino, Y. Matsushita, T. Iizuka, Lifetime improvement in Czochral- ski-grown silicon wafers by the use of a two-step annealing. Applied Physics Letters, (1980), 36, 195.
    [187] V. D. Akhmetov, H. Richter, O. Lysytskiy, R. Wahlich, T. Muller, Oxide precipitates in annealed nitrogen-doped 300mm CZ-SI. Materials Science in Semiconductor Processing, (2002), 5(4-5), 391-396.
    [188] L Gong, X Ma, D Tian, L Fu, D Yang, Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals. Semiconductor Science and Technology, (2005), 20(2), 228-232.
    [189] K. Wada, N. Inoue, K. Kohra, Diffusion-Limited Growth of Oxide Precipitates in Czochralski Silicon. Journal of Crystal Growth, (1980), 49(4), 749-752.
    [190] S. M. Myers, M. Seibt, W. Schroter, Mechanisms of transition-metal gettering in silicon. Journal of Applied Physics, (2000), 88(7), 3795-3819.
    [191] A. A. Istratov, H. Hieslmair, E. R. Weber, Advanced Gettering techniques in ULSI technology. Mrs Bulletin, (2000), 25(6), 33-38.
    [192] R. J. Falster, G. R. Fisher, G. Ferrero, Gettering thresholds for transition metals by oxygen-related defects in silicon. Applied Physics Letters, (1991), 59, 809.
    [193] M. Pagani, R. J. Falster, G. R. Fisher, G. C. Ferrero, M. Olmo, Spatial variations in oxygen precipitation in silicon after high temperature rapid thermal annealing. Applied Physics Letters, (1997), 70, 1572.
    [194] C. Cui, D Yang, X Ma, R Fan, D Que, Effect of annealing atmosphere on oxygen precipitation and formation of denuded zone in Czochralski silicon wafer. Physica Status Solidi a-Applications and Materials Science, (2006), 203(10), 2370-2375.
    [195] W. A. Tiller, S. Hahn, F. A. Ponce, Thermodynamic and kinetic considerations on the equilibrium shape for thermally induced microdefects in Czochralski silicon. Journal of Applied Physics, (1986), 59, 3255.
    [196] 余学功,马向阳,杨德仁,大直径直拉硅片的快速热处理.半导体学报,(2003),24(005),490-493.
    [197] C. Cui, D Yang, X Ma, L Fu, R Fan, D Que, Oxygen precipitation within denuded zone founded by rapid thermal processing in Czochralski silicon wafers. Chinese Physics Letters, (2005), 22(9), 2407-2410.
    [198] C. Maddalon-Vinante, D. Barbier, H. Erramli, G. Blondiaux, Charged particle activation analysis study of the oxygen outdiffusion from Czochralski-grown silicon during classical and rapid thermal annealing in various gas ambient. Journal of Applied Physics, (1993), 74, 6115.
    [199] G Kissinger, J. Vanhellemont, G. Obermeier, J. Esfandyari, Denuded zone formation by conventional and rapid thermal anneals. Materials Science and Engineering B-Solid State Materials for Advanced Technology, (2000), 73(1-3), 106-110.
    [200] X Yu, D Yang, X Ma, D Que, Effect of rapid thermal process on oxygen precipitation and denuded zone in nitrogen-doped silicon wafers. Microelectronic Engineering, (2003), 69(1), 97-104.
    [201] X Ma, L Fu, D Tian, C. Cui, D. Yang, Effects of rapid thermal processing on oxide precipitation in conventional and nitrogen-doped Czoehralski silicon. Physica Status Solidi a-Applications and Materials Science, (2006), 203(4), 670-676.
    [202] T. Ueki, M. Itsumi, T. Takeda, Octahedral void defects observed in the bulk of Czochralski silicoa Applied Physics Letters, (1997), 70,1248.
    [203] M. Itsumi, H. Akiya, T. Ueki, M. Tomita, M. Yamawaki, Octahedral-structured gigantic precipitates as the origin of gate-oxide defects in metal-oxide-semiconductor large scale integrated circuits. Japanese Journal of Applied Physics, (1996), 35(2 B), 812-817.
    [204] T. Ueki, M. Itsumi, T. Takeda, Carbon in grown-in defects in Czochralski silicon and its influence on gate-oxide defects. Japanese Journal of Applied Physics, (1999), 38(10), 5695-5699.
    [205] M. Kato, T. Yoshida, Y. Ikeda, Y. Kitagawara, Transmission Electron Microscope Observation of "IR Scattering Defects" in As-Grown Czochralski Si Crystals. Japanese journal of applied physics, (1996), 35(11), 5597-5601.
    [206] H. Nishikawa, T. Tanaka, Y. Yanase, M. Hourai, M. Sano, H. Tsuya, Formation of grown-in defects during Czochralski silicon crystal growth. Jpn. J. Appl. Phys., Part, (1997), 1(36), 6595.
    [207] D. Grof, M. Suhren, U. Lambert, R. Schmolke, A. Ehlert, W. von Ammon, P. Wagner, Characterization of Crystal Quality by Crystal Originated Particle Delineation and the Impact on the Silicon Wafer Surface. Journal of The Electrochemical Society, (2005), 145, 275.
    [208] X Yu, D Yang, X Ma, J. Xu, L Li, D Que, Effect of oxygen precipitation on voids in bulk silicon. Microelectronic Engineering, (2003), 66(1-4), 289-296.
    [209] M. Itsumi, H. Akiya, T. Ueki, M. Tomita, M. Yamawaki, The composition of octahedron structures that act as an origin of defects in thermal SiO on Czochralski silicon. Journal of Applied Physics, (1995), 78, 5984.
    [210] V. V. Voronkov, Formation of voids and oxide particles in silicon crystals. Materials Science and Engineering B-Solid State Materials for Advanced Technology, (2000), 73(1-3), 69-76.
    [211] K. Nakai, K. Kitahara, Y. Ohta, A. Ikari, M. Tanaka, Crystal defects in epitaxial layer on nitrogen-doped czochralski-grown silicon substrate (II) - Suppression of the crystal defects in epitaxial layer by the control of crystal growth condition and carbon co-doping. Japanese Journal of Applied Physics, (2004), 43(4A), 1247-1253.
    [212] K. Aihara, H. Takeno, Y. Hayamizu, M. Tamatsuka, T. Masui, Enhanced nucleation of oxide precipitates during Czochralski silicon crystal growth with nitrogen doping. Journal of Applied Physics, (2000), 88, 3705.
    [213] H. Sawada, K. Kawakami, First-principles calculation of the interaction between nitrogen atoms and vacancies in silicon. Physical Review B, (2000), 62(3), 1851-1858.
    [214] S. Sadamitsu, S. Umeno, Y. Koike, M. Hourai, S. Sumita, T. Shigematsu, Dependence of the grown-in defect distribution on growth rates in Czochralski silicon. Japanese Journal of Applied Physics, (1993), 32(9), 3675-3681.
    [215] R. Rizk, P. de Mierry, D. Ballutaud, M. Aucouturier, D. Mathiot, Hydrogen diffusion and passivation processes in p-and n-type crystalline silicon. Physical Review B, (1991), 44(12), 6141-6151.
    [216] S. N. Rashkeev, Hydrogen passivation and activation of oxygen complexes in silicon. Applied Physics Letters, (2001), 78(11), 1571.
    [217] D. Graf, U. Lambert, M. Brohl, A. Ehlert, R. Wahlich, P. Wagner, Comparison of high temperature annealed Czochralski silicon wafers and epitaxial wafers. Materials Science and Engineering: B, (1996), 36(1), 50-54.
    [218] S. Fung, Y. Zhao, N. Sun, C. D. Beling, X. Chen, K. Bi, X. Wu, J. Zhang, T. Sun, H-vacancy complex VInH_4 abundance and its influences in n-type LEC InP. Journal of Crystal Growth, (2000), 211(1), 174-178.
    [219] B. M. Park, G. H. Seo, G. Kim, Nitrogen-doping effect in a fast-pulled Cz-Si single crystal. Journal of Crystal Growth, (2001), 222(1), 74-81.
    [220] W. Von Ammon, R. HoLzl, J. Virbulis, E. Dornberger, R. Schmolke, D. Grof, The impact of nitrogen on the defect aggregation in silicon. Journal of Crystal Growth, (2001), 226(1), 19-30.
    [221] J. Takahashi, K. Nakai, K. Kawakami, Y. Inoue, H. Yokota, A. Tachikawa, A. Ikari, W. Oha-shi, Microvoid Defects in Nitrogen-and/or Carbon-doped Czochralski-grown Silicon Crystals. Japanese Journal of Applied Physics, (2003), 42(2A), 363.
    [222] W. Wijaranakula, Effect of point defect reactions on behavior of boron and oxygen in degenerately doped Czochralski silicon. Applied Physics Letters, (1993), 62, 2974.
    [223] X. G Yu, D. R. Yang, X. Y. Ma, L. B. Li, D. L. Que, Hydrogen annealing of grown-in voids in nitrogen-doped Czochralski grown silicon. Semiconductor Science and Technology, (2003), 18(6), 399-403.
    [224] A. Baghdadi, W. M. Bullis, M. C. Croarkin, Y. Li, R. I. Scace, R. W. Series, P. Stallhofer, M. Watanabe, Interlaboratory determination of the calibration factor for the measurement of the interstitial oxygen content of silicon by infrared absorption. Journal of The Electrochemical Society, (1989), 136,2015.
    [225] D Yang, J Chen, Germanium in Czochralski silicon. Defects and Diffusion in Ceramics: An Annual Retrospective Vii, (2005), 242-244, 169-184.
    [226] F. Shimura, H. Tsuya, T. Kawamura, Surface-and inner-microdefects in annealed silicon wafer containing oxygen. Journal of Applied Physics, (1980), 51, 269.
    [227] C. S. Fuller, R. A. Logan, Effect of Heat Treatment upon the Electrical Properties of Silicon Crystals. Journal of Applied Physics, (2004), 28, 1427.
    [228] V. M. Babich, N. P. Baran, K. I. Zotov, V. L. Kiritsa, V. B. Koval'chuk, Low-temperature diffusion of oxygen and formation of thermal donors in silicon doped with an isovalent germanium impurity. Semiconductors, (1995), 29, 30.
    [229] H. Shimizu, Dislocations Preferentially Generated in Compressed Regions of Saddle-Shaped Deformed, Precipitation-Softened, Czochralski-Grown Silicon Wafers. Jpn. J. Appl. Phys, (2000), 39, 5727-5731.
    [230] I. Yonenaga, K. Takahashi, Effect of magnetic field on dislocation-oxygen impurity interaction in silicon. Journal of Applied Physics, (2007), 101(5), 053528.
    [231] S. Danyluk, D. S. Lim, J. Kalejs, Microhardness of carbon-doped (111) p-type Czochralski silicon. Journal of Materials Science Letters, (1985), 4(9), 1135-1137.
    [232] T. Fukuda, Mechanical stength of Czochralski silicon crystals with carbon concentrations from 10 to 10 cm. Applied Physics Letters, (1994), 65, 1376.
    [233] D Li, D Yang, D Que, Effects of nitrogen on dislocations in silicon during heat treatment. Physica B, (1999), 274, 553-556.
    [234] T. Taishi, X. M. Huang, I. Yonenaga, K. Hoshikawa, Dislocation behavior in heavily germanium-doped silicon crystal. Materials Science in Semiconductor Processing, (2002), 5(4-5), 409-412.
    [235] I. Yonenaga, Growth and dislocation behavior in GeSi bulk alloys. Physica B, (1999), 274, 612-615.
    [236] D. Misra, P. K. Swain, Strain relaxation in SiGe due to process induced defects and their subsequent annealing behavior. Microelectronics and Reliability, (1998), 38(10), 1611-1619.
    [237] D. W. Greve, Si-Ge-C growth and devices. Materials Science and Engineering B-Solid State Materials for Advanced Technology, (2001), 87(3), 271-276.
    [238] M. Akatsuka, K. Sueoka, H. Katahama, N. Morimoto, N. Adachi, Pinning effect on punched-out dislocations in silicon wafers investigated using indentation method Japanese Journal of Applied Physics, (1997), 36(11 A), L1422-L1425.
    [239] Kyoko Minowa, Koji Sumino, Stress-induced amorphization of silicon crystal by mechanical scratching. Physical Review Letters, (1992), 69(2), 320.
    [240] M. Akatsuka, K. Sueoka, H. Katahama, Y. Koie, S. Sadamitsu, Effect of Oxide Precipitate Size on Slip Generation in Large Diameter Epitaxial Wafers. Jpn. J. Appl. Phys, (1998), 37, 4663-4666.
    [241] K. Sueoka, M. Akatsuka, H. Katahama, N. Adachi, Dependence of Mechanical Strength of Czochraiski Silicon Wafers on the Temperature of Oxygen Precipitation Annealing. Journal of The Electrochemical Society, (2005), 144, 1111.
    [242] K.Sumino, I. Yonenaga, Oxygen Effect on Mechanical Properties, in Oxygen in Silicon, F. Shimura, Editor. (1994), Academic Press: New York. p. 449.
    [243] B. G. Ko, K. Dal Kwack, Growth/dissolution model for oxygen precipitation based on the kinetics of phase transformations. Journal of Applied Physics, (1999), 85, 2100.
    [244] T. Y. Tan, W. K. Tice, Oxygen precipitation and the generation of dislocations in silicon. Philosophical Magazine, (1976), 34(4), 615-631.
    [245] Y. Kamiura, Y. Takeuchi, Y. Yamashita, Annihilation of thermal double donors in silicon. Journal of Applied Physics, (2000), 87(4), 1681-1689.
    
    [246] F. Durand, Electromagnetic continuous pulling process compared to current casting processes with respect to solidification characteristics. Sollar Energy Materials Sollar Cells, (2002), 72(1), 125-132.
    [247] F. Shimura, R. S. Hockett, Nitrogen effect on oxygen precipitation in Czochralski silicon. Applied Physics Letters, (1986), 48, 224.
    [248] Q. Sun, K. H. Yao, H. C. Gatos, J. Lagowski, Effects of nitrogen on oxygen precipitation in silicon. Journal of Applied Physics, (1992), 71, 3760.
    
    [249] A. Karoui, F. S. Karoui, A. Kvit, G. A. Rozgonyi, D. Yang, Role of nitrogen related complexes in the formation of defects in silicon. Applied Physics Letters, (2002), 80(12), 2114- 2116.
    [250] C Cui, D Yang, X Yu, X Ma, L Li, D Que, Effect of nitrogen on denuded zone in Czochralski silicon wafer. Semiconductor Science and Technology, (2004), 19(3), 548-551.
    [251] C. Frigeri, G. Borionetti, P. Godio, E. Gombia, Internal gettering efficiency in p/p(+) and p/p(-) silicon epistructures. Gettering and Defect Engineering in Semiconductor Technology, (2004), 95-96, 593-598.
    [252] D Yang, M. Klevermann, L. I. Murin, Shallow thermal donors in silicon doped with isotopic oxygen. Physica B, (2001), 302, 193-196.
    [253] G. Fraundorf, P. Fraundorf, R. A. Craven, R. A. Frederick, J. W. Moody, R. W. Shaw, The Effects of Thermal History during Growth on O Precipitation in Czochralski Silicon. Journal of The Electrochemical Society, (1985), 132, 1701.
    [254] G. S. Oehrlein, J. L. Lindstr?m, J. W. Corbett, Carbon-oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon. Applied Physics Letters, (1982), 40,241.
    [255] G. Kissinger, J. Vanhellemont, U. Lambert, D. Grof, E. Dornberger, H. Richter, Influence of Residual Point Defect Supersaturation on the Formation of Grown - In Oxide Precipitate Nuclei in CZ - Si. Journal of The Electrochemical Society, (2005), 145, L75.
    [256] F. M. Livingston, S. Messoloras, R. C. Newman, B. C. Pike, R. J. Stewart, M. J. Binns, W. P. Brown, J. G. Wilkes, An infrared and neutron scattering analysis of the precipitation of oxygen in dislocation-free silicon. Journal of Physics C: Solid State Physics, (1984), 17(34), 6253-6276.
    [257] J. P. Joly, V. Robert, silicon wafers: a detailed analysis. Semicond. Sci. Technol, (1994), 9, 105-111.
    [258] M. Itsumi, H. Akiya, M. Tomita, T. Ueki, M. Yamawaki, Impurity dependence of oxide defects in Czochralski silicon. Journal of Applied Physics, (1996), 80, 6661.
    [259] T. Y. Tan, W. J. Taylor, Mechanisms of oxygen preicipitation: some quantitative aspects, in Semiconductors and Semimetals F. Shimura, Editor. (1994), Academic Press: New York. p. 353.
    [260] S. M. Hu, Effects of ambients on oxygen precipitation in silicon. Applied Physics Letters, (1980), 36, 561.
    [261] H. Kageshima, A. Taguchi, K. Wada, Formation of stable N-V-O complexes in Si. Physica. B, Condensed matter, (2003), 340, 626-629.
    [262] T. Ono, E. Asayama, B. Horie, M. Hourai, M. Sano, H. Tsuya, K. Nakai, Behavior of defects in heavily boron doped Czochralski silicon. Jpn. J. Appl. Phys, (1997), 36, 249.
    [263] A. Brelot, J. Charlemagne, Infrared studies of low temperature electron irradiated silicon containing germanium, oxygen and carbon, Radiation Effects and Defects in Solids, (1971), 9(1), 65-73.
    [264] A. Bourret, J. Thibault-Desseaux, D. N. Seidman, Early stages of oxygen segregation and precipitation in silicon. Journal of Applied Physics, (1984), 55, 825.
    [265] V. V. Voronkov, R. Falster, Strain-induced transformation of amorphous spherical precipitates into platelets: Application to oxide particles in silicon. Journal of Applied Physics, (2001), 89(11), 5965-5971.
    [266] S. Huth, Localization of gate oxide integrity defects in silicon metal-oxide-semiconductor structures with lock-in IR thermography. Journal of Applied Physics, (2000), 88(7), 4000.
    [267] J. G. Park, G. S. Lee, K. D. Kwack, J. M. Park, Crystal Originated Particle Induced Isolation Failure in Czochralski Silicon Wafers. Japanese Journal of Applied Physics, (2000), 39(1), 197.
    [268] S. Huth, O. Breitenstein, A. Huber, D. Dantz, U. Lambert, Localization and detailed investigation of gate oxide integrity defects in silicon MOS structures. Microelectronic Engineering, (2001), 59(1-4), 109-113.
    [269] M. B. Shabani, T. Yoshimi, H. Abe, Low - Temperature Out - Diffusion of Cu from Silicon Wafers. Journal of The Electrochemical Society, (2005), 143, 2025.
    [270] M. L. Polignano, G F. Cerofolini, H. Bender, C. Claeys, Gettering mechanisms in silicon. Journal of Applied Physics, (1988), 64, 869.
    [271] M. J. Binns, A. Banerjee, R. Wise, D. J. Myers, T. A. McKenna, The Realization of Uniform and Reliable Intrinsic Gettering in 200mm P-and P/P-Wafers for a Low Thermal Budget 0.18μm Advanced CMOS Logic Process. Diffusion and Defect Data Pt. B: Solid State Phe- nomena, (2001), 82-84, 387-392.
    [272] M. Aoki, T. Itakura, N. Sasaki, Gettering of iron impurities in p/p epitaxial silicon wafers with heavily boron-doped substrates. Applied Physics Letters, (1995), 66,2709.
    [273] J. L. Benton, P. A. Stolk, D. J. Eaglesham, D. C. Jacobson, J. Y. Cheng, J. M. Poate, N. T. Ha, T. E. Haynes, S. M. Myers, Iron gettering mechanisms in silicon. Journal of Applied Physics, (1996), 80, 3275.
    [274] X Ma, L Fu, D Tian, D Yang, Rapid-thermal-processing-based intrinsic gettering for nitrogen-doped Czochralski silicon. Journal of Applied Physics, (2005), 98(8), 084502.
    [275] C. A. Londos, M. J. Binns, A. R. Brown, S. A. McQuaid, R. C. Newman, Effect of oxygen concentration on the kinetics of thermal donor formation in silicon at temperatures between 350 and 500℃. Applied Physics Letters, (1993), 62, 1525.
    [276] I. Fusegawa, H. Yamagishi, Evaluation of interstitial oxygen along striations in cz, silicon single crystals with a micro-mR mapping system. Semicond. Sci. Technol, (1992), 7, A304-A310.
    [277] I. G. Kim, J. S. Kwon, Reduction of grown-in defects by vacancy-assisted oxygen precipitation in high density dynamic random access memory. Applied Physics Letters, (2003), 83 (23), 4863-4865.
    [278] W. Bergholz, D. Gilles, Impact of research on defects in silicon on the microelectronic industry. Physica Status Solidi B-Basic Research, (2000), 222(1), 5-23.
    [279] H.J. Ruitz, G.P.Pollack, The application of spreading resistance profile on measurement of thermal donor for silicon Journal of The Electrochemical Society, (1978), 125, 128.
    [280] R. C. Newman, J. H. Tucker, A. R. Brown, S. A. McQuaid, Hydrogen diffusion and the catalysis of enhanced oxygen diffusion in silicon at temperatures below 500℃. Journal of Applied Physics, (1991), 70, 3061.
    [281] A. Hara, T. Fukuda, T. Miyabo, I. Hirai, Oxygen-nitrogen complexes in silicon formed by annealing in nitrogea Applied Physics Letters, (1989), 54, 626.
    [282] J Chen, D. Yang, H Li, X Ma, D Que, Enhancement effect of germanium on oxygen precipitation in Czochralski silicon. Journal of Applied Physics, (2006), 99(7), 073509.
    [283] R. C. Newman, Light impurities and their interactions in silicoa Materials Science & Engineering B, (1996), 36(1-3), 1-12.
    [284] W. Cho, H. Kuwano, Effects of Denudation Anneal of Silicon Wafer on the Characteristics of Ultra Large-Scale Integration Devices. Jpn. J. Appl. Phys., Part, (2000), 1(39), 3277.
    [285] M. Akatsuka, M. Okui, N. Morimoto, K. Sueoka, Effect of rapid thermal annealing on oxygen precipitation behavior in silicon wafers. Japanese Journal of Applied Physics, (2001), 40(5A), 3055-3062.
    [286] S. A. McHugo, E. R. Weber, M. Mizuno, F. G. Kirscht, A study of gettering efficiency and stability in Czochralski silicon. Applied Physics Letters, (1995), 66, 2840.
    [287] G. A. Rozgonyi, A. Karoui, A. Kvit, G. Duscher, Nano-scale analysis of precipitates in nitrogen-doped Czochralski silicon. Microelectronic Engineering, (2003), 66(1-4), 305-313.
    [288] G. Kissinger, D. Grof, U. Lambert, T. Grabolla, H. Richter, Key influence of the thermal history on process-induced defects in Czochralski silicon wafers. Semicond. Sci. Technol, (1997), 12(7),933-937.
    [289] V. V. Voronkov, R. Falster, Intrinsic Point Defects and Impurities in Silicon Crystal Growth. Journal of The Electrochemical Society, (2002), 149, G167.
    [290] X Yu, T. Taishi, X Huang, D Yang, K Hoshikawa, Dislocation formation in Czochralski Si crystal growth using an annealed heavily B-doped Si seed. Japanese Journal of Applied Physics Part 2-Letters, (2003), 42(11A), L1299-L1301.
    [291] D Yang, J Chen, H Li, X Ma, D Tian, L Li, D Que, Micro-defects in Ge doped Czochralski grown Si crystals. Journal of Crystal Growth, (2006), 292(2), 266-271.
    [292] T. Kawasaki, H. Katayama-Yoshida, Valence control method of co-doping for the fabrication of metallic silicon from the first-principles calculations. Physica B, (2001), 302, 163-165.
    [293] N. Adachi, T. Hisatomi, M. Sano, H. Tsuya, Reduction of Grown-In Defects by High Temperature Annealing. Journal of The Electrochemical Society, (2000), 147, 350.
    [294] H. Yamagishi, I. Fusegawa, N. Fujimaki, M. Katayama, Recognition of D defects in silicon single crystals by preferential etching and effect on gate oxide integrity. Semicond Sci Technol, (1992), 7(1), A135-138.
    [295] V. V. Voronkov, R. Falster, Diffusion-limited growth of single-and double-octahedral voids in silicon and the effect of surface oxygen monolayer. Journal of Crystal Growth, (2001), 226(2), 192-202.
    [296] F. Foll, U. Gosele, B. O. Kolbesen, Formation of Swirl Defects in Si by Agglomeration of Self-lnterstitials. Journal of Crystal Growth, (1977), 40(1), 90-108.
    [297] E. Wolf, W. Schroder, H. Riemann, B. Lux, The influences of carbon, hydrogen and nitrogen on the floating zone growth of four inch silicon crystals. Materials Science & Engineering B, (1996), 36(1-3), 209-212.
    [298] A. N. Safonov, G. Davies, E. C. Lightowlers, Line shape of the no-phonon luminescence of excitons bound to phosphorus in carbon-doped silicon. Physical Review B, (1996), 54(7), 4409-4412.
    
    [299] P Liu, X Ma, J Zhang, L Li, D Que, Evidence for the effect of carbon on oxygen precipitation in Czochralski silicon crystal. Journal of Applied Physics, (2000), 87(8), 3669-3673.
    [300] Q. Sun, K. H. Yao, J. Lagowski, H. C. Gatos, Effect of carbon on oxygen precipitation in silicon. Journal of Applied Physics, (1990), 67,4313.
    [301] S. Kishino, M. Kanamori, N. Yoshihiro, M. Tajima, T. Iizuka, Heat-treatment behavior of microdefects and residual impurities in CZ silicon crystals. Journal of Applied Physics, (1979), 50, 8240.
    
    [302] N. R. Draney, J. Liu, T. Jiang, Experimental investigation of bare silicon wafer warp. Microelectronics and Electron Devices, 2004 IEEE Workshop on, (2004), 120-123.
    [303] C. Yin, C. C. Hsiao, T. Lin, Improvement in wafer temperature uniformity and flow pattern in a lamp heated rapid thermal processor. Journal of Crystal Growth, (2000), 217(1), 201 - 210.
    [304] J. R. Matlock, A formation of crystal defects in carbon-doped Czochralski-grown silicon after a three-step internal gettering processing, in Defects in Silicon, W. M. Bullis, L. C. Kimerling, Editors. (1983), ECS: NJ. p. 3.
    [305] U. Gosele, T. Y. Tan, Nature of point defects and the effect of oxidation on substitutional dopant diffusion in silicon in Aggregation Phenomena of Point Defects in Silicon, E. Sitrtl, J. Gooreseen, Editors. (1983), ECS: NJ. p. 17.
    [306] R. C. Newman, J. B. Willis, vibrational absorption of C in Si. J Phys Chen Solids, (1965), 26, 273.
    [307] H. J. Hrostowski, R. H. Kaiser, Infrared Absorption of Oxygen in Silicon. Physical Review, (1957), 107(4), 966-972.
    [308] M. R. Brozel, R. C. Newman, D. H. J. Totterdell, Interstitial defects involving carbon in irradiated silicon. Journal of Physics C: Solid State Physics, (1975), 8,243-248.
    [309] F. Shimura, Y. Ohnishi, H. Tsuya, Heterogeneous distribution of interstitial oxygen in annealed Czochralski-grown silicon crystals. Applied Physics Letters, (1981), 38, 867.
    [310] F. Shimura, H. Tsuya, Multistep Repeated Annealing for CZ - Silicon Wafers: Oxygen and Induced Defect Behavior. Journal of The Electrochemical Society, (1982), 129,2089.
    [311] L. I. Khirunenko, Y. V. Pomozov, M. G. Sosnin, V. K. Shinkarenko, Oxygen in silicon doped with isovalent impurities. Physica B: Physics of Condensed Matter, (1999), 273, 317-321.
    [312] S. Gupta, S. Messoloras, J. R. Schneider, R. J. Stewart, W. Zulehner, Oxygen precipitation in carbon-doped silicon. Semiconductor Science and Technology, (1992), 7(1), 6-11.
    [313] J. A. Baker, T. N. Tucker, N. E. Moyer, R. C. Buschert, Effect of Carbon on the Lattice Parameter of Silicon. Journal of Applied Physics, (2003), 39, 4365.
    [314] A. Karoui, Role of nitrogen related complexes in the formation of defects in silicon. Applied Physics Letters, (2002), 80(12), 2114.
    [315] C Li, X Ma, J Xu, X Yu, D Yang, D Que, Effect of rapid thermal process on oxygen precipitation in heavily boron-doped Czochralski silicon wafer. Japanese Journal of Applied Physics, (2003), 42(12), 7290-7291.
    [316] S. A. McQuaid, M. J. Binns, C. A. Londos, J. H. Tucker, A. R. Brown, R. C. Newman, Oxygen loss during thermal donor formation in Czochralski silicon: New insights into oxygen diffusion mechanisms. Journal of Applied Physics, (1995), 77, 1427.
    [317] K. Kugimiga, S. Akiyama, S. Nakamura, Diffusion of oxygen in silicon, in Semiconductor Silicon, H. R. Huff, R. J. Kriegler, Y. Takeishi, Editors. (1981), ECS: NJ p. 294.
    [318] J. Andrews, Oxygen out-diffusion model for denuded zone formation in czochralski-grown silicon with high interstitial oxygen content Proceeding Of The Symposium On Defects In Silicon, (1993), 83, 9.
    [319] J. Andrews, Oxygen Out-diffusion model for denuded zone formation in czochralski-grown silicon, in Defects in Silicon, W. M. Bullis, L. C. Kimerling, Editors. (1993), ECS: N.J., p. 133.
    [320] Y Zhao, D Li, X Ma, D Yang, The effect of the ramping rate on oxygen precipitation and the denuded zone in heavily doped Czochralski silicon. Journal of Physics-Condensed Matter, (2004), 16(9), 1539-1545.
    [321] K. Wada, H. Nakanishi, H. Takaoka, N. Inoue, Nucleation temperature of large oxide precipitates in as-grown Czochralski silicon crystal. Journal of Crystal Growth, (1982), 57(3), 535-540.
    [322] S. M. Hu, Infrared absorption spectra of SiO precipitates of various shapes in silicon: calculated and experimental. Journal of Applied Physics, (1980), 51, 5945.
    [323] W. Bergholz, M. J. Binns, G R. Booker, J. C. Hutchison, S. H. Kinder, S. Messoloras, R. C. Newman, R. J. Stewart, J. G Wilkes, A study of oxygen precipitation in silicon using high-resolution transmission electron microscopy, small-angle neutron scattering and infrared absorption. Philosophical Magazine Part B, (1989), 59(5), 499-522.
    [324] M. Ogino, Suppression effect upon oxygen precipitation in silicon by carbon for a two-step thermal anneal. Applied Physics Letters, (1982), 41, 847.
    [325] L Zhong, X Ma, D Tian, D Yang, Enhancement of oxygen precipitation in Czochralski sili- con wafers by high-temperature anneals. Physica B, (2006), 376, 169-172.
    [326] E. Dornberger, W. von Ammon, J. Virbulis, B. Hanna, T. Sinno, Modeling of transient point defect dynamics in Czochralski silicon crystals. Journal of Crystal Growth, (2001), 230(1), 291-299.
    [327] M. Akatsuka, M. Okui, K. Sueoka, Effect of rapid thermal annealing on oxide precipitation behavior in silicon crystal. Nuclear Instruments & Methods in Physics Research Section B, (2002), 186,46-54.
    [328] N. Fujita, R. Jones, J. P. Goss, P. R. Briddon, T. Frauenheim, S. Oberg, Diffusion of nitrogen in silicon. Applied Physics Letters, (2005), 87(2), 021902.
    [329] M. Sanati, S. K. Estreicher, Temperature and sample dependence of the binding free energies of complexes in crystals: The case of acceptor-oxygen complexes in Si. Physical Review B, (2005), 72(16), 165206.
    [330] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of Modern Physics, (1992), 64(4), 1045-1097.
    [331] G. U. von Oertzen, W. M. Skinner, H. W. Nesbitt, Ab initio and XPS studies of pyrite (100) surface states. Radiation Physics and Chemistry, (2006), 75(11), 1855-1860.
    [332] V. V. Voronkov, R. Falster, Nucleation of oxide precipitates in vacancy-containing silicon. Journal of Applied Physics, (2002), 91(9), 5802-5810.
    [333] B. G. Svensson, Energy levels, structure and properties of point defects induced by ion implantation and electron irradiation of c-Si, in Properties of Crystalline Silicon, R. Hull, Editor. (1999), Inspec: London. p. 763.
    [334] T. A. Frewen, T. Sinno, Vacancy self-trapping during rapid thermal annealing of silicon wafers. Applied Physics Letters, (2006), 89, 191903.
    [335] G. Watkins, A State-of-the-Art Approach, in Deep Centers in Semicondutors, S. T. Pantelides, Editor. (1986), Gordon and Breach: New York. p. 147.
    [336] C. V. Budtz-Jorgensen, P. Kringhoj, A. N. Larsen, N. V. Abrosimov, Deep-level transient spectroscopy of the Ge-vacancy pair in Ge-doped n-type silicon. Physical Review B, (1998), 58(3), 1110-1113.
    [337] K. Irmscher, H. Klose, K. Maass, Hydrogen-related deep levels in proton-bombarded silicon. Journal of Physics C Solid State Physics, (1985), 18(23), 4591-4591.
    [338] L. Palmetshofer, J. Reisinger, Defect levels in H-, D-, and He-bombarded silicon. Journal of Applied Physics, (1992), 72, 2167.
    [339] P. M. Fahey, P. B. Griffin, J. D. Plummer, Point defects and dopant diffusion in silicon. Reviews of Modern Physics, (1989), 61(2), 289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700