用户名: 密码: 验证码:
从硼泥制取阻燃级氢氧化镁的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硼泥是生产硼砂产生的废弃物。其中主要含有氧化镁和二氧化硅,含有一定量的氧化铁、氧化铝,并含有少量的氧化硼、氧化钙、氧化锰等其他物质。每生产1吨硼砂要排放出4吨左右的硼泥。硼泥不仅占用土地,由于硼泥显碱性,对周围的耕地造成严重污染,影响硼加工企业的总体效益。随着我国硼工业的不断发展,对硼砂、硼酸的需求量逐年增大,硼泥的排放量也将逐年增加,造成了大量硼泥的堆积。仅对其中镁元素而言,硼泥的排放就是对宝贵镁资源的浪费。寻找适当的方法对硼泥中的镁加以综合回收利用,从而增加硼加工企业的总体效益,减少对环境的污染,目前已成为硼行业生产亟待解决的难题之一。
     氢氧化镁作为镁的一种重要无机盐化合物,用途十分广泛。尤其作为无机阻燃剂,它具有分解温度高、抑烟能力强、阻燃效果好、分解后不产生有毒有腐蚀性的物质等优点,近年来受到广泛的青睐,和众多科研人员的关注。本文以辽宁省大石桥市某硼砂厂产生的硼泥为原料,经酸浸提镁、除杂等过程得到镁盐溶液,以氨水作为沉淀剂,采用直接沉淀的方法合成阻燃级氢氧化镁。
     本文通过对比盐酸、硫酸、氯化铵饱和溶液的浸取效果而最终选择盐酸作为浸取剂;考察了镁浸取率的影响因素,从而确定了浸取过程的最优工艺。由于反应后的浸取液中剩有大量的盐酸,本文提出了一种浸取液循环使用工艺,即浸取液与盐酸组成协同浸取剂,多次参与循环。一次镁浸取率可达96.0%,平均浸镁率为90.68%。利用浸取液中各金属离子的水解pH值范围不同用氨水作沉淀剂进行除杂净化,得到精制的氯化镁溶液。并对除杂过程中产生的铁铝氢氧化物的回收作了初步探讨。
     以自制的氯化镁溶液为原料,氨水为沉淀剂,采用常温直接沉淀法合成了氢氧化镁。通过化学分析、X射线衍射(XRD)、透射电子显微镜(TEM)、热重分析、粒度分析、红外分析等多种分析手段,讨论了加料方式、反应温度、氨水浓度、氨水加入速度、反应终点pH值、陈化温度、陈化时间等因素水平对氢氧化镁的沉降性能、沉淀率等的影响,并初步探讨了分散剂对产品性能的影响。最终确定了最佳工艺条件。以4%的硬脂酸钠对氢氧化镁产品进行改性,改性后的产品粒度分布较为集中。产品纯度达到97.8%,完全可以满足阻燃需求。XRD分析也表明样品为纯净的氢氧化镁。热重分析表明样品的分解温度在350~450℃之间,450℃失水量为30.1%。TEM分析结果表明样品为针状,长径比为50左右。
Boron slurry is the waste of borax manufacture. The main components of boron slurryare magnesium oxide and silica dioxide. It also contains some iron oxide and alumina oxide,and a small quantity of boron trioxide, calcium oxide and manganese dioxide. Every one tonborax manufacturing brings on four ton boron slurry emission. Boron slurry is not only theoccupation of land, but also produces severity contaminated to environment due to it'salkaline. This makes a negative influence on benefits of the factories. With the evolution ofboron industry and the growing demand of borax and boracic acid in China, the output ofboron slurry has been increased. This makes a large waste of the valuable magnesiumresources. It becomes urgent to be solved that to find a adequate method to recycle thevaluable magnesium resources.
     Magnesium hydroxide has widespread using as a kind of important inorganic salts.Especially as a kind of inorganic flame retardants, magnesium hydroxide has the advantage ofhigher decomposition temperature, strong smoke inhibition, fine flame-retardant effect andreleasing nonpoisonous and non-corrosive matter. It is highly interested by customers andscientific researchers in recent years. In this article flame-retardant magnesium hydroxide hasbeen prepared from boron slurry by two steps. At first magnesium chloride solution is gottenafter extraction of magnesium under acid leaching and separation of impurities. And then withthe precipitant ammonia water, flame-retardant magnesium hydroxide is synthesized by directprecipitation method.
     Hydrochloride acid is selected as the leaching agent by comparing the leaching effect ofhydrochloride acid, sulfate acid and ammonia chloride saturated solution through a greatnumber of experiments. The influential factors of magnesium leaching rate is investigated,and the optimal technical process is determined. The first-time magnesium leaching ratereaches to 96.0%and the average magnesium leaching rate is 90.68%. Impurity ions in theleaching solution, such as Fe~(3+), Al~(3+) and Mn~(4+), can be hydrolyzing to precipitate by ammoniadue to their different pH range of hydrolyzing. The synthesis and recycle of the iron-aluminum hydroxide complex has also been discussed preliminarily.
     Flame-retardant magnesium hydroxide has been prepared from self-made magnesiumchloride solution and ammonia water by direct precipitation method. The influence factors to the settling performance and precipitation rate of magnesium hydroxide, such as feedingmode, reaction temperature, concentration and adding speed of ammonia water, pH value atreaction end, ageing temperature and time and so on, have been discussed by the way ofchemical analysis, X-ray diffraction (XRD), transmission electron microscope (TEM),thermogravimetry analysis, grain size analysis, infrared analysis (IR) and so on. Effect ofdispersant on property of the product is discussed primarily. The optimal technical process isfinally determined. The product is modified by sodium stearate with the concentration of 4%.The grain-size distribution is from 600~1200 nm to 750~850 nm. The purity is around97.8%, which is fit for the need of flame-retardant. XRD analysis indicates product's purity.TG analysis show that the decomposition temperature of product is between 350℃and 450℃, and water loss is 30.1%at 450℃. TEM analysis suggests that the product is needle-likewith the length diameter ratio around 50.
引文
[1] 郑学家.关于辽宁省硼化工的发展对策.辽宁化工.2001,30(2):50-52.
    [2] 胡耀第.论“十五”期间辽宁硼工业的发展.辽宁化工.2001,30(7):287-289.
    [3] 李治涛.利用硼泥生产轻质碳酸镁的工业化研究.辽宁化工.2001,30(7):307-309.
    [4] 范建萍.从硼泥中制取轻质氧化镁的工艺研究.陕西化工.1999,28(2):18-20.
    [5] 单松高,阎加强,陈文等.硼泥的性质及综合利用.山东建材.1998,(2):37-39.
    [6] 李刚,任学峰,刘素兰等.硼泥基烧结砖工艺实验研究.沈阳建筑大学学报(自然科学版).2006,22(5):764-767.
    [7] 孙彤.硼泥综合利用概况与展望.辽宁工学院学报.2004,24(4):45-48.
    [8] 吕晶,刘景泽,于淑伟.硼泥的综合利用.辽宁化工.2004,33(6):342-344.
    [9] 朱广发.辽宁硼资源利用的探讨与对策.辽宁化工.1998,27(3):123-125.
    [10] 陈德龙,周虹,周国文等.硼泥在混合砂浆中的应用.沈阳建筑工程学院学报.1996,12(3):325-329.
    [11] 王丕林.用硼砂厂废弃硼泥制造砖瓦.辽宁城乡环境科技.1997,17(1):73-74.
    [12] 李仲华.硼泥砖瓦及其制造方法.技术与市场.2002,(12):15.
    [13] 肖力光,盖秀兰,孟祥军.硼泥对页岩砖强度影响的研究.房材与应用.1999,(6):18-19.
    [14] Recep Boncukcuoglu, M Tolga Yilmaz, M Muhtar Kocakerim, et al.Utilization of trammel sieve waste as an additive in Portland cement production. Cement and Concrete Research. 2002, (32):35-39.
    [15] Recep Boncukcuoglu, M Tolga Yilmaz, M Muhtar Kocakerim, et al.Utilization of borogypsum as set retarder in Portland cement production. Cement and Concrete Research. 2002, (32):471-475.
    [16] 莫叔迟,李恩波,李文恕.用硼泥作熔剂冶炼锰硅合金的实践.铁合金.1994,(3):24-26.
    [17] 傅菊英,黄正天,李思导.硼泥资源化的重要途径.矿产综合利用.1994,(5):35-38.
    [18] 冯本和,田全生.配加硼泥提高烧结矿质量的研究.烧结球团.1994,(3):15-19.
    [19] 吴敦虎.硼泥复合混凝剂的制法及其用途.中国,发明专利,96120673 X.1996.
    [20] 吕福荣,刘艳.用硼泥复合混凝剂处理生活污水的研究.辽宁城乡环境科技.2001,21(1):25-26.
    [21] 冯秀娟,葛天源.无级混凝剂在印染废水处理中的研究进展.中国资源综合利用.2005,(10):6-9
    [22] Lu Furong, Liu Yan. Study on Tanning Wastewater Treatment with Boron Sludge Compound Coagulant. Environment and Exploitation. 2001, 16(1):18-19.
    [23] Wu Dunhu, Ji Wanxiang, Wang Ying. The Study of Treating Washing Wastewater of Oil Well Pipes with Boron Sludge Compound Coagulant. Environment Protection In Petrochemical Industry. 2001, (4): 18-21.
    [24] Wu Dunhu, Wang Shizhen, Wang Yan et al. The Study of Treating The Beer Wastewater with Boron Sludge Composite Coagulant. Technology of Water Treatment. 2000, 26(5):293-296.
    [25] 吴敦虎,刘祥举,刘恒明等.硼泥复合混凝剂处理锅炉用水.大连铁道学院学报.1998,19(2):19-21.
    [26] 吴敦虎,宁晓民,吕福荣.硼泥处理含氟废水的研究.环境工程.1995,13(6):3-6.
    [27] 吴敦虎,王韶华,吕福荣.硼泥吸附水中酚的研究.中国环境科学.1997,17(2):191-193.
    [28] Lu Furong. Removal of Cr(Ⅵ) in Electroplating Wastewater by Ferrisulphas-Boron Slugdge. Environment and Exploitation. 2000, 15(4):27-32.
    [29] 王岚,吕佳诚、周志洁等.用硼泥制备大尺寸氧化镁单品及其性能研究.硅酸盐通报.2002,(6):80-82.
    [30] 高佳令,张新范,常锡来等.一种从硼泥中提取轻质碳酸镁的方法.中国.发明专利.93115808.7.1993.
    [31] 刘见芬,蒋引珊,方送生.硼泥的综合回收利用试验研究.非金属矿.2001,24(3):27-29.
    [32] Recep Boncukcuoglu, M M Kocakerim, H Ersahan. Technical Note Upgrading of the Reactor Waste Obtained During Borax Production from Tincal. Minerals Engineering. 1999, 12(10): 1275-1280.
    [33] Recep Boncukcuoglu, M M Kocakerim, H Ersahan. Recovery of Boron of The Sieve Reject in The Production of Borax. Resources, Conservation and Recycling. 2003, 37:147-157.
    [34] Ayhan Demirbas, haydar Yuksek, Ismail Cakmak. Recovery of Boric Acid from Boronic Wastes by Leaching with Water, Carbon Dioxide-or Sulfur Dioxide-Satrated Water and Leaching Kinetics. Resources, Conservation and Recycling. 2000, 28: 135-146.
    [35] 罗玉萍,王立久.硼泥耐火材料的研究.耐火材料.1994,28(6):331-335.
    [36] 齐宏均,李新,孟宪国.硼泥生产橡塑填充剂及其利用.化学工程师.1995,(1):53-54.
    [37] 顾正亮,陈国荣.硼泥填充PVC性能研究.化学建材.1995,(2):53-54.
    [38] 孙新华.我国硼镁矿综合利用研究概况.矿产综合利用.1995,(2)39-42.
    [39] 罗玉萍,王少辉.硼泥的综合利用.中国陶瓷工业.1995,(2):40-41.
    [40] 胡庆福.镁化合物生产与应用.北京:化工工业出版社,2004.
    [41] Yi Ding, Guangtao Zhang, Hao Wu, et al. Nanoscale magnesium hydroxide and magnesium oxide powders: control over size, shape, and structure via hydrothermal synthesis. Chemistry of Materials. 2001, 13(2): 435-440.
    [42] Hua Gui, Xiaohong Zhang, Yiqun Liu, et al. Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites. Composites Science and Technology. 2007, 67: 974-980.
    [43] 李志强,吴庆流,向兰等.氨法-水热反应法制备阻燃级氢氧化镁的中试.海湖盐与化工.2004,33(6):12-15.
    [44] 闫修川,李召好,李法强等.氢氧化镁阻燃剂的研究现状.盐湖研究.2005,13(3):58-61.
    [45] 陈向锋,刘晓慧.氢氧化镁在烟气脱硫中的应用.海湖盐与化工.2006,35(3):34-36.
    [46] 马颖颖,农守志.氢氧化镁在水处理中应用研究新进展.皮革化工.2007,24(1):24-26.
    [47] 衣守志,钟素红,唐鹏.氢氧化镁浆料中和酸洗废液的研究.2007,22(1):5-7.
    [48] 壮亚峰,姚国胜,李杰励.氢氧化镁-淀粉复合絮凝剂对印染废水的脱色研究.化学与生物工程.2007,24(2):29-31.
    [49] 程国斌,吴艳平,马伟.镁化合物在工业废水处理中的研究应用现状.工业水处理.2006,26(7):7-9.
    [50] 翟德伟,陈爱民,倪哲明.纳米氢氧化镁合成及用于含铬废水处理的研究.科技通报.2007,23(1):141-145.
    [51] 刘文辉,刘增超,郑先俊.氢氧化镁处理酸性含铜废水的研究.能源环境保护.2006,20(4):33-35.
    [52] 郭如新.美国氧化镁、氢氧化镁生产应用与研发动向.苏盐科技.2002,12(4):3-6.
    [53] 郭如新.日本氢氧化镁生产现状及应用前景.海湖盐与化工.2000,30(5):24-26.
    [54] 孙海霞,陈建军.氢氧化镁阻燃剂发展状况及前景预测.海湖盐与化工.2005,34(4):29-33.
    [55] 国内外简讯.无机阻燃剂氢氧化镁发展潜力惊人.海湖盐与化工.2002,31(4):11.
    [56] 安田直树.氢氧化镁超细粉末制备方法及其燃性树脂组合物.中国,发明专利,CN:1356361A.2001.
    [57] 杜以波.均质流体法制备纳米氢氧化镁.中国,发明专利,CN:1332116A.2002.
    [58] 段雪,何静,赵芸等.一种纳米尺寸氢氧化镁的制备方法.中国,发明专利,CN:1361062A.2002.
    [59] 易求实.反相沉淀法制备纳米Mg(OH)_2阻燃剂的研究.化学试剂.2001,23(4):197-199.
    [60] Henrist C, Mathieu J P, Vogels C. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J Crystal Growth. 2003, 249 (1-2): 321-330.
    [61] 吴育飞,常淑风,杨国营.氢氧化镁粒径与微观状态的SEM分析.电子显微学报,2001,20(4):312-313.
    [62] 王志强,吕秉玲,刘建平等.沉淀法合成高纯超细氢氧化镁的研究.无机盐工业,2001.33(4):3-4.
    [63] Coperthwaite M, Brett N H. Effects of precipitation temperature on the powder property. J Chem. Tech Biotechnol, 1984, 34A: 407-415.
    [64] 刘兆平,杨永会,钟红梅等.氢氧化镁阻燃剂的应用进展.海湖盐科技资料.2002,(5):1-9.
    [65] 徐旺生,张翼.新型无机阻燃剂的研究进展.江苏化工.2002,30(4):20-22.
    [66] 朱亚先,曾人杰,刘新锦等.MgO纳米粉制备及表征.厦门大学学报(自然科学版),2001,40(6):1256-1259
    [67] Cook M, Harper J F. Influence of magnesium hydroxide morphology on the crystallinity and properties of filled polypropylene. Adv Polym Technol. 1998, 17 (1): 53-62.
    [68] 金永成,向兰,金涌.溶液组成对氢氢化镁水热改性的影响.海湖盐与化工,2002,31(1):1-4.
    [69] Ding Y, Guang T, Wu H et al. Nanoscale magnesium hydroxide and magnesium oxide powders. Chem Mater.2001, 13: 435-440.
    [70] Chen Jing-jun, Jiang Bo-quan, Wang-Wei. Status and Progress of arsenic removal. Jiangxi Chemical Industry. 2004, (2): 1-4.
    [71] 赵月朝,陈亚妍,林少彬等.饮水复合材料除砷滤芯的研制与效果评价.卫生研究.2004,33(4):413-415.
    [72] Halser W E, Preifer H R. Arsenic (V) adsorption onto α—Al2O3 between 25 and 70℃. Applied Geochemistry. 2001, 16(7-8):793-802.
    [73] 赵萌,宁平.含砷污泥的固化处理.昆明理工大学学报(理工版).2003,28(5):100-104.
    [74] 赵雅萍,王军锋,陈甫华.载铁(Ⅲ)—配位体交换棉纤维素吸附剂对饮用水中砷(Ⅴ)和氟联合去除的研究.高等学校化学学报.2003,24(4):643-647.
    [75] Fendorf S,Eick M J,Grossl P,et al. Arsenate and chromate Retention Mechanisms on Goethite 1. Surface Structure.Environ Sci Technol. 1997, 31 (2):315-318.
    [76] Raven K P, Jain A, Loeppert R H. Arsenite and Arsenate Adsorption on Ferrihydrite: Kinetics, Equilibrium, and Adsorption Envelopes. Environ Sci Technol.1998, 32(3):344-349.
    [77] Grossl P R. Arsenate and Chiromate Retention Mechanisms on Goethite.2. Kinetic Evaluation Using a Pressure—Jump Relaxation Technique. Environ Sci Technol. 1997, 31 (2):319-326.
    [78] 廖立兵,Donald G F.羟基铁溶液—蒙脱石复合体系对砷的吸附.中国科学(D辑 地球化学),2005,35(8):750-757.
    [79] 王雪莲,廖立兵,姜浩等.砷酸根及铬酸根在低聚合羟基铁—蒙脱石符合体表面的竞争吸附.北京科技大学学报.2003,25(6):495-500.
    [80] Lenoble V, Bouras O, Deluchat V, et al. Arsenic adsorption on to pillared clays and iron oxides. 2002, 255(1):52-58.
    [81] 梁美娜,刘海玲,朱义年等.复合铁铝氢氧化物的制备及其对水中砷(Ⅴ)的去除.环境科学学报.2006,26(3):438-446
    [82] 大连理工大学《分析化学实验》编写组.分析化学实验.大连:大连工大学出版社,1989.
    [83] 刘见芬,蒋引珊,方送生.硼泥的综合回收利用试验研究.非金属矿.2001,24(3):27-29.
    [84] 孙友助.硼泥的综合利用—提取轻质碳酸镁.河北化工.1990,(1):9-11.
    [85] 许荣辉,李海民.氢氧化镁沉淀热力学、动力学及控制.盐湖研究.2003,11(3):40-42.
    [86] 李召好,马培华,李法强.阻燃型氢氧化镁表面改性研究.海湖盐与化工.2005,34(3):14-16.
    [87] 张乃文,陈嘉宾,于志家.化工热力学.大连:大连理工大学出版社,2006.
    [88] 天津大学物理化学教研室.物理化学.北京:高等教育出版社,2001.
    [89] 邓新荣.盐湖水氯镁石制取超细阻燃型氢氧化镁的研究:(硕士学位论文).湖南长沙:中南大学,2004.
    [90] 李召好,马培华,李法强.阻燃型氢氧化镁表面改性研究.海湖盐与化工.2005,3(34):14-16.
    [91] 闫修川,张桂芹,马培华等.氢氧化镁粉体的表面改性研究.无机盐工业.2006,8(36):17-19.
    [92] 杜高翔,郑水林,姜骑山等.超细氢氧化镁粉的表面改性.化工矿物与加工.2005,9:7-9.
    [93] Hui XU, Xinrong DENG. Preparation and properties of superfine Mg(OH)_2 flame retardant. 2006, 2(16):488-492.
    [94] J.C. Yu, A. Xu, L. Zhang, et al. Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates[J]. J. Phys. Chem. B. 2004, 108: 64-70.
    [95] Jyh-Ping Hsu, Anca Nacu. Preparation of submicron-sized Mg(OH)_2 particles through precipitation. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2005, 262:220-231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700