用户名: 密码: 验证码:
不同氮磷比条件对外来种火炬树与本地种麻栎、荆条的种间关系的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮(N)和磷(P)是植物生长必需的矿质元素,这两种元素之间的相对关系可以反映土壤中的营养条件,在个体发育、碳同化、新陈代谢和繁育过程中有重要的作用,对植物种间关系和群落结构有重要的影响。自工业革命以来,人类活动对自然生态系统中的营养条件产生了强烈的影响。由于人为氮、磷输入的比例失衡及氮、磷元素在理化性质上的差异,很多生态系统中的氮磷比发生了改变。随着氮磷比营养条件的改变,植物群落中优势种,植物间的种间关系也会随之改变。同时,外来种广泛使用给本地生态系统的影响也受到越来越多的关注,成为当今生态学研究中的热点。营养条件是外来植物定植新栖息地过程中的决定性因素之一,许多外来植物在营养获取、营养利用及营养保持等方面都具有优势,对营养波动具有更好的适应能力,在与本地植物的竞争中处于优势地位。因此,研究不同氮磷比条件下外来植物与本地植物的种间关系可以加深对外来植物生态影响的认识,并为分析气候变化背景下潜在的入侵植物提供依据。
     为了研究氮磷比营养条件改变对外来植物与本地植物种间关系的影响,我们选取了华北地区植被恢复中常用的外来植物火炬树(Rhus typhina)、本地植物麻栎(Quercus acutissima)和荆条(Vitex negundo var. heterophylla)作为研究物种,通过温室控制实验的方法对该问题进行研究。实验中,根据野外森林土壤的调查数据,由低到高设置了三个氮磷比处理:5,15和45。每种氮磷比处理下以火炬树与麻栎或荆条混种的方式模拟种间竞争,并设置单种的处理作为对照。实验过程中,从植物功能性状入手对植物的生长、生理、生物量积累及分配、叶片化学计量学、种间关系等内容进行了测量和观察,比较了火炬树与麻栎、荆条的差异,并分析了火炬树对这两种本地植物的影响。
     模拟实验结果表明:氮磷比营养条件的改变对火炬树、麻栎和荆条都产生了显著的影响。三种植物的生物量在氮磷比5或15时最大;而氮磷比45时,三种植物的生物量积累都受到了明显的抑制,主要原因是高氮磷比时,氮磷元素失衡,磷元素成为限制因素,影响了植物的碳同化能力。生物量分配方面,低氮磷比时,三种植物均显著增加了根生物量比,提高对氮元素的获取能力;在高氮磷比时,均没有明显的生物量调整。火炬树生长快,冠幅大,叶生物量比重高,具有较高的净光合速率、低比叶重和高的氮磷元素利用效率,可以积累高生物量并具有较大的根生物量,在氮磷营养和光照的获取方面有很大的优势,对营养条件的改变适应能力很强。本地植物麻栎和荆条均将更多的生物量分配到根,根冠比大,叶生物量比重小,在光合组织中的投入较少,生物量积累能力低,在营养元素和光照获取上均逊于火炬树。
     混种时,火炬树均具有远高于本地种的相对优势度系数,在种间关系中始终处于绝对的优势地位,并且这种竞争优势没有受到氮磷比条件改变的负面影响。与麻栎相比,火炬树具有更高的净光合速率、更小的比叶重、更高的光合氮利用效率和光合磷利用效率,将较多的氮磷营养分配到与光合作用有关的组织中,具有更强的碳同化能力。虽然荆条在净光合速率、比叶重等性状上与火炬树类似,但由于火炬树生长快,冠幅大,对其产生了遮阴作用,抑制了其光合作用。虽然火炬树并没有对荆条的生理状态造成显著的胁迫作用,但其生物量积累受到严重影响。混种时,由于火炬树的竞争压力,本地种麻栎和荆条均调整了生物量分配,将更多的生物量投入到根,以获取更多的氮磷营养。而火炬树则保持了与单种时基本一致的生物量分配格局,更多的生物量分配到地上部分。这种生物量分配策略上的不同,导致火炬树在地上部分对光照的竞争中占据绝对优势,结合其强的碳同化能力,保证其可以积累明显高于麻栎和荆条的总生物量。虽然火炬树的根生物量比重较麻栎和荆条小,但是其具有很高的生物量,使其在竞争中仍具有较高的根生物量,结合其在根表面积等性状上的优势,保证了其对氮磷营养元素的强竞争能力。在高氮磷处理中,火炬树显著增加了叶生物量比,在磷限制的情景下维持较高的地上部分碳同化能力,进而促进其地下对营养元素的获取,对该条件具有更好的适应性。而本地植物麻栎和荆条的生物量分配格局并没有进行调整,这种适应策略上的内稳性,反映出植物对不利环境较强的耐受性,有利于植物更好的适应营养胁迫的不良条件。但这种策略在营养条件波动时则比较保守,相比于外来植物火炬树,在环境变化下不利于其在竞争中取得优势。
     总之,与华北地区典型物种麻栎和荆条相比,外来植物火炬树在生长特性、叶片性状、根属性等植物功能性状上具有明显的优势,而且其对不同的氮磷比营养条件表现出了更为积极的生物量和氮磷营养分配策略,保证其具有很高的生物量生产能力。得益于其更强的营养元素吸收能力,在与光合作用相关的组织中更多的生物量和氮磷营养投入,火炬树在竞争中积累了远高于麻栎和荆条的生物量。这种在生物量和叶片营养分配中的权衡,是导致这几种植物在竞争中差异化表现的主要原因,并有助于火炬树在不同的氮磷比营养条件中始终保持绝对竞争优势。另外,在低氮磷比或高氮磷比条件下,即氮限制或磷限制时,火炬树可以产生较麻栎更多的生物量,并能够在人为活动造成的氮磷输入时适应的更快更好。此外,虽然在我们的研究中麻栎幼苗在竞争中生物量没有明显下降,但荆条幼苗因为火炬树的遮阴作用生物量显著下降,因此火炬树对本地植物的影响需要高度关注。在未来的植被恢复过程中,外来植物的引入和管理应重视对外来植物植物功能属性和当地土壤条件的综合分析,并结合当前主要的气候变化因素,分析其可能存在的入侵潜力,以减少外来植物引入所造成的不必要的经济损失和生态风险。
Nitrogen (N) and phosphorus (P) are essential mineral nutrient elements in plant and the N:P ratios, as an important indication of soil nutritional conditions, plays vital roles in individual life history, carbon accumulation, metabolism and reproduction, and has important influences on interspecific relationship and community structure. Human activities have exerted a great impact on the original trophic conditions of ecosystems since the beginning of the Industrial Revolution. Due to disproportionately anthropogenic inputs of N and P in fertilization and the differences between element characteristics, the relative importance of nutrient elements (N:P ratios) has been changed in many ecosystems. As a result of those changes, patterns of plant competition would alter and dominated species in plant community may be changed. Biological invasion is also an important aespect of global change and a strong threat to native community biodiversity and ecosystem functioning. As a hot spot in ecology research, plant invasion is attracting more and more attention. Resource is a main environmental factor that determines invasion success of invasive species. Invasive plants with traits related to resource acquisition, resource conservation, or high resource-use efficiency could outperform the other native species, profiting from capability of responding quickly to nutrient fluctuation. Therefore, studying the effects of different N:P ratios on the interaction between exotic and native species will favor the understanding of occurrence of plant invasions and prediction of future invaders under the global change background.
     We conducted a greenhouse experiment to study the effects of different N:P ratios on the performance of alien R. typhina and native Q. acutissima, Vitex negundo var. heterophylla, and the interaction between them. All species are widely used in vegetation restoration in Northern China. The seedlings of Q. acutissima, V. negundo and R. typhina were grown in monoculture or mixture, with three different N:P ratios, to simulate different interspecific relationship. In this study, plant functional traits related to plant growth, physiology, leaf stoichiometry, biomass allocation, and nutrient absorption were determined, to evaluate impacts of R. typhina on native species.
     Results indicated that N:P supply ratio had significant effects on all species. The biomass of these species was highest under the N-limited condition (N:P=5) or the basic N and P supply condition (N:P=15). As a result of high N:P ratios, there was an unbalance between N and P, showing a P-limited condition, which inhibited the biomass production, they has lowest biomass under the high N:P ratio (N:P=45). Under N-limitation, plants had the highest RMR for obtaining nitrogen, while no significant adjustment of biomass allocation under high N:P ratio condition. With high performance, such as high plant growth, high crown area, high leaf mass ratio, high net photosynthesitic rate, low leaf mass per area, high net photosynthetic rate, R. typhina could product high biomass and root biomass, which help it in competition for nutrients and light, giving it strong capability of responding quickly to nutrient fluctuation. Compared with R. typhina, native species Q. acutissima and V. negundo invested more biomass in root and less biomass and nutrients in photosynthesis apparatus, with high root:shoot ratio and low leaf mass ratio, causing their lower competiveness for nutrients and light.
     In mixture, R. typhina was the superior competitor and had higher relative dominance index than native species Q. acutissima and V. negundo. RDI of R. typhina was not affected disadvantageously by N:P ratios and its dominance did not change. Compared with Q. acutissima, R. typhina has higher net photosynthetic rate, lower LMA and higher photosynthetic nitrogen-use efficiency and photosynthetic phosphorus-use efficiency, indicating its higher investment of nutrients in photosynthesis apparatus, to maintain higher biomass productivity. Similar to R. typhina, V. negundo had high net photosynthesitic rate and low LMA. However, photosynthesis of it was inhibited by shade effect, casuing by R. typhina with higher growth rate, height and crown area. In our study, there was no significant stress on physiology of V. negundo casued by R. typhina, but its biomass accumulation was significantly inhibited. In mixtures, under competitive pressure from R. typhina, Q. acutissima and V. negundo partitioned more biomass to roots and less to leaves than those in monocultures, to acquire more nutrients. Whereas, no significant difference in biomass allocation was observed for R. typhina, maintaining high shoot biomass ratio. This difference in biomass allocation strategies lead to an absolute advantage in light competition for R. typhina. And with high carbon accumulation capability, it can product much higher biomass than native Q. acutissima and V. negundo. Root mass raio of R. typhina was lower than native species, but owing to a high carbon assimilation capacity, R. typhina was able to maintain much higher root biomass in all treatments. Besides, with high performance root characteristics, high root surface area, R. typhina also has an absolute advantage in nutrients competition. Under high N:P ratio condition, Q. acutissima and V. negundo maintained similar biomass alloction to those under the medium N and P supply condition, whereas R. typhina significantly increased LMR and decreased RMR. This adjustment maintained its high biomass production and root mass, to keep its advantage in nutrients absorption, showing more adaptive to increasing N:P ratios. Biomass allocation of Q. acutissima and V. negundo indicated that they have greater tolerance to stressful environments. However, this strategy may be conservative for environmental changes that lead to fluctuating resource availability and cause the disadvantage in competition.
     Generally, compared to the native species Q. acutissima and V. negundo, the exotic species R. typhina, with higher growth performance in leaf and root traits, adopts more positive strategies for biomass and nutrient allocation to better acclimate to different nutrient conditions and maintain high biomass productivity. Given its higher nutrient absorption capacity and higher investment of biomass and nutrients in photosynthetic tissues, R. typhina shows greater biomass production under competition with Q. acutissima and V. negundo. The different trade-offs in biomass and nutrient allocation of the two species is the main reason for their distinct performances under competition and helps R. typhina to maintain absolute dominance under different N:P supply ratios. Furthermore, in low N:P ratio or high N:P ratio sites, exotic R. typhina might have higher biomass production and benefit more strongly from increasing anthropogenic nitrogen and phosphorus input. In our study, there was no significant difference between biomass of Q. acutissima in monocultures and mixtures, but a seriously reduce for V. negundo, caused by shade effect. Thus, the potential invasiveness of R. typhina and its effects on native plants needs further study in a long time scale. In future plant introduction and management programs, plant traits and local nutrient conditions should receive greater attention under the main factors of climate change, to evaluate their invisibility and avoid economic and ecological risk.
引文
Abhilasha D, Joshi J (2009) Enhanced fitness due to higher fecundity, increased defence against a specialist and tolerance towards a generalist herbivore in an invasive annual plant. Journal of Plant Ecology 2:77-86.
    Aerts R, Boot R, Van der Aart P (1991) The relation between above-and belowground biomass allocation patterns and competitive ability. Oecologia 87:551-559.
    Aikio S, Duncan RP, Hulme PE (2012) The vulnerability of habitats to plant invasion: disentangling the roles of propagule pressure, time and sampling effort. Global Ecology and Biogeography 21:778-786.
    Ammer C (2003) Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation. Annals of Forest Science 60:163-172.
    Baker H (1986) Patterns of plant invasion in North America. Ecology of biological invasions of North America and Hawaii. Springer.
    Bartelheimer M, Steinlein T, Beyschlag W (2006) Aggregative root placement:A feature during interspecific competition in inland sand-dune habitats. Plant andSoil 280:101-114.
    Baruch Z, Goldstein G (1999) Leaf construction cost, nutrient concentration, and net CO2 assimilation of native and invasive species in Hawaii. Oecologia 121:183-192.
    Bloor JM, Leadley PW, Barthes L (2008) Responses of Fraxinus excelsior seedlings to grass-induced above-and below-ground competition. Plant Ecology 194:293-304.
    Blumenthal D (2005) Interrelated causes of plant invasion. Science 310:243-244.
    Blumenthal D,Mitchell CE,Pysek P,Jarosik V(2009)Synergy between pathogenrelease and resource availability in plant invasion. Proceedings of the National Academy of Sciences 106:7899-7904.
    Blumenthal DM (2006) Interactions between resource availability and enemy release in plant invasion. Ecology Letters 9:887-895.
    Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis. Ecological Applications 20:30-59.
    Bonifas KD, Walters DT, Cassman KG, Lindquist JL (2005) Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Science 53: 670-675.
    Burns JH (2006) Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae. Ecological Applications 16: 1367-1376.
    Cahill JF (2002) Interactions between root and shoot competition vary among species. Oikos 99:101-112.
    Cahill JF (2003) Lack of relationship between below-ground competition and allocation to roots in 10 grassland species. Journal of Ecology 91:532-540.
    Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011) Effects of soil biota from different ranges on Robinia invasion:acquiring mutualists and escaping pathogens. Ecology 92:1027-1035.
    Catford JA, Daehler CC, Murphy HT, Sheppard AW, Hardesty BD, Westcott DA, Rejmanek M, Bellingham PJ, Pergl J, Horvitz CC (2012) The intermediate disturbance hypothesis and plant invasions:Implications for species richness and management. Perspectives in Plant Ecology, Evolution and Systematics 14: 231-241.
    Chytry M, Wild J, Pysek P, Jarosik V, Dendoncker N, Reginster I, Pino J, Maskell LC, Vila M, Pergl J (2012) Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecology and Biogeography 21:75-87.
    Corbin JD, D'Antonio CM (2004) Competition between native perennial and exotic annual grasses:Implications for an historical invasion. Ecology 85:1273-1283.
    Cordell S, Cabin R, Hadway L (2002) Physiological ecology of native and alien dry forest shrubs in Hawaii. Biological Invasions 4:387-396.
    Cornelissen J, Lavorel S, Gamier E, Diaz S, Buchmann N, Gurvich D, Reich P, Ter Steege H, Morgan H, Van Der Heijden M (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51:335-380.
    Craine JM, Fargione J, Sugita S (2005) Supply pre-emption, not concentration reduction, is the mechanism of competition for nutrients. New Phytologist 166: 933-940.
    Craine JM (2009) Resource strategies of wild plants. Princeton University Press.
    Curt T, Coll L, Prevosto B, Balandier P, Kunstler G (2005) Plasticity in growth, biomass allocation and root morphology in beech seedlings as induced by irradiance and herbaceous competition. Annals of Forest Science 62:51-60.
    Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants:implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics:183-211.
    Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters 14:419-431.
    Davis MA (2003) Biotic globalization:does competition from introduced species threaten biodiversity? Bioscience 53:481-489.
    Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. Journal of Ecology 88:528-534.
    Dawson W, Burslem DFRP, Hulme PE (2009) Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. Journal of Ecology 97:657-665.
    Dawson W, Fischer M, van Kleunen M (2011) The maximum relative growth rate of common UK plant species is positively associated with their global invasiveness. Global Ecology and Biogeography 20:299-306.
    Delagrange S, Messier C, Lechowicz MJ, Dizengremel P (2004) Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree physiology 24:775-784.
    Ding W, Wang R, Yuan Y, Liang X, Liu J (2012) Effects of nitrogen deposition on growth and relationship of Robinia pseudoacacia and Quercus acutissima seedlings. Dendrobiology 67:3-13.
    Drenovsky RE, Grewell BJ, D'Antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL (2012) A functional trait perspective on plant invasion. Annals of Botany 110:141-153.
    Du N, Guo W, Zhang X, Wang R (2010) Morphological and physiological responses of Vitex negundo L. var. heterophylla (Franch.) Rehd. to drought stress. Acta Physiologiae Plantarum 32:839-848.
    Duda JJ, Freeman DC, Emlen JM, Belnap J, Kitchen SG, Zak JC, Sobek E, Tracy M, Montante J (2003) Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biology and Fertility of Soils 38:72-77.
    Durand LZ, Goldstein G (2001) Photosynthesis, photoinhibition, and nitrogen use efficiency in native and invasive tree ferns in Hawaii. Oecologia 126:345-354.
    Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503-523.
    Elser JJ, Andersen T, Baron JS, Bergstrom AK, Jansson M, Kyle M, Nydick KR, Steger L, Hessen DO (2009) Shifts in lake N:P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326:835-837.
    Feng YL, Auge H, Ebeling SK (2007) Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia 153:501-510.
    Finzi AC, Rodgers VL (2009) Bottom-up rather than top-down processes regulate the abundance and activity of nitrogen fixing plants in two Connecticut old-field ecosystems. Biogeochemistry 95:309-321.
    Elton CS (2000) The ecology of invasions by animals and plants. University of Chicago Press.
    Feng Y, Wang J, Sang W (2007) Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica 31:40-47.
    Foxcroft LC, Pickett ST, Cadenasso ML (2011) Expanding the conceptual frameworks of plant invasion ecology. Perspectives in Plant Ecology, Evolution and Systematics 13:89-100.
    Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079-1081.
    Gusewell S, Bollens U (2003) Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic and Applied Ecology 4: 453-466.
    Gusewell S (2004) N:P ratios in terrestrial plants:variation and functional significance. New Phytologist 164:243-266.
    Godoy O, Valladares F, Castro-Diez P (2011) Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Functional Ecology 25:1248-1259.
    Goldberg DE (1990) Components of resource competition in plant communities. Perspectives on plant competition:27-49.
    Gonzalez AL, Kominoski JS, Danger M, Ishida S, Iwai N, Rubach A (2010) Can ecological stoichiometry help explain patterns of biological invasions? Oikos 119: 779-790.
    Grime JP (2006) Plant strategies, vegetation processes, and ecosystem properties. John Wiley & Sons.
    Greene BT, Blossey B (2012) Lost in the weeds:Ligustrum sinense reduces native plant growth and survival. Biological Invasions 14:139-150.
    Harmens H, Stirling CM, Marshall C, Farrar JF (2000) Is partitioning of dry weight and leaf area within Dactylis glomerata affected by N and CO2 enrichment? Annals of Botany 86:833-839.
    Heggenstaller AH, Moore KJ, Liebman M, Anex RP (2009) Nitrogen influences biomass and nutrient partitioning by perennial, warm-season grasses. Agronomy Journal 101:1363-1371.
    Hejcman M, Klaudisova M, Schellberg J, Honsova D (2007) The Rengen Grassland Experiment:plant species composition after 64 years of fertilizer application. Agriculture, ecosystems & environment 122:259-266.
    Hidaka A, Kitayama K (2009) Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. J Ecol 97:984-991.
    Hofinann R, Ammer C (2008) Biomass partitioning of beech seedlings under the canopy of spruce. Austrian Journal of Forest Science 125:51-66.
    Hooper D, Chapin lii F, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge D, Loreau M, Naeem S (2005) Effects of biodiversity on ecosystem functioning:a consensus of current knowledge. Ecological Monographs 75:3-35.
    Horn HS (1971) The adaptive geometry of trees. Princeton University Press.
    Huang W, Carrillo J, Ding J, Siemann E (2012) Interactive effects of herbivory and competition intensity determine invasive plant performance. Oecologia 170: 373-382.
    Huang W, Liu J, Wang YP, Zhou G, Han T, Li Y (2013) Increasing phosphorus limitation along three successional forests in southern China. Plant and Soil 364: 181-191.
    James JJ, Drenovsky RE (2007) A basis for relative growth rate differences between native and invasive forb seedlings. Rangeland Ecology & Management 60: 395-400.
    Janssens I, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience 3:315-322.
    Jiang LF, Luo YQ, Chen JK, Li B (2009) Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Estuarine, Coastal and Shelf Science 81:74-82.
    Jobbagy EG, Jackson RB (2001) The distribution of soil nutrients with depth:global patterns and the imprint of plants. Biogeochemistry 53:51-77.
    Kawaletz H, Molder I, Annighofer P, Terwei A, Zerbe S, Ammer C (2013a) Back to the roots:how do seedlings of native tree species react to the competition by exotic species? Annals of Forest Science:1-11.
    Kawaletz H, Molder I, Zerbe S, Annighofer P, Terwei A, Ammer C (2013b) Exotic tree seedlings are much more competitive than natives but show underyielding when growing together. Journal of Plant Ecology 6:305-315.
    Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17:164-170.
    Kloeppel BD, Abrams MD (1995) Ecophysiological attributes of the native Acer saccharum and the exotic Acer platanoides in urban oak forests in Pennsylvania, USA. Tree physiology 15:739-746.
    Kossah R, Zhang H, Chen W (2011) Antimicrobial and antioxidant activities of Chinese sumac (Rhus typhina L.) fruit extract. Food Control 22:128-132.
    Kraft NJ, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322:580-582.
    Lambers H, Finnegan PM, Laliberte E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ (2011) Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils:are there lessons to be learned for future crops? Plant Physiology 156:1058-1066.
    Lamarque LJ, Delzon S, Lortie CJ (2011) Tree invasions:a comparative test of the dominant hypotheses and functional traits. Biological Invasions 13:1969-1989.
    Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences.
    Leishman MR, Haslehurst T, Ares A, Baruch Z (2007) Leaf trait relationships of native and invasive plants:community-and global-scale comparisons. New Phytologist 176:635-643.
    Leuschner C, Hertel D, Coners H, Bilttner V (2001) Root competition between beech and oak:a hypothesis. Oecologia 126:276-284.
    Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis. New Phytologist 177:706-714.
    Liao ZY, Zhang R, Barclay GF, Feng YL (2013) Differences in competitive ability between plants from nonnative and native populations of a tropical invader relates to adaptive responses in abiotic and biotic environments. PloS One 8: e71767.
    Little, E L. (1999). Digital representation of the atlas of United States trees.US Geological Survey, Reston, VA. http://esp. cr. usgs. gov/data/atlas/little
    Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006) Invasive alien plants in China:role of clonality and geographical origin. Biological Invasions 8: 1461-1470.
    Liu J, He W, Zhang S, Liu F, Dong M, Wang R (2008) Effects of clonal integration on photosynthesis of the invasive clonal plant Alternanthera philoxeroides. Photosynthetica 46:299-302.
    MacArthur R (1970) Species packing and competitive equilibrium for many species. Theoretical population biology 1:1-11.
    McDowell SC (2002) Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). American Journal of Botany 89:1431-1438.
    McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21:178-185.
    Meng T, Ni J, Wang G (2007) Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology 31:150-165.
    Morris TL, Esler KJ, Barger NN, Jacobs SM, Cramer MD (2011) Ecophysiological traits associated with the competitive ability of invasive Australian acacias. Diversity and Distribution 17:898-910.
    Nagel JM, Griffin KL (2004) Can gas-exchange characteristics help explain the invasive success of Lythrum salicarial Biological Invasions 6:101-111.
    Niemetz R, Gross GG (2001) Gallotannin biosynthesis:β-glucogallin:hexagalloyl 3-O-galloyltransferase from Rhus typhina leaves. Phytochemistry 58:657-661.
    Nilsson U, Albrektson A (1993) Productivity of needles and allocation of growth in young Scots pine trees of different competitive status. Forest Ecology Management 62:173-187.
    Oliver CD, Larson BC (1990) Forest stand dynamics. McGraw-Hill, Inc.
    Onoda Y, Hikosaka K, Hirose T (2004) Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology 18:419-425.
    Pattison R, Goldstein G, Ares A (1998) Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117: 449-459.
    Penuelas J, Sardans J, Rivas-ubach A, Janssens IA (2012) The human-induced imbalance between C, N and P in Earth's life system. Global Change Biology 18: 3-6.
    Powell KI, Chase JM, Knight TM (2011) A synthesis of plant invasion effects on biodiversity across spatial scales. American Journal of Botany 98:539-548.
    Pysek P, Krivanek M, Jarosik V (2009) Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90: 2734-2744.
    Qin RM, Zheng YL, Valiente-Banuet A, Callaway RM, Barclay GF, Pereyra CS, Feng YL (2013) The evolution of increased competitive ability, innate competitive advantages, and novel biochemical weapons act in concert for a tropical invader. New Phytologist 197:979-988.
    Quero JL, Villar R, Maranon T, Zamora R (2006) Interactions of drought and shade effects on seedlings of four Quercus species:physiological and structural leaf responses. New Phytologist 170:819-834.
    Quine CP, Humphrey JW (2010) Plantations of exotic tree species in Britain: irrelevant for biodiversity or novel habitat for native species? Biodiversity and Conservation 19:1503-1512.
    Raynaud X, Leadley PW (2004) Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology 85:2200-2214.
    Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships:a test across six biomes. Ecology 80: 1955-1969.
    Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra:global convergence in plant functioning. Proceedings of the National Academy of Sciences 94:13730-13734.
    Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9:981-993.
    Richardson DM, Pysek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) Naturalization and invasion of alien plants:concepts and definitions. Diversity and Distributions 6:93-107.
    Rout ME, Chrzanowski TH, Smith WK, Gough L (2013) Ecological impacts of the invasive grass Sorghum halepense on native tallgrass prairie. Biological Invasions 15:327-339.
    Santiago LS, Wright S (2007) Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology 21:19-27.
    Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480-494.
    Shipley B, Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology 16:326-331.
    Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil B, Garcia-Berthou E, Pascal M (2013) Impacts of biological invasions: what's what and the way forward. Trends in Ecology & Evolution 28:58-66.
    Smith MD, Knapp AK (2001) Physiological and morphological traits of exotic, invasive exotic, and native plant species in tall grass prairie. International Journal of Plant Sciences 162:785-792.
    Suding KN, Collins SL, Gough L, Clark C, Cleland EE, Gross KL, Milchunas DG, Pennings S (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences 102:4387-4392.
    Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence:nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment 27:1047-1054.
    Tilman D (1982) Resource competition and community structure. Princeton University Press.
    Van den Boogaard R, Villar R (1998) Variation in growth and water-use efficiency:a comparison of Aegilops L. species and Triticum aestivum L. cultivars. Inherent Variation in Plant Growth Physiological Mechanisms and Ecological Consequences. Eds H Lambers, H Poorter and MMI van Vuuren:289-308.
    Van Hees A (1997) Growth and morphology of pedunculate oak(Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought. Annales des sciences forestieres. EDP Sciences.
    Van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13:235-245.
    Venterink HO, Gusewell S (2010) Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Functional Ecology 24: 877-886.
    Vila M, Espinar JL, Hejda M, Hulme PE, JaroSik V, Maron JL, Pergl J, Schaffuer U, Sun Y, Pysek P (2011) Ecological impacts of invasive alien plants:a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14:702-708.
    Vitousek PM (1986) Biological invasions and ecosystem properties:can species make a difference? Ecology of biological invasions of North America and Hawaii. Springer.
    Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation:mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20:5-15.
    Wang G, Jiang G, Yu S, Li Y, Liu H (2008) Invasion possibility and potential effects of Rhus typhina on Beijing municipality. Journal of Integrative Plant Biology 50: 522-530.
    Wang WB, Wang RF, Lei YB, Liu C, Han LH, Shi XD, Feng YL (2013) High resource capture and use efficiency and prolonged growth season contribute to invasiveness of Eupatorium adenophorum. Plant Ecology 214:857-868.
    Weber E, Gut D (2004) Assessing the risk of potentially invasive plant species in central Europe. Journal for Nature Conservation 12:171-179.
    Weber E, Sun SG, Li B (2008) Invasive alien plants in China:diversity and ecological insights. Biological Invasions 10:1411-1429.
    Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution 21:261-268.
    Wittenberg G, Vidal S, Kuhlmann U, Edwards C (2005) Invasive alien species-a threat to global biodiversity and opportunities to prevent and manage them. Western Corn Rootworm:Ecology and Management:1-28.
    Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JH, Diemer M (2004) The worldwide leaf economics spectrum. Nature 428:821-827.
    Wright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Diaz S (2010) Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91:3664-3674.
    Xu F, Guo W, Wang R, Xu W, Du N, Wang Y (2009) Leaf movement and photosynthetic plasticity of black locust (Robinia pseudoacacia) alleviate stress under different light and water conditions. Acta Physiologiae Plantarum 31: 553-563.
    Xu F, Guo W, Xu W, Wang R (2008) Habitat effects on leaf morphological plasticity. Acta Biologica Cracoviensia Series Botanica 50:19-26.
    Young K, Mangold J (2009) Medusahead (Taeniatherum caput-medusae) outperforms squirreltail (Elymus elymoides) through interference and growth rate. Invasive Plant Science and Management 1:73-81.
    Yuan Y, Guo W, Ding W, Du N, Luo Y, Liu J, Xu F, Wang R (2013) Competitive interaction between the exotic plant Rhus typhina L. and the native tree Quercus acutissima Carr. in Northern China under different soil N:P ratios. Plant and Soil 372:389-400.
    Zhang WP, Jia X, Damgaard C, Morris EC, Bai YY, Pan S, Wang GX (2013) The interplay between above-and below-ground plant-plant interactions along an environmental gradient:insights from two-layer zone-of-influence models. Oikos 122:1147-1156.
    Zhang ZJ, Jiang CD, Zhang JZ, Zhang HJ, Shi L (2009) Ecophysiological evaluation of the potential invasiveness of Rhus typhina in its non-native habitats. Tree physiology 29:1307-1316.
    楚道文,李海霞(2003)房干生态旅游区开发建设理论,问题和对策.山东省农业管理干部学院学报18(1):91-93.
    韩烈保,王琼,王晓蓓,辜再元,杜永吉,宋桂龙(2009)不同立地条件下荆条根系分布规律.应用基础与工程科学学报17(2):231-237.
    郝明亮,徐路明,付琳,罗兰(2012)荆条不同器官除草活性研究.杂草科学29(4):28-32.
    何维明,马风云(2000)水分梯度对沙地柏幼苗荧光特征和气体交换的影响.植物生态学报24(5):630-634.
    胡启鹏,郭志华,李春燕,马履一(2008)不同光环境下亚热带常绿阔叶树种和落叶阔叶树种幼苗的叶形态和光合生理特征.生态学报28(7):3262-3270.
    李博,马克平(2010)生物入侵:中国学者面临的转化生态学机遇与挑战.生物多样性18(6):529-532.
    李晓征,郝日明,任燕(2006)遮荫处理对不同苗龄交让木的生长和光合特性的影响.广西植物26(5):499-502.
    李中新,李庆和,刘凤菊,孙绪艮(2009)火炬树(Rhus typhina)叶挥发性成分及其对两种叶螨选择行为的影响.生态学报29(25):714-719.
    刘建,李钧敏,余华,何维明,于飞海,桑卫国,刘国方,董鸣(2010)植物功能性状与外来植物入侵.生物多样性18(6):569-576.
    刘志龙,虞木奎,唐罗忠,方升佐(2009)不同种源麻栎种子形态特征和营养成分含量的差异及聚类分析.植物资源与环境学报18(1):36-41.
    吕文英,吕品(2002)槐花蜜枣花蜜荆条蜜中8种元素的测定与研究.微量元 素与健康研究19(1):45-47.
    牛红榜,刘万学,万方浩(2007)紫茎泽兰(Ageratina adenophora)入侵对土壤微生物群落和理化性质的影响.生态学报27(7):3051-3060.
    潘志刚,游应天(1994)中国主要外来树种引种栽培.北京科学技术出版社.
    孙天旭,鲁法典,郑勇奇,张川红,李伯菁,王玲,杨晓燕(2010)外来树种火炬树化感作用的研究.林业科学研究23(2):195-201.
    唐罗忠,刘志龙,虞木奎,方升佐,赵丹,王子寅(2010)两种立地条件下荆条人工林地上部分养分的积累和分配.植物生态学报34(6):661-670.
    万欢欢,刘万学,万方浩(2011)紫茎泽兰叶片凋落物对入侵地4种草本植物的化感作用.中国生态农业学报19(1):130-134.
    王标,虞木奎,王臣,方炎明(2009)不同种源荆条苗期生长性状差异及聚类分析.植物资源与环境学报17(4):1-8.
    王海峰(2006)外来种火炬树生物入侵可能性研究.北京:北京林业大学.
    王仁卿,郭卫华,韩雪梅(2004)房干村生态文明建设分析.山东生态省建设研究.
    王仁卿,周光裕(2000)山东植被.山东科学技术出版社.
    谢建春,孙宝国,郑福平,余敏(2006)荆条叶精油的C02超临界流体萃取工艺研究.中药材28(12):1100-1103.
    徐飞,郭卫华,徐伟红,王仁卿(2010)不同光环境对荆条和刺槐幼苗生长和光合特征的影响.生态学报30(12):3098-3107.
    徐路明,郝明亮,范鹏,罗兰(2011)荆条等8种植物提取物除草活性初探.农药50(8):614-616.
    闫兴富,方苏,杜茜,周立彪,李颖(2009)火炬树果穗水浸提液对小麦种子萌发的化感效应.作物杂志6(6):38-41.
    张川红,郑勇奇,李继磊,阎海平,王玲(2005)北京地区火炬树的萌孽繁殖扩散.生态学报25(5):978-985.
    张春霞,赵方莹,张慧琴(2007)水土保持灌木一荆条的种子萌发特性初步研究.水土保持研究14(4):449-450.
    张桂花,彭少麟,李光义,李勤奋(2009)外来入侵植物与地下生态系统相互影 响的研究进展.中国农学通报25(14):246-251.
    张洁明,孙景宽,刘宝玉,刘新成,张文辉(2006)盐胁迫对荆条、白蜡、沙枣种子萌发的影响.植物研究26(5):595-599.
    张明如,温国胜,颜文洪,侯平,翟明普,张瑾(2008)太行山低山丘陵区火炬树克隆分株的生长策略.浙江林学院学报25(3):282-288.
    张明如,俞益武,翟明普,姚军,王学勇(2007)火炬树克隆分株与荆条克隆分株的光合日进程差异.浙江林学院学报24(1):1-6.
    张明如,翟明普,王学勇,贾黎明,沈应柏(2004)火炬树克隆植株生长和生物量特征的研究.林业科学40(3):39-45.
    张明如,翟明普,尹昌君,温国胜(2005)火炬树克隆分株前后端水平侧根直径不对称性分析.林业科学41(6):65-71.
    张守仁,高荣孚,王连军(2004)杂种杨无性系的光系统II放氧活性,光合色素及叶绿体超微结构对光胁迫的响应.植物生态学28(2):143-149.
    张永利,张宪强,王仁卿(2005)鲁中山区植物区系初步研究.山东林业科技(1):1-5.
    周道玮(2009)植物功能生态学研究进展.生态学报29(10):5644-5655.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700