用户名: 密码: 验证码:
粗料来源对奶牛乳蛋白前体物生成与生产性能的影响与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来我国奶业得到了快速的发展,奶牛生产水平有了较大的提高,但是乳品质量仍有待改善。优质饲草的缺乏以及对现有资源的利用不合理是我国奶业可持续发展的瓶颈问题。我国每年大量进口优质牧草-苜蓿草,但同时有大量的秸秆资源并没有得到合理的利用。因此,本论文从我国现有的饲料资源着手,研究不同粗料来源对奶牛乳蛋白前体物生成和泌乳性能的影响与机理,旨在为我国现有资源的合理利用提供理论与实践指导依据。研究分别以苜蓿、羊草和玉米秸作为粗料来源对奶牛乳蛋白前体物的生成和泌乳性能的影响,揭示其影响机理(第一部分);研究玉米秸日粮中补充淀粉和氨基酸对奶牛乳蛋白前体物生成量和泌乳性能的影响(第二部分)
     1、不同粗料来源对奶牛乳蛋白前体物的生成和泌乳性能的影响。
     1.1不同粗料来源对奶牛泌乳性能与氮利用效率的影响(试验一)。为比较研究苜蓿草,羊草和玉米秸为粗料来源对奶牛泌乳性能、氮利用效率和血液生化指标的影响,选择12头处于泌乳早期的健康中国荷斯坦奶牛,根据泌乳量和泌乳天数随机分成3组,每组4头,进行。试验采用3x3复拉丁方设计。三组试验日粮试验日粮等能等氮且精粗比为55:45(DM),主要区别为粗料来源不同(%干物质,DM):(1)玉米秸19(CS),(2)羊草21(CWR),(3)苜蓿干草17(AH)。结果发现,粗料来源对奶牛干物质采食量无显著影响(P>0.05)。奶牛产奶量饲喂AH日粮有高于CS日粮奶牛(P<0.10)的趋势, CWR居中。AH日粮奶牛乳蛋白含量高于饲喂CWR日粮(P<0.05),而CS日粮与另外两组差异均不显著。与CS和CWR日粮相比,AH的血浆、尿和乳中尿素氮含量较低,氮利用效率最高(P<0.01)。各试验组之间血浆白蛋白、葡萄糖和游离脂肪酸(NEFA)含量差异不显著。上述结果表明,苜蓿为粗料来源时其奶产量、乳蛋白产量和氮利用效率高于玉米秸,而玉米秸日粮与羊草日粮差异不显著。
     1.2不同粗料来源影响奶牛泌乳性能及乳蛋白前体物生成量的机理(试验二)。为了揭示不同粗料来源影响奶牛乳蛋白前体物生成的机理,分别从瘤胃发酵特性、代谢蛋白质生成量、动静脉血液游离氨基酸之差等方面进行了研究。从试验一的奶牛口腔取瘤胃液,检测瘤胃发酵参数;尼龙袋法检测日粮有机物(OM)和蛋白质(CP)的降解率,用尿中嘌呤衍生物法估测微生物蛋白质生成量;尾动静脉采血检测血浆游离氨基酸。结果发现,各试验组之间瘤胃pH差异不显著(P>0.05),氨态氮浓度CS日粮较高(P<0.01)。总挥发性脂肪酸(VFA)浓度,AH日粮高于CS日粮(P<0.05),CWR居中,且与AH和CS日粮之间差异均不显著;可见AH日粮可为奶牛机体提供较多的能量,导致其奶产量较高。日粮AH的OM瘤胃降解率高于CS,主要原因在于其含有较高的快速降解部分;日粮AH的微生物蛋白产量高于(P<0.05)CS和CWR,与其较高的VFA浓度和较低的氨态氮浓度结果一致。各试验组间来源于非降解饲料蛋白的小肠可消化部分(1ADP)(P>0.05)差异不显著,表明AH日粮较高的代谢蛋白质(MP)供给量主要是由于较高的小肠可消化微生物蛋白质(IMCP);微生物蛋白产量与乳蛋白产量之间存在高度相关性(P<0.01)。饲喂AH日粮奶牛乳腺对必需氨基酸和总氨基酸的摄取均高于CS日粮,提示AH日粮的MP中氨基酸平衡性较好,利于吸收利用。以上结果表明,相比玉米秸日粮,苜蓿日粮含有较高的易发酵碳水化合物,合成较多的瘤胃微生物蛋白质,以致贡献较多的乳蛋白前体物—小肠代谢蛋白质,并且氨基酸利用效率较高,最终奶产量和乳蛋白产量高于其他两组。因此,有必要研究在玉米秸日粮补充可发酵碳水化合物和必需氨基酸对奶牛乳蛋白前体物和泌乳性能的影响。
     2、玉米秸日粮补充淀粉和氨基酸对奶牛乳蛋白前体物生成量和泌乳性能的影响。
     2.1玉米秸日粮补充淀粉和氨基酸对奶牛泌乳性能和氮利用效率的影响(试验三)。为研究玉米秸日粮补充淀粉和氨基酸对奶牛泌乳性能、氮利用效率和血液生化指标的影响,选择12头健康的处于泌乳中期的健康中国荷斯坦奶牛,根据泌乳量、泌乳天数和胎次随机分成3组,每组4头,进行。试验分3期,采用3x3复拉丁方设计试验。试验日粮等能等氮且精粗比为55:45(DM)的,主要区别为(%DM):(1)苜蓿干草19(AH);(2)淀粉8,玉米秸22(CSS);(3)在日粮CSS的基础上每天添加19.7g的过瘤胃保护Met和40.1g的过瘤胃保护Lys(CSSAA),用CPM软件估测日粮CSSAA的MP中Met和Lys的含量分别为2.4和7.2%。试验日粮等能等氮且精粗比为55:45(DM)。结果表明发现,各处理之组间干物质采食量和产奶量差异均不显著。与相比CSS日粮相比,添加氨基酸后增加1.4kg/d的产奶量,有提高乳转化率的趋势(P<0.10)。各试验组之间乳蛋白、乳脂和乳糖含量差异不显著(P>0.05)。而日粮CSS的乳蛋白产量有低于AH和CSSAA日粮的趋势(P<0.10)。尿中尿素氮的含量CSS日粮显著高于(P<0.05)AH,CSSAA居中,与其它两组之间差异不显著。乳尿氮和血浆尿素氮CSSAA日粮显著低于CSS(P<0.05),AH组居中。日粮CSS氮利用率低于AH和CSSAA日粮(P<0.01),AH和CSSAA日粮之间差异不显著。各试验组之间血浆总蛋白、白蛋白、葡萄糖、NEFA和β-羟丁酸之间含量差异不显著。上述结果表明,玉米秸日粮中适量补充可溶性糖分淀粉后其泌乳性能与达到苜蓿日粮相近似水平,而进一步补充氨基酸可提高奶牛饲料转化率和氮利用率。
     2.2玉米秸日粮补充淀粉和氨基酸影响乳蛋白前体物生成量的机制(试验四)。为揭示玉米秸日粮补充淀粉和氨基酸影响奶牛乳蛋白产量的机理,从瘤胃发酵特性、代谢蛋白质生成量、血浆游离氨基酸等方面进行研究。瘤胃发酵参数的检测、日粮OM和CP的降解率测定、微生物蛋白质产量的估测、血液的采集和血浆游离氨基酸的测定同试验二。结果发现,各试验组之间pH值和总VFA浓度差异均不显著,表明补充淀粉后CSS日粮提供能量增加,与上述两组间奶产量相近的结果一致。氨态氮浓度日粮CSS日粮显著高于AH(P<0.01)。日粮CSS的OM瘤胃有效降解率和微生物蛋白产量与AH日粮均没有显著差异(P>0.05),说明淀粉的补充使CSS日粮提供的瘤胃可利用能达到了AH日粮的水平,导致两个日粮间瘤胃微生物蛋白合成量相近;各试验组之间IADP差异也不显著(P>0.05)。添加氨基酸对奶牛瘤胃发酵参数、微生物蛋白合成量和MP产量均无显著影响,但增加了血浆必需氨基酸和总氨基酸的浓度(P<0.05)。上述结果表明,玉米秸日粮补充淀粉提高日粮乳蛋白产量的主要原因在于,补充淀粉可为瘤胃微生物提供更多可利用能,增加微生物蛋白产量,为乳蛋白合成提供更多的前体物;补充氨基酸则不仅可改善乳蛋白前体物的供应,而且可优化氨基酸的平衡性。
     综上所述,苜蓿日粮比玉米秸日粮可合成较多的瘤胃微生物蛋白质,为乳腺供应较多的乳蛋白前体物,导致奶产量和乳蛋白产量高于玉米秸日粮。玉米秸日粮乳蛋白含量较低的原因之一是日粮可发酵碳水化合物含量不足,影响了瘤胃微生物蛋白的合成量;玉米秸日粮同时补充易发酵碳水化合物和必需氨基酸时,可促进了瘤胃微生物蛋白质合成,改善机体氨基酸平衡和代谢蛋白质利用效率,导致乳蛋白产量得到显著提高。
With the development of dairy industry, the production level of dairy cows has been rapidly improved in China during recent years. However, the milk quality still needs to be improved. Deficiency of high quality forage and the unreasonable utilization of existing resources are the two important problems. A large amount of alfalfa has been imported annually, while huge amount of cereal straws and stover has not been fully utilized in animal feeds. It is necessary to establish the utilization system of feed resources that is suitable for China's national conditions. Therefore, the objective of this study was to evaluate the effects of dietary forage sources on precursor of milk protein and lactation performance in lactation dairy cows and approach to the mechanism. This study contained two parts including four trials. In the first part, the effects of dietary forage sources (alfalfa hay, Chinese wild rye grass, and corn stover) were evaluated on milk performance and precursor of milk protein, and the possible mechanism were approached. In the second part, the effects were studied of supplementing starch and rumen-protected (RP) AA on lactation performance and prodcurtion of milk protein precursor in lactating dairy cows fed corn stover.
     Part one:
     Evaluation of the effects of dietary forage sources on production of milk protein precursor and lactation performance in early-lactation dairy cows and approach to the mechanism (Trial1and2)
     1. Effects of dietary forage sources on milk performance and N utilization in lactation dairy cows (Trial.1). In order to evaluate the effects of forage sources on milk performance, N utilization efficiency and blood parameters of lactation dairy cows, twelve primiparous Chinese Holstein dairy cows were used in a multiple3×3Latin square design. Cows were divided into3groups according to similarity in milk production and day in milk. Diets were isonitrogenous and isocaloric, with a forage to concentrate ratio of45:55(dry matter (DM) basis) and contained similar concentrate mixtures. Different forage sources were:(1) corn stover19(CS),(2) Chinese wild rye hay21(CWR), and (3) alfalfa hay17(AH). Dry matter intake (DMI) was not affected by the sources of dietary forage (P>0.05). Milk yield was higher for cows fed AH than those on CS (P<0.1), with an intermediate value for CWR. Milk protein content was higher in the cows fed AH than CWR, with CS at an intermediate position. The contents of milk fat and lactose were not different among the treatments. The concentrations of urea N in the urine, blood and milk were decreased for cows fed AH, indicating an increased N conversion (P<0.01). Plasma albumin, glucose, and nonesterified fatty acid (NEFA) was not affected by treatments (P>0.05). It is indicated that feeding alfalfa could improve milk production, milk protein yield, and N utilization efficiency. No significant differences were detected on milk performance and N utilization efficiency between Chinese wild rye grass and corn stover as the main forage sources.
     2. Approach to the mechanism with which the dietary forage sources affect peoduction of milk protein precursor in dairy cows (Trial.2). In order to reveal the mechanisms with which the forage sources affect production of milk protein precursor in dairy cows, rumen fermentation characters, production of metabolizable protein (MP), and arteriovenous difference in free AA were investigated from the samples taken in Trial1. Rumen fluid was collected from oral cavity, and rumen fermentation characters were detected; rumen OM and CP degradation of experiment diets was determined by nylon bag method; Urinary purine derivatives were used to estimate the microbial protein yield; blood samples were collected from coccygeal. The rumen pH was not affected by treatments (P>0.05). Ammonia N concentration was higher for cows fed diet CS than those fed CWR and AH (P<0.05), with no difference between CWR and AH (P>0.05). Concentrations of total VFA in cows consumed diet AH were higher than those fed CS (P<0.05), with CS being intermediate.it is indicateding that AH could improve the rumen fermentation, supply more energy to the cows, and benefit to the milk production. The MCP yield for AH was higher than that for CS and CWR (P<0.05). This was consistent with the higher VFA concentration and lower ammonia concentration in AH. And there existed a significant regression of the milk protein yield to the microbial protein yield in lactation cows. Effective degradability value of OM and CP for AH was higher (P<0.05) compared with the CS and CWR. The higher rumen OM degradation was largely attributed to higher part proportion of fast degradable fraction. It is indicated that high proportion of alfalfa hay in the diet could improve MCP synthesis in the rumen due to its high sufficient supply of rumen available energy to the rumen microbes. No effects of the treatments were observed on the intestinally absorbable dietary protein (IADP)(P>0.05). Thus, compared with diet CS and CWR, the higher MP value was attributed to its higher MCP yield. There existed a significant regression of the milk protein yield to the microbial protein yield in lactation cows. Compared with diet CS, AH improved the absorption of essential and total AA. indicated suggesting the better AA balance in AH was better than in CS. Overall, a high proportion of alfalfa hay in the diet is beneficial for milk protein yield and milk protein production by increasing microbial protein yield. This can be attributed to the improving supply of rumen available energy and the utilization efficiency of AA. It is necessary to evaluate the effect of supplementing starch and AA on production of milk protein precursor and lactation performance in dairy cows fed corn stover.
     Part two:
     Effects of supplementing starch and AA on precursor of milk protein and lactation performance of lactating dairy cows fed corn stover and approach to the mechanism (Trial3and4)
     1. Effects of supplementing starch and AA on milk performance and N utilization in lactation dairy cows fed corn stover (Trial.3). In order to evaluate the effects of supplementing starch and AA on milk performance, N utilization efficiency and blood parameters of lactation cows fed corn stover, twelve multiparous (3.5±1.0parity) Chinese Holstein dairy cows were used in a3x3Latin square design. Cows were divided into3groups according to similarity in milk production, day in milk and parity. The basal diets were isonitrogenous and isocaloric, with a ratio of forage to concentrate of45:55(DM basis). Three diets contained the following forage ingredients (%on a DM basis):(1) alfalfa19, and Chinese wild rye grass6(AH);(2) corn stover22, alfalfa6, supplemented with starch8(CSS); and (3) CSS supplemented with RP Met and RP Lys (CSSAA). In diet CSSAA the proportion of Lys and Met in MP estimated by CPM dairy soft was7.2and2.4%, respectively. Dry matter intake (P>0.05) and milk yield (P>0.05) did not differ among the treatments. Supplementation of RPAA increased the1.4kg milk yield thus increased the milk efficiency (P<0.10). The contents of milk protein, fat, and lactose were not different among the treatments. Milk protein yield was higher (P<0.10) for cows fed AH than those fed CSS, with CSSAA at an intermediate position. The urinary concentration of urea N for CSS diet was higher (P<0.05) than for AH, whereas the CSSAA diet had a lower urea N concentration in the milk (P<0.05) and blood (P<0.05) than CSS. Lower N conversion (P<0.01) was detected for CSS than AH and CSSAA, with no difference between CSSAA and AH. Plasma total protein, albumin, glucose, NEFA, and β-hydroxybutyrate was not affected by treatments (P>0.05). The results indicated that the supplementation of starch to a corn stover diet could achieve a similar lactation performance as cows fed alfalfa, while RPAA supplementation further improved the efficiency of milk and N utilization.
     2. Approach to the mechanism with which supplementing starch and AA affects peoduction of milk protein precursor in dairy cows fed corn stover (Trial.4). The effects of supplementing of starch and AA on rumen fermentation characters, MP, plasma AA concentration were studied. Rumen fluid was collected from oral cavity of cows fed in trail3. Detection of rumen fermentation characters, rumen OM and CP degradation, estimation of the MCP yield, blood collection and plasma free AA concentration detection were similar to trail2. Ruminal pH and total VFA concentration did not differ among the treatments (P>0.05). Ammonia N concentration was higher for cows fed diet CSS than those fed AH (P<0.05), indicating that starch supplementation in corn stover diet improved energy supply to the cows, resulting in similar milk yield with those cows fed AH. The OM degradation and MCP yield were not different between CSS and AH (P>0.05), suggesting that with starch supplementation the available energy supplied from CSS approached to diet AH, resulting in similar MCP yield. No difference was detected in IADP between diet CSS and AH (P>0.05). Thus, the MP supply was not different between diets CSS and AH (P>0.05). No significant difference was detected with AA supplementation on rumen fermentation, MCP yield, and MP supply. However, AA supplementation increased the plasma concentration of essential AA and total AA. From Tthe above results, it is indicated that the enhanced production of milk protein precusors in corn stover diet supplemented with starch is attributed to the increased supply of energy available to the rumen microbes and subsequently increased microbial protein synthesis. Supplementations of AA further increased the supply of milk protein precusors to the cows, but also improve the balance of amino acids within the cows'body.
     In summary, high proportion of alfalfa hay in the diet is beneficial for milk protein yield and milk protein production by increasing microbial protein yield. This can be attributed to the improving supply of rumen available energy and the utilization efficiency of AA. Insufficient of rumen fermentation carbohydrate in corn stover induced low milk protein yield. Corn stover with both rumen fermentable carbohydrate and AA supplementation could increase the MCP synthesis and improve MP utilization, resulting in higher milk protein yield.
引文
Abdelgadir, I. E. O., J. L. Morrill, and J. J. Higgins.1996. Ruminal availabilities of protein and starch:Effects on growth and ruminal and plasma metabolites of dairy calves. J Dairy Sci.79(2):283-290.
    Al-Trad, B., T. Wittek, G B. Penner, K. Reisberg, G. Gabel, M.Furll, and J. R. Aschenbach.2010. Expression and activity of key hepatic gluconeogenesis enzymes in response to increasing intravenous infusions of glucose in dairy cows. J Anim Sci.88(9):2998-3008.
    Alamouti, H. R., H. Amanlou, K. Rezayazdi.2010. Effects of rapidly rumen fermentable source of starch in prepartum diet on metabolism and performance of multiparous Holstein cows during the periparturient period. ADS A annual meeting abstract, J Anim Sci.88. E- Suppl.2/J Dairy Sci.93. E Supp1.1.
    Allen, M. S.2000. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. J Dairy Sci.83(7):1598-1624.
    Allison, M. N., and R. H. Smith.1967. Biosynthesis of amino acids by ruminal microorganism. J Anim Sci.29(5):797-807.
    AOAC.1990. Official Methods of Analysis.15th edn. Association of Official Analytical Chemists, Arlington, Virginia. National Research Council.1998. Nutrient Requirements of Swine.10th Ed. National Academy Press, Washington, DC.
    Assoumani, M. B., F. Vedeaua, L. Jacquota, C.J. Sniffenb.1992. Refinement of an enzymatic method for estimating the theoretical degradability of proteins in feedstuffs for ruminants. Anim Feed Sci Technol.39(3-4):357-368.
    Bach, A., G. B. Huntington, S. Calsamiglia, and M. D. Stern.2000. Nitrogen metabolism of early lactation cows fed diets with two differ levels of protein and different amino acid profile. J Dairy Sci.83(11):2585-2595.
    Bach, A., S. Calsamiglia, and M. D. Stern.2005. Nitrogen metabolism in the rumen. J Dairy Sci.88 (E. Suppl.):E9-E21.
    Backwell. F. R., B. J. Bequette, D. Wilson, A. G. Calder, J. A. Metcalf,D. Wray-Cahen, J. C. MacRae, D. E. Beever, and G E. Lobley.1994. Utilization of dipeptides by the caprine mammary gland for milk protein synthesis. Am J Physiol Regul Integr Comp Physiol.267(1):R1-R6.
    Backwell. F. R., B. J. Bequette, D. Wilson, J. A. Metcalf, M. F. Franklin, D. E. Beever, G. E. Lobley, J. C. MacRae.1996. Evidence for the utilization of peptides for milk protein synthesis in the lactating dairy goat in vivo. Am J Physiol Regul Integr Comp Physiol.271(4):R955-R960.
    Bequette, B. J., F. R. C. Backwell, and L. A. Crompton.1998. Current Concepts of Amino Acid and Protein Metabolism in the Mammary Gland of the Lactating Ruminant. J Dairy Sci.81(9):2540-2559.
    Berthiaume, R., C. Benchaar, and A.V. Chaves.2010. Effects of non-structural carbohydrate concentration in alfalfa on fermentation and microbial protein synthesis in continuous culture. J Dairy Sci.93(2):693-700.
    Bertrand, A., Y. Castonguay, P. Nadeau, S. Laberge, R. Michaud, G. Belanger, and P. Rochette.2003. Oxygen deficiency affects carbohydrate reserves in overwintering forage crops. J Exp Bot.54(388):1721-1730.
    Blouin, J. P., J. F. Bernier, C. K. Reynolds, G. E. Lobley, P. Dobreuil, and H. Lapierre. 2002. Effect of supply of metabolizable protein on splanchnic fluxes of nutrients and hormones in lactating dairy cows. J Dairy Sci.85:2618-2630.
    Blum, J. W., R. M. Bruckmaier, and J. Jans.1999. Rumen-protected methionine fed to dairy cows:Bioavailability and effects on plasma amino acid pattern and plasma metabolite and insulin concentrations. J Dairy Sci.82(9):1991-1998.
    Boisen, S., T. Hvelplund, and M. R. Weisbjerg.2000. Ideal amino acid profiles as a basis for feed protein evaluation. Livestock Production Sci.64(2-3):239-251.
    Bounous, G., G. Batist, and P. Gold.1991. Whey proteins in cancer prevention. Cancer Letters.57(2):91-94.
    Bremmer, D. R., T. R. Overton, and J. H. Clark.1997. Production and composition of milk from Jersey cows administered bovine somatotropin and fed ruminally protected amino acids. J Dairy Sci.75:80(7):1374-1380.
    Broderick, G. A.2003. Effects of varying dietary protein and energy levels on the production of lactating dairy cows. J Dairy Sci.86(4):1370-1381.
    Broderick, G. A., P. Uden, M. L. Murphy, and A. Lapins.2004. Sources of variation in rates of in vitro rumen protein degradation. J Dairy Sci.87(5):1345-1359.
    Bryant, M. P.1973. Nutritional requirements of the predominant rumen cellulolytic bacteria. Federation Proceedings.32(7):1809-1813.
    Calsamiglia, S., A. Ferret, and M. Devant.2002. Effects of pH on nutrient digestion and microbial fermentation in a dual flow continuous culture system fed a high concentrate diet. J Dairy Sci.85(Suppl.1):182.
    Cameron, M. R., T. H. Klusmeyer, G L. Lynch, J. H. Clark, and D. R. Nelson.1991. Effects of urea and starch on rumen fermentation, nutrient passage to the duodenum, and performance of cows. J Dairy Sci.74:1321-1336.
    Cardozo, P. W. S. Calsamiglia, A. Ferret and C. Kamel.2004. Effects of natural plant extracts on protein degradation and fermentation profiles in continuous culture. J Anim Sci.82(11):3230-3236.
    Castillo, A. R., E. Keberba, D. E. Beever, J. Barbi, J. D.Sutton, H. C. Kriby and J. France.2000. The effect of energy supplementation on nitrogen utilization in lactating dairy cows fed grasssilage. J Anim Sci.79(1):240-246.
    Chen, G., C. J. Sniffen, and J. B. Russell.1987. Concentration and estimated flow of peptides from the lumen of dairy cattle:effects of protein quantity, protein solubility, and feeding frequency. J Dairy Sci.70(5):983-992.
    Chen, X. B., and M. J. Gomes.1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives:An overview of technical details. Int. Feed Res. Unit, Occasional Publ. Rowett Research Institute, Aberdeen, United Kingdom.
    Chilliard, Y, A. Ferlay, and D. Michel.2001. Effect of different types of forages, animal fat or marine oils in cow's diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids. Livestock Production Sci.70(2):31-48.
    Cho, J., T. R. Overton, C. G. Schwab, and L. W. Tauer.2007. Determining the amount of rumen-protected methionine supplement that corresponds to the optimal levels of methionine in metabolizable protein for maximizing milk protein production and profit on dairy farms. J Dairy Sci.90(10):4908-4916.
    Clark, J. H., T. H. Klusmeyer, and M. R. Cameron.1992. Symposium:Nitrogen metabolism and amino acid nutrition in dairy cattle:Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J Dairy Sci.75(8): 2304-2323.
    Comeron M. R. and T. H. Klusmeyer.1991. Effects of urea and starch on rumen fermentation, nutrient passage to the duodenum and preformance of cows. J Dairy Sci.74(4):1321-1336.
    Cunninhgma, K. D., M. J. Ceevaa, T. R. Johnson, and P. A. Luden.1996. Influence of source and amount of dietary protein on milk yield bu cows in early lactation. J Dairy Sci.79(4):620-630.
    Debroas, D. and G. Blanchart.1993.Interactions between proteolytic and cellulolytic rumen bacteria during hydrolysis of plantcell wall protein. Reprod Nutr Dev. 33(3):283-288.
    Demeyer, D. and V. Fievez.2004. Is the synthesis of rumen bacterial protein limited by the availability of preformed amino acids and/or peptides. Br J Nutr.91(02): 175-176.
    Doepel, L., D. Pacheco, J. J. Kennelly, M. D. Hanigan, I. F. Lopez, and H. Lapierre. 2004. Milk Protein Synthesis as a Function of Amino Acid Supply. J Dairy Sci. 87(5):1279-1297.
    Donkin, S. S. G. A. Varga, T. P. Sweeney, and L. D. Muller.1989. Rumen protected methionine and lysine:effects on animal performance, milk protein yield, and physiological measures. J Dairy Sci.72(6):1484-1491.
    Eastridge, M. L., B. L. Bucci, and C. V. D. M. Ribeiro.2009. Feeding quivalent concentrations of forage neutral detergent fiber from alfalfa hay, grass hay, wheat straw, and whole cotton seed in corn silage diets to lactating cows. Anim Feed Sci Technol.150(1-2):86-94.
    Erickson, P. S., M. R. Murphy, and J. H. Clark.1992. Supplementation of Dairy Cow Diets with Calcium Salts of Long-Chain Fatty Acids and Nicotinic Acid in Early Lactation. J Dairy Sci.75(4):1078-1089.
    FAO/IAEA.1997. Estimation of rumen microbial protein production from purine derivatives in urine. IAE.
    Fenderson, C. L. and W. G. Bergen.1975. An assessment of essential amino acid requirements of growing steers. J Anim Sci.41 (6):1759-1766.
    Feng, P., W. H. Hoover, T. K. Miller, and R. Blauwiekel.1993. Interactions of fiber and nonstructural carbohydrates on lactation and ruminal function. J Dairy Sci.76 (5):1324-1333.
    Firkins, J. L., M. L. Eastridge, N. R. St.-Pierre, and S. M. Noftsger.2001. Effects of grain variability and processing on starch utilization by lactating dairy cows. J Anim Sci.79(E. Suppl):218-238.
    Gargallo, S., S. Calsamiglia, and A. Ferret.2006. Technical note:A modified three-step in vitro procedure to determine intestinal digestion of proteins. J Anim Sci.84(8):2163-2167.
    Goering, H. K, and P. J. Van Soest.1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications U.S. Agricultural Research Service, U.S. Govt. Washington DC.
    Gourley, D. S., B. A. Whisman, N. L. Jorgensen, M. E. Martin, and M. J. Reid.1990. Allergic Bipolaris sinusitis:Clinical and immunopathologic characteristics. 85(3):583-591.
    Griinari, J. M., M. A. McGuire, D. A. Dwyer, D. E. Bauman, and D. L. Palmquist. 1997. Role of insulin in the regulation of milk fat synthesis in dairy cows. J Dairy Sci.80(6):1076-1084.
    Grummer, R. R., L. E. Armentan, and M. S. Marcus.1987. Lactation response to short-term abomasal infusion of choline, inositol, and soy lecithin. J Dairy Sci. 70(12):2518.
    Hanigan, M. H.1998. Gamma-glutamyl transpeptidases, a glutathionase:its expression and function in carcinogenesis. Chem.-Biol. Interact.111-112, pp: 333-342.
    Harrison, P. C., J. S. McKee, and G. L. Riskowski.1997. Effects of supplemental ascorbic acid on the energy conversion Of broilerchicks during heat stress and feed withdrawal. Poultry Sci.76(9):1278-1286.
    Henning, P. H., D. G. Steyn, and H. H. Meissner.1991. The effect of energy and nitrogen supply pattern on rumen bacterial growth in vitro. Anim. Prod.53(02): 165-175.
    Herrera-Saldana, R., J. T. Huber, and M. H. Poore.1990. Dry matter, crude protein and starch degradability of five cereal grains. J Dairy Sci.73(9):2386-2393.
    Holden, L. A., B. P. Glenn, R. A. Erdman, and W. E. Potts.1994. Effects of alfalfa and orchard grass on digestion by dairy cows. J Dairy Sci.77(9):2580-2594.
    Horner, J. L., C. E. Coppock, G. T. Schelling, J. M. Labore, and D. H. Nave.1986. Influence of Niacin and Whole Cottonseed on Intake, Milk Yield and Composition, and Systemic Responses of Dairy Cows. J Dairy Sci.69(12):3087-3093.
    Huhtanen, P., A. Vanhatalo, and T. Varvikko.2002. Effects of abomasal infusions of histidine, glucose, and leucine on milk production and plasma metabolites of dairy cows fed grass silage diets. J Dairy Sci.85(1):204-216.
    Ivan, M. and D. M. Veira.1981. Efecte of dietary protein on the solubilities of manganese, copper, zinc and iron in the rumen and abomasum of sheep. Canadian J Aninmal Sci.61(4):955-959.
    Jarrige, R.1989. Ruminant Nutrition:Recommended Allowances and Feed Tables. John Libbey, London, UK and Paris, France.
    Kalscheur, K. F., R. L. Baldwin, B. P. Glenn, and R. A. Kohn.2006. Milk production of dairy cows fed differing concentration of rumen degraded protein. J Dairy Sci. 89(1):249-259.
    Kebreab, E, A. R. Castillo, D. E. Beever, D. J. Humphries, and J. France.2000. Effects of management practices prior to and during ensiling and concentrate type on nitrogen utilization in dairy cows. J Dairy Sci.83(6):1274-1285.
    Kendall, C., C. Leonardi, P. C. Hoffman, and D. K. Combs.2009. Intake and milk production of cows fed diets that differed in dietary neutral detergent fiber and neutral detergent fiber digestibility. J Dairy Sci.92(1):313-323.
    Khorasani, G. R., E. K. Okine, and J. J. Kennelly.2001. Effects of forage source and amount of concentrate on rumen and intestinal digestion of nutrients in late-lactation cows. J Dairy Sci.84(5):1156-1165.
    Knowlton, K. F., B. P. and Glemn, R. A.1998. Performance, fermentation and site of digestion in early lactation, cow fed corn grain harvested and processed differently. J Dairy Sci.81(7):1972-1984.
    Koenig, K. M., L. M. Rode, C. D. Knight, and M. Vazquez-Anon.2002. Rumen degradation and availability of various amounts of liquid methionine hydroxy analog in lactating dairy cows. J Dairy Sci.85(4):930-938.
    Kohn, R. A. and M. S. Allen.1995. In vitro protein degradation of feeds using concentrated enzymes extracted from rumen contents. Anim Feed Sci Technol. 52(1-2):15-28.
    Kopecny, J., and R. J. Wallace.1982. Cellular location and some properties of proteolytic enzymes of rumen bacteria. Appl Environ Microbiol.43(5):1026-1033.
    Krause, K. M., and D. K. Combs.2003. Effects of forage particle size, forage source, and grain fermentability on performance and ruminal pH in midlactation Ccows. J Dairy Sci.86(4):1382-1397.
    Lascano, G J., and A. J. Heinrichs.2011. Effects of feeding different levels of dietary fiber through the addition of corn stover on nutrient utilization of dairy heifer precision-fed high and low concentrate diets. J Dairy Sci.94:3025-3036.
    Lechartier, C., and J. L. Peyraud.2011. The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion. J Dairy Sci.94(5):2440-2454.
    Lee, C., A. N. Hristov, T. W. Cassidy, K. S. Heyler, H. Lapierre, G A. Varga, M. J. de Veth, R. A. Patton, and C. Parys.2012. Rumen-protected lysine, methionine, and histidine increase milk protein yield in dairy cows fed a metabolizable protein-deficient diet. J. Dairy Sci.95:6042-6056.
    Lemosque, S., N. Rideau, H. Rulquin, and P. Faverdin.1997. Effects of a duodenal glucose infusion on the relationship between plasma concentrations of glucose and insulin in dairy cow. J Dairy Sci.80(11):2854-2865.
    Liao, S. F., D. L. Harmon, E. S. Vanzant, K. R. Mcleod, J. A. Boling, and J. C. Matthews.2010. The small intestinal epithelia of beef steers differentially express sugar transporter messenger ribonucleic acid in response to abomasal versus ruminal infusion of starch hydrolysate. J Anim Sci.88(1):306-314.
    Licitraa, G. T. M. Hernandezb, and P. J. Van Soest.1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Sci Technol 57 (4):347-358
    Lundquist, R. G, D. E. Otterby, and G. G. Linn.1985. Influence of three concentrations of DL-methionine or methionine hydroxy analog on milk yield and composition. J Dairy Sci.68(12):3350-3354.
    Mabjeesh S. J., O. Gal-Garber, J. Milgram, Y. Feuermann, M. Cohen-Zinder, and A. Shamay.2005. Amino peptidase N gene expression and abundance in caprine mammary gland is influenced by circulating plasma peptide. J Dairy Sci.88(6): 2055-2064.
    Mabjeesh, S. J., C. E. Kyle, J. C. Macrae, and M. D. Hanigan.2002. Vascular sources of amino acids for milk protein synthesis in goats at two stages of lactation. J Dairy Sci.84(4):919-929.
    Mabjeesh. S. J., C. E. Kyle, J. C. Maerae, and B.J. Bequette.2000. Lysine metabolism by the mammary gland of lactating goats at two stages of lactation. J Dairy Sci. 83(5):996-1003.
    Mackle, T. R., D. A. Dwyer, K. L. Ingvartsen, P. Y. Chouinard, J. M. Lynch, D. M. Barbano, D. E. Bauman.1999. Effects of insulin and amino acids on milk protein concentration and yield from dairy cows. J Dairy Sci.82(7):1512-1524.
    Madsen, J., and T. Hvelplund.1985. Protein degradation in the rumen. A comparison between in vivo, nylon bag, in vitro and buffer measurements. Acta. Agric. Stand. Suppl.25:103.
    Madsen, T. G. Lotte Nielsen, and M. O. Nielsen.2005. Mammary nutrient uptake in response to dietary supplementation of rumen protected lysine and methionine in late and early lactating dairy goats. Small Ruminat Res.56(1-3):151-164.
    Maeng, W. J., R. L. Baldwin.1976. Factors influencing lumen microbial growth rates and yields:effects of urea and amino acids overtime. J Dairy Sci.59(4):643-647.
    Mahadevan, S., J. D. Erfle, and F. D. Sauer.1980. Degradation of soluble and insoluble proteins by bacteroides amylophilus protease and by rumen microorganisms. J Anim Sci.50(4):723-728.
    Mcallan, A. B. and R. H. Smith.1975. Interrelationships between different chemical components in mixed rumen bacteria. J Agric Sci.86:639-642.
    McDonald, P., R. A. Edwards, and J. F. D. Greenhalgh. Animal Nutrition 5th Edition. Essex, UK:Longman Scientific & Technical, pp.607.
    Menke, K H, and Steingass H.1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev.28:7-55.
    Mercier, J. C., and P. Gaye.1982. Early events in secretion of main milk proteins: occurrence of precursors. J Dairy Sci.65(2):299-316.
    Metcalf, J. A., D. E. Beever, J. D. Sutton, and D. Wray- Cahen.1994. The effect of supplementary protein on in vivo metabolism of the mammary gland in lactating dairy cows. J Dairy Sci.77(7):1816-1827.
    Metcalf, J. A., R. J. Mansbridge, and J. S. Blake.1996. Potential for increasing the efficiency of nitrogen and phosphorus use in lactating dairy cows. J Anim Sci.62: 636 (Abstract).
    Metcalf, R. L.1994. Chemical ecology of Diabroticites. In:Novel aspects of the biology of Chrysomelidae. Eds by Jolivet PH, Cox ML, Petitpierre E, Kluwer Academic Publishers, The Hague, The Netherlands,153-169.
    Misciattelli, L., V. F. Kristensen, M. Vestergaard, M. R. Weisbjerg, K. Sejrsen, T. Hvelplund.2003. Milk Production, Nutrient Utilization, and Endocrine Responses to Increased Postruminal Lysine and Methionine Supply in Dairy Cows. J Dairy Sci.86 (1):275-286.
    Mouid, F. L., and E. R. Rskov.1983. Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen mieroflora of sheep offered either hay or concentrate. Anim Feed Sci Teehnol.10(1):1-14.
    Mummatsu.T, M. Kato, and I. Tasaki.1986. Enhanced whole-body protein synthesis by methionine and argine supplementation in protein-starved chincks. Br J Nutr.55(3):635-641.
    Nichols, J. R., D. J. Schingoethe, H. A. Maiga, M. J. Brouk, and M. S. Piepenbrink. 1998. Evaluation of corn distillers grains and ruminally protected lysine and methionine for lactating dairy cows. J Dairy Sci.,81(2):482-491.
    Nocek, J. E., and J. B. Russell.1988. Protein and energy as an integrated system: Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J Dairy Sci.71(8):2070-2107.
    Noftsger, S. M., N. R. St-Pierre, S. K. Karnati, and J. L. Firkins.2003. Effects of 2-hydroxy-4-(methylthio) butanoic acid (HMB) on microbial growth in continuous culture. J Dairy Sci.,86(8):2629-2636.
    Noftsger, S., N. R. St-Pierre, and J. T. Sylvester.2005. Determination of rumen degradability and ruminal effects of three sources of methionine in lactating cows. J Dairy Sci.88(1)223-237.
    NRC.2001. Nutrient Requirements of Dairy Cattle.7th rev. ed. Natl. Acad. Sci., Washington, DC.
    Oakenfull, D., and G. Sidhu.1990. Saponins-A useful treatment for hypercholesterolaemia. Eur J Clin Nutr.44:79-88.
    Oelker, E. R., C. Reveneau, and J.L. Firkins.2009. Interaction of molasses and monensin in alfalfa hay or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows. J Dairy Sci.92(1):270-285.
    (?)rskov, E. R.1992.Protein Nutrition in Ruminants. London, Academic Press.
    (?)rskov, E. R., F. D. D. Hovell, and F. Mould.1980. The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Prod.5:195-213.
    Oser, B. L.1965. Hawk's Physiological Chemistry.14th ed. McGraw- Hill, New York, NY.
    Pang, Y. Z., Y. P. Liu, X. J. Li, K. S. Wang, and H. R. Yuan.2008. Improving biodegradability and biogas production of corn stover through sodium hydroxide solid state pretreatment. J Energy Fuel.22(4):2761-2766.
    Patton, R. A.2010. Effect of rumen-protected methionine on feed intake, milk production, true milk protein concentration, and true milk protein yield, and the factors that influence these effects:A meta-analysis. J Dairy Sci.93(5):2105 2118.
    Phipps, K. H., J. D. Sutton, D. J. Humphries, and A. K. Jones.2001. A comparison of effects of cracked wheat and sodium hydroxide-treated wheat on feed intake, milk production and rumen digestion in dairy cows given maize silage diets. J Anim Sci.72:585-594.
    Piepenbrink, M. S., D. J. Schingoethe, M. J. Brouk, and G. A. Stegeman.1998. Systems to evaluate the protein quality of diets fed to lactating cows. J Dairy Sci. 81(4):1046-1061.
    Pitt, R. E. J. S. Van Kessel, D. G. Fox, A. N. Pell, M. C. Barry, and P. J. Van Soest. 1996. Prediction of ruminal volatile fatty acids and pH within the net carbohydrate and protein system. J Anim Sci.74(1):226-244.
    Plaizier, J. C., D. O. Krause, G. N. Gozho, and B. W. McBride.2008. Subacute ruminal acidosis in dairy cows:The physiological causes, incidence and consequences. Vet. J.176(1):21-31.
    Poppi, D. P., and S. R. Mclennan.1995. Protein and energy utilization by ruminants at pasture. J Anim Sci.73(1):278-290.
    Prinsen, B. H., J. A. Romijin, and P. H. Bisschop.2003. Endogenous cholesterol synthesis is associated with VLDL-2 apoB-100 production in healthy humans. J Lipid Res.44 (7):1341-1348.
    Purdie, N. G., D.R. Trout, D. P. Poppi, and J. P. Cant.2008. Milk synthetic response of the bovine mammary gland to an increase in the local concentration of amino acids and acetate. J Dairy sci.91(1):218-228.
    Raggio, G., G. E. Lobley, D. Pacheco, D. Peller, G. Allard, B. Berthiaume, P. Dubreuil, and H. Lapiere.2004. Effect of different levels of metabolizable protein on splanchnic fluxes of amino acids in lactating cows. In:Progress in Research on Energy and Protein Metabolism, EAAP publication No.109. Wageningen Academic Publishers.223-226.
    Rhoads, M. L., R. P. Rhoads, R.O. Gilbert, R.Toolec, and W. R. Butler.2006. Detrimental effects of high plasma urea nitrogen levels on viability of embryos from lactating dairy cows. Anim. Reprod. Sci.91(1-2):1-10.
    Rius, A. G, J. A. D. R. N. Appuhamy, J. Cyriac, D. Kirovski, O. Becvar, J. Escobar, M. L. McGilliard, B. J. Bequette, R. M. Akers, and M. D. Hanigan.2010. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. J Dairy Sci.93(7):3114-3127.
    Rius, A. G, M. L. McGilliard, C. Umberger, and M. D. Hanigan.2010. Interactions of energy and predicted metabolizable protein in determining nitrogen efficiency in the lactating dairy cow. J Dairy Sci.93(5):2034-2043.
    Robinson, P. H., E. J. DePeters, and I. H. Shinzato.2005. Influence of feeding free lysine to early lactation dairy cows on ruminal lysine eseape, rumen fermentation and pro duoe tivity. Anim Feed Sci Tech.118(3-4):201-214.
    Rodriguez, L. A., C. C. Stallings, J. H. Herbein, and M. L. McGilliard.1997. Effect of degradability of dietary protein and fat on ruminal, blood, and milk components of Jersey and Holstein cows. J Dairy Sci.80 (2):353-363.
    Roe, M. B., C. J. Sniffen, and L. E. Chase.1990. Techniques for measuring protein fractions in feedstuffs. Ithaca, NY:Pro Cornell Nutr Conf,81.
    Romagnolo, D., C. E. Polan, and W. E. Barbeau.1994. Electrophoretic analysis of ruminal degradability of corn proteins. J Dairy Sci.77(4):1093-1099.
    Rulquin, H., and Verite, R.,1993. Amino acid nutrition of dairy cows:production effects and animal requirements. In:Garnsworthy, P. C., Cole, D. J. A. (Eds.), Recent Advances in Animal Nutrition. Nittingham University Press, UK, pp.55-77.
    Russell, J. B., J. D. O'Connor, D. G Fox, and J. B. Rusell.1992. A net carbohydrate and protein system for evaluating cattle diets:Ⅰ ruminal fermentation. J Anim Sci. 70(11):3551-3561.
    Russell, J. R., and R. B. Hespell.1981. Microbial Rumen Fermentation. J Dairy Sci 64:1153-1169.
    Salbury, D., and E. Putnam.2005. Improving intestinal amino acid supply of pro- and postpartum dairy cows with rumen-protected Methionine and lysine. J Dairy Sci. 88:1113-1126.
    Sauvant, D., and J. Van Milgen.1995. Dynamic aspects of carbohydrate and protein breakdown and the associated microbial matter synthesis. In ruminant physiology:digestion, metabolism, growth and reproduction:proceedings of the eighth international symposium on ruminant physiology. Ferdinand Enke Verlag, Stuttgart, Gemany.
    Schwab, C. G.., R. S. Ordway, and N. L. Whitehouse.2004. Amino acid balance in the context of MP and RUP requirements. Folrida Ruminant Nutrition Symposium.10-25.
    Schwab, C. G.1995. Protected proteins and amino acids for ruminants. Pages 115-141 in Biotechnology in Animal Feeds and Animal Feeding. R. J. Wallace and A. Chesson, ed. VCH Publishers, New York, NY.
    Shen, J. S., Z. Chai, L. J. Song, J. X. Liu, and Y. M. Wu.2012. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J Dairy Sci.95(10):5978-5984.
    Sniffen, C. J., J. D. Oconnor, P. J. VanSoest, D. G. Fox, and J. B. Rusell.1992. A net carbohydrate and protein system for evaluating cattle diets.2:Carbohydrate and protein availability. J Anim Sci.70:3562-3577.
    Solomon, M. B.2004. Effect of animal production on meat quality. Adv Exp Med Biol.542:21-23.
    Stem, M. D., K. A. Santos, and L. D. Satter.1985. Protein degradation in lumen and amino acid absorption in small intestine of lactating dairy cattle fed heat-treated whole soybeans. J Dairy Sci.68:45-56.
    Stern, M. D., and L.D. Sater.1984. Evaluation of nitrogen solubility and the dacron bag technique as methods for estimating protein degradation in the rumen. J Anim Sci.58(3):714-724.
    Stern, M. D., and W. H. Hoover.1979. Methods for determining and factors affecting rumen microbial protein synthesis:A review. J Anim Sci.49:1590-1603.
    Stern, M. D., H. Hoover, C. J. Sniffen, B. A. Crooker, and P. H. Knowlton.1978. Effects of nonstructural carbohydrate, urea and soluble protein levels on microbial protein synthesis in continuous culture of rumen contents. J Anim Sci. 47:944-956.
    Storm, E., and E. R.(?)rskov.1983. The nutritive value of rumen microorganisms in ruminant.1. Large-scale isolation and chemical composition of rumen microorganisms. Br J Nutr.50:463-470.
    Tagari. H, K. Webb, Jr. Theurer, T. Huber, D. DeYoung, P. Cuneo, J. E. Santos, J. Simas, M.Sadik, A. Alio, O. Lozano, A. Delgado-Elorduy, L. Nussio, C. M. Bittar, and F. Santos.2008. Mammary uptake, portal-drained visceral flux, and hepatic metabolism of free and small peptide in COWS fed steam-flaked or dry-rolled sorghum grain diets. J Dairy Sci.91(2):679-697.
    Tamminga, S.1992. Nutrition management of dairy cows as a contribution to pollution control. J Dairy Sci.75:345-357.
    Tamminga, S., A. M. Van Vuuren, C. J. Van Der Koelen, R. S. Ketelaar, and P. L. Van Der Togt.1990. Ruminal behavior of structural carbohydrates, non-structural carbohydrates and crude protein from concentrate ingredients in dairy cows. Neth J Agric Sci.38:513-526.
    Tomankovaa, O., and J. Kopecny.1995. Prediction of feed protein degradation in the rumen with bromelain. Anim Feed Sci Technol.53(1):71-80.
    Torben.G, M. L. Nielsen., and M. O. Nielsen.2005. Mammary nutrient uptake in response to dietary supplementation of rumen protected lysine and methionine in late and early lactating dairy goats. Small Ruminant Res.56(1-3):151-164.
    Van Houtert, M. F. J.1993. The production and metabolism of volatile fatty acids by ruminants fed roughages:A review. Anim Feed Sci Technol.43(3-4):189-225.
    Van Keulen, J. V., and B. A. Young.1977. Evaluation of acid insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci.44(2):282-287.
    Vanhatalo, A., P. Huhtanen, V. Toivonen, and T. Varvikko.1999. Response of dairy cows fed grass silage diets to abomasal infusions of histidine alone or in combinations with methionine and lysine. J Dairy Sci.85 (12):2674-2685.
    Velle, W.,(?).V. Sjaastad, A. Aulie, D. Gr(?)nset, K. Feigenwinter, and T. Framstad. 1997. Rumen escape and apparent degradation of amino acids after individual intraruminal administration to cows. J Dairy Sci.80(12):3325-3332.
    Visser, H. D. E., A. Klop, C. J. Van Der Koellen, and A. M. Van Vuuren.1998. Starch Supplementation of Grass Harvested at Two Stages of Maturity Prior to Ensiling: Intake, Digestion, and Degradability by Dairy Cows. J Dairy Sci.81(8):2221-2227.
    Voelker Linton, J. A., and M. S. Allen.2009. Nutrient demand interacts with forage family to affect nitrogen digestion and utilization responses in dairy cows. J Dairy Sci.92(4):1594-1602.
    Wang, C., J. X. Liu, Z. P. Yuan, Y. M. Wu, S. W. Zhai, and H. W. Ye.2007. Effect of level of metabolizable protein on milk production and nitrogen utilization in lactating dairy cows. J Dairy Sci.90:2960-2965.
    Webb. K. E., Jr. Matthews, and D. B. DiRienzo.1992. Peptide absorption:a review of current concepts and future perspectives. J Anim Sci.70 (10):32484-3257.
    Weiss, W. P., N. R. St-Pierre, and L. B. Willett.2009. Varying type of forage, concentration of metabolizable protein, and source of carbohydrate affects nutrient digestibility and production by dairy cows. J Dairy Sci.92 (11):5595-5606.
    Whitney, R. M. L., J. R. Brunner, K. E. Ebner, H. M. Farrell, R. V. Josephson, C. V. Morr, and H. E. Swaisgood.1976. Nomenclature of the Proteins of Cow's Milk: Fourth Revision. J Dairy Sci.59(5):795-815.
    Wright, T. C., S. Moseardini, P. H. Luimes, and P. Susmel.1998. Eeffect of rumen-undegradable protein and feed intake on nitrogen balance and milk protein production in dairy cows. J Dairy Sci.81(3):784-793.
    白英.2007.微量元素锌对山羊-酪蛋白合成及分泌影响的研究.内蒙古农业大学博士论文.
    陈兵,刘文娇,罗俊.2012.2012年3~5月份我国奶业贸易及主要奶业国家对华贸易分析.中国奶牛.12:10-16
    崔胜.2003.关于奶牛乳蛋白性状的研究.乳业科学与技术.2(65):92-93.
    段斌,敖长金,王强,冯子琪,高民,卢德勋.2010.乳腺灌注必需氨基酸对奶山羊血液生化指标及GHR和IGF-IR mRNA表达量的影响.内蒙古农业大学学报.31(3):15-19.
    方姝骄,郑琛,李发弟,韩向敏,郝正里,张鹏坤.2011.柠条替代部分粗料对泌乳中期奶牛产奶量及乳品质的影响.甘肃农业大学学报.46:18-21.
    冯仰廉.2006.奶牛小肠蛋白质体系的局限性与氨基酸平衡.动物营养学报.18(2):63-68.
    韩继福,吴其宏.2003.过瘤胃氨基酸对乳牛瘤胃发酵、产乳量及乳成分的影响.安徽农业大学学报,30(2):139-143.
    何瑞国,王玉莲,姚艳平.2000.反刍动物复合微量元素缓释丸及其在山羊瘤胃中代谢的研究.农业现代研究.21(1):28-32.
    胡伟莲.2005.皂甙对瘤胃发酵与甲烷产量及动物生产性能影响的研究.浙江大学博士论文.
    赫英飞.2004.不同粗料配比对奶牛消化代谢和生产性能的影响.东北农业大学硕士论文.
    黄玉德.1992.饲料中添加“蛋白锌”可生产高锌奶.饲料研究.(5):11-12.
    李宝兰,张咏梅,卢小康.2009.苜蓿总黄酮对小鼠脂类代谢及氧自由基的影响.草业科学.26(8):93-96.
    李冬梅,耿忠诚,于亚洲.2007.日粮中添加半胱胺对肉羊血液生化指标及胴体品质的影响.黑龙江八一农垦大学学报.19(5):58-61.
    李胜利,毕研亮,刘玉满,黄文明,都文,姚琨,曹志军,杨敦启.2012.2011年中国奶业回顾与展望。中国畜牧杂志,48(2):46-50.
    李向林,万里强.2005.苜蓿青贮技术研究进展.草业学报.14(2):9-15.
    李艳鹏.2008.用CNCPS评定反刍动物饲料的营养价值.广西大学硕士论文.
    刘成果.2006.我国奶牛饲料业的现状及发展对策.中国饲料.3:1-3.
    刘畅.2010.利用秸秆制作氨化饲料及饲养实践.中国资源综合利用.28(5):29-31.
    刘德君,周莉萝,李缓章,刘耳.1997.乳牛生产实用技术.北京:科技文献出版社.
    刘玉满,李静.2011.进口奶粉对我国奶业的影响.47(8):3-6.
    刘自杰,李志强.2007.年奶业形势分析及2008年展望.中国乳业.1:15-19.
    娄丽平.2007.不同氮源对绵羊瘤胃发酵和不同生态位菌体蛋白的影响.东北农大硕士论文。
    卢德勋.1993.反刍动物营养调控理论及其应用.内蒙古畜牧科学.(增刊).
    卢德勋.1996.在动物营养领域应用系统科学的初步探讨:动物营养学研究进展.北京:中国农业大学出版社.
    雒爱玲.2008.苜蓿皂苷和大黄素对肉仔鸡生长性能、肉品质及胆固醇代谢的影响.河南农业大学硕士论文
    马美容.2005.苜蓿在奶牛生产中的应用价值.黑龙江畜牧兽医.2:15-16.
    孟宪政,姬永莲,赵明轩,孟海波.2002.从甘肃奶业发展趋势看草业发展的前景.
    莫放,冯仰廉.1991.用RNA和DAPA标记法估测牛瘤胃微生物蛋白的研究.中国动物营养学报.3(2):19-25.
    穆怀彬,侯向阳,德英.2011.从我国《生乳标准》谈奶业发展.47(18):15-18.
    宁开桂.1993.实用饲料分析手册.北京:中国农业科技出版社.
    孙启忠,玉柱,徐春城.2012.我国苜蓿产业亟待振兴.草业科学.02:314-319.
    谭支良,黄瑞林.2000.反刍动物蛋白质营养调控新技术.中国饲料.9:12-14.
    汪张贵.2005.日粮核黄素添加水平对新扬州仔鸡免疫机能和血液生化指标影响的研究.扬州大学硕士学位论文.
    王福兆.1993.乳牛学.北京:科学技术文献出版社.
    王洪荣,孙桂芬,卢德勋,赵秀英,张海鹰.2006.饲料源活性肽混合物的提取及其对绵羊瘤胃微生物生长的影响.动物营养学报.4:252-260.
    王加启,赵圣国.2009.我国牛奶质量安全的现状、问题和对策.中国奶牛.11:3-6.
    王加启.2011.决定我国奶业发展方向的5个重要指标.江西饲料,6:1-5.
    王金合,李爱国,赵咏梅.2010.不同粗饲料对奶牛生产性能的影响.当代畜牧.32-33.
    王俊锋,黄静,梁国义.2005.泌乳反刍动物乳蛋白的合成机理及调控途径的研究.中国乳业.2:24-27.
    王强,敖长金,嘎尔迪,卢德勋,高民,段斌,冯子琪.2010.阴外动脉灌注氨基酸、葡萄糖混合物对奶山羊血浆总蛋白、白蛋白及相关激素受体mRNA表达量的影响.动物营养学报.22(5):1314-1319.
    王恬,贝水荣,傅永明,吕俊龙,杨州,陈汉根.2004.小肽营养素对奶牛泌乳性能的影响.中国奶牛.2:12-14.
    王文静,李晓东,史莹华,王成章,严学兵,张亚军,朱见明.2010.苜蓿青干草对肉牛生产性能及胆固醇代谢的影响.草业科学.27(10):135-141.
    王文娟,汪水平,左福元.2008.反刍动物淀粉消化与葡萄糖吸收研究进展.西北农林科技大学学报:自然科学版,36(5):27-34.
    吴迪,陆治年,徐魁梧.1991.南京地区奶牛日粮中添加碘对产奶性能和甲状腺机能的影响.南京农业大学学报.14(4):71-75.
    吴东,李吕木.2003.不同包被处理赖氨酸对奶牛泌乳性能的影响研究.中国草食动物.23(3):7-9.
    杨金勇.2006.蛋氨酸、赖氨酸及其二肽对奶牛乳腺上皮细胞仅-酪蛋白基因表达的影响.浙江大学硕士学位论文.
    杨在宾,姜淑贞,杨维仁.2004.瘤胃投饲不同形式蛋氨酸对肉牛微生物氨基酸的影响.畜牧兽医学报.35(2):260-265.
    杨志强.2009.必需氨基酸的不同比例对泌乳奶牛生产性能的影响.浙江大学硕士论文.
    杨茁萌.2011.2011年中国苜蓿市场分析.苜蓿市场与贸易.中国畜牧兽医学会养牛学分会2011年学术研讨会论文集.391-397.
    张东杰,夏美茹.2002.苜蓿的营养功能及在功能食品中的应用.黑龙江八一农垦大学学报.14(4):69-72.
    张民,孙宏选,桂荣,王加启.2006.饲料蛋白质组分对泌乳奶牛乳脂率和乳蛋白的影响.乳乳业科学与技术.(3):49-50.
    张小丽.2006.日粮添加苜蓿干草对奶牛生产性能及血液生化指标的影响。河北农业大学硕士论文.
    张幸开,袁耀明.2006.影响奶牛乳蛋白生产的因素及应对措施.中国奶牛.12:17-21.
    赵广永,D. A.Christensen, J. J. McKinnon.1999.用净碳水化合物-蛋白质体系评定反刍动物饲料营养价值.中国农业大学学报,4(增刊):71-76.
    赵晓倩.2010.我国牧草供需现状分机及未来趋势预测.兰州大学硕士论文.
    赵永亮.2009.新型复合甜菜粕在奶牛饲养中的应用研究.兰州大学硕士学位论文.
    周娟.2007.高温影响奶牛产奶量的机制及应对措施.河南畜牧兽医.7(28):18-19.
    王洪荣,卢德勋,张海鹰,赵秀英,羿静,乌日娜,包塞娜,于朝晖.1998.氨基酸在绵羊小肠内消化率的研究.内蒙古畜牧科学.2:19-23.
    余群莲,王之盛,薛白,吴丹,王立志.2010.饲粮中结构性碳水化合物与非结构性碳水化合物的不同比例对降解后白酒糟体外发酵特性的影响.动物营养学报.22(4):956-963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700