用户名: 密码: 验证码:
肉羊瘤胃微生物蛋白质合成量预测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以杜寒杂交肉用公绵羊为试验动物,利用微生物和食糜流量标记物技术,首先评价两种微生物氮(MN)实测标记物15N和嘌呤(PB)的效果,确立一种标准的实测方法;其次研究日粮处理(饲喂水平、精料比)对尿嘌呤衍生物(PD)排出量的影响,并建立PD预测MN的相关方程;最后开展评价点采样法预测PD排出量的研究。
     试验一、饲喂水平对肉羊尿嘌呤衍生物排出量的影响
     本试验旨在评价15N和PB测定瘤胃MN的效果,并研究饲喂水平对PD排出量的影响,初步建立PD预测MN的相关模型。选用12只6月龄杜寒杂交公羊,采用完全随机设计,按照自由采食(AL)、自由采食量的70%(70%AL)和自由采食量的50%(50%AL)三个干物质采食水平饲喂。结果表明,应用15N测定的MN变异程度低于应用嘌呤测定的结果(P<0.05);尿囊素排出量在三组间差异显著(P<0.05),尿酸、黄嘌呤和次黄嘌呤排出量只在AL组和50%AL组间差异显著(P<0.05);由15N估测的MN与PD排出量线性相关(P<0.05):MN (g/d)=0.74×PD(mmol/d)+0.030, R2=0.91。
     试验二、日粮精粗比对肉羊尿嘌呤衍生物排出量及微生物蛋白质合成量的影响
     本试验旨在研究在广泛精粗比范围下PD排出量是否能够准确预测MN合成量,并提出十二指肠可代谢N的预测方程。选用12只10月龄杜寒杂交公羊,配制12种不同粗料精料比例(F:C)日粮,采用12×4不完全拉丁方试验,开展四期试验。结果表明,总PD、尿囊素排出量随F:C的降低显著升高(P<0.05),尿酸和黄嘌呤+次黄嘌呤排出量不受F:C的影响(P>0.05);PNI和NCE均随日粮F:C的降低显著降低(P<0.05),且两者存在线性相关:NCE=3.67×PNI+0.574, R2=0.82;小肠可代谢N(Y, g/d)与可消化有机物(X1, g/d)或瘤胃表观可消化有机物(X2, g/d)采食量均存在二次相关: Y=0.0002X21–0.181X1+46.435, R2=0.81; Y=0.0002X22–0.081X2+16.961, R2=0.95;肉羊采食不同F:C日粮尿中PD排出量和应用15N实测得到的MN合成量存在线性相关,相关关系为:MN (g/d)=–0.52+1.49PD (mmol/d)(R2=0.86, n=45, P<0.05)。
     试验三、点采样法预测肉羊尿嘌呤衍生物排出量的有效性
     本试验旨在研究日粮碳水化化物与蛋白质组成对肉羊PD排出量的影响,并评价点采样估测PD排出量的准确性。选用4只10月龄杜寒杂交公羊,配制2种不同非结构性碳水化合物(NFC)水平和瘤胃非降解蛋白质(UDP)水平的饲粮,采用4×4拉丁方设计,于每期消化代谢试验的08:00–09:30、14:00–15:30和20:00–21:30三个时间段进行点采样。结果表明,在点采样过程中,PDC指数与全收尿PD排出量呈线性相关(P<0.05):PD (mmol/d)=0.22×PDC+3.45, R2=0.88,表明点在本试验条件下采样能够准确估测全天PD排出量。
This study used Dorper thin-tailed Han crossbred sheep were used to firstly compare the accuracyof two microbial nitrogen (MN) markers,15N and purine base (PB), and secondly to investigate theeffect of dietary treatments on urinary excretion of purine derivatives (PD), and finally to establish therelationship between PD and MN, and to evaluate the effectiveness of using spot urine samplingtechnique.
     Experiment1: Effect of feed intake on urinary excretion of purine derivatives and microbialprotein synthesis in mutton sheep
     This study aimed to compare the MN measured by using two microbial markers,15N and PB, and toinvestigate the effect of dietary treatment on urinary PD excretion, and to establish the relationshipbetween MN and PD. Twelve6-month-old ram lambs were randomly assigned to three levels of drymatter intake: ad libitum (AL) intake, or70%(70%AL) or50%(50%AL) of the ad libitum intake. Theresults showed that: MN measured by15N had lower variability than that measured by PB (P<0.05).Urinary excretion of allantoin was affected by feed intake (P<0.05). Significant difference was found inurinary excretion of uric acid and xanthine+hypoxanthine between AL and50%AL groups (P<0.05).PD was linearly correlated with MN estimated from either15N or PB: MN (g/d)=0.74×PD (mmol/d)+0.030, R2=0.91.
     Experiment2: Effect of dietary forage to concentrate ratios on urinary excretion of purinederivatives and microbial protein synthesis in mutton sheep
     This study aimed to establish the model for predicting MN using urinary PD, and to predict intestinalmetabolizable N. Twelve10-month-old ram lambs were randomly assigned to12levels of dietary F:Cin an incomplete Latin-square experimental design (12lambs4periods). The results showed that:Allantoin and total PD increased (P<0.05) with decreasing F:C. Uric acid and xanthine plushypoxanthine was unaffected by F:C (P>0.05). Both PNI and NCE decreased with decreasing F:C(P<0.05) and a linear relationship existed between PNI and NCE calculated with15N: NCE=3.67×PNI+0.574, R2=0.82. Metabolizable protein (Y, g/d) was quadriatically correlated with digestibileorganic matter (DOM; X1, g/d) or organic matter apparently digested in the rumen (OMADR; X2, g/d):Y=0.0002X21–0.181X1+46.435, R2=0.81; Y=0.0002X22–0.081X2+16.961, R2=0.95. A linearcorrelation was observed between PD excretion and MN: MN (g/d)=–0.52+1.49PD (mmol/d)(R2=0.86, n=45, P<0.05).
     Experiment3: Study on the effectiveness of use of spot urine samples to predict daily PDexcretion
     This study aimed to investigate the effect of dietary treatment on PD excretion and to evaluate theeffectiveness of using spot urine technique to predict daily PD excretion. Four10-old-month ram lambswere randomly assigned to four dietary treatments including two levels of non-fibrous carbohydrate andtwo levels of undegraded dietary protein, according to a44Latin-square experimental design. During the digestibility trial, spot urines were collected between08:00–09:30,14:00–15:30, and20:00–21:30,respectively. In spot urine samples, a linear correlation existed between the PDC index from spot urinesamples and daily PD excretion (P<0.05): PD (mmol/d)=0.22×PDC+3.45, R2=0.88, whichindicated that spot sampling technique accurately predicted daily PD output.
引文
1.冯仰廉,反刍动物营养学.北京:科学出版社.2004.
    2.高占峰,刁其玉,15N同位素示踪技术在动物蛋白质代谢研究方法中的应用.饲料研究,2013,10:5–7.
    3.郭辉,山羊在不同日粮结构下尿中嘌呤衍生物排出规律的研究[博士学位论文].广西大学,2008.
    4.李丽莉,梁坤,韦升菊等,不同日粮采食水平对青年母水牛尿中嘌呤衍生物排出规律的影响研究.黑龙江畜牧兽医,2009,12:11–14.
    5.刘洁,刁其玉,赵一广等,饲粮不同NFC/NDF对肉用绵羊瘤胃pH、氨态氮和挥发性脂肪酸的影响.动物营养学报,2012,24(6):1069–1077.
    6.刘洁,肉用绵羊饲料代谢能与代谢蛋白质预测模型的研究[博士学位论文].中国农业科学院,2012.
    7.马涛,刁其玉,邓凯东,尿嘌呤衍生物法估测瘤胃微生物蛋白质产量的研究进展.动物营养学报,2011,23(1):10–14.
    8.汪水平,王文娟,王加启等,日粮精粗比对奶牛瘤胃发酵及泌乳性能的影响.西北农林科技大学学报,2007,35(6):44–50.
    9.杨膺白,梁贤威,郭辉等,山羊尿中嘌呤衍生物排出规律的研究.黑龙江畜牧兽医,2011,1:64–66.
    10.赵国琦,贾亚红,陈小连等,不同NDF/NFC比的日粮对山羊瘤胃发酵参数影响的研究.中国畜牧杂志,2006,42(13):29–33.
    11.赵向辉,刘婵娟,刘烨等,日粮可降解蛋白与非纤维碳水化合物对人工瘤胃发酵、微生物合成以及纤维分解菌菌群的影响.中国农业科学,2012,45(22):4668–4677.
    12. AFRC. Nutritive requirements of ruminant animals: protein. Nutrition Abstracts and Reviews62B.Slough, UK: Commonwealth Agricultural Bureaux.1992:787–835.
    13. Agle, M., Hristov, A. N., Zaman, S., et al. Effect of dietary concentrate on rumen fermentation,digestibility, and nitrogen losses in dairy cows. Journal of Dairy Science.2010,93:4211–4222.
    14. Aharoni, Y., and Tagari, H. Use of nitrogen-15determinations of purine nitrogen fraction of digestato define nitrogen metabolism traits in the rumen. Journal of Dairy Science.1991,74:2540–2547.
    15. Ahvenj rvi, S., Vanhatalo, A., Huhtanen, P. Supplementing barley or rapeseed meal to dairy cowsfed grass-red clover silage. I. Rumen degradability and microbial flow. Journal of Animal Science.2002,80:2176–2187.
    16. Ahvenj rvi, S., Vanhatalo, A., Shingfield, K. J., et al. Determination of digesta flow entering theomasal canal of dairy cows using different marker systems. British Journal of Nutrition.2003,90(01):41–52.
    17. Allen, M. S. Effects of diet on short-term regulation of feed intake by lactating dairy cattle. Journalof Dairy Science.2000,83:1598–1624.
    18. Antoniewicz, A. M., Heinemann, W. W., Hanks, E. M. The effect of changes in the intestinal flowof nucleic acids on the allantoin excretion in the urine of sheep. Journal of Agricultural Science.1980,95:395–400.
    19. AOAC. Official Methods of Analysis. USA:Arilington, Washington DC, Association of OfficialAnalytical Communities.1990.
    20. Arambel, M.J., Bartley, E.E., Dennis, S.M., et al. Evaluation of several methods for estimatingmicrobial nitrogen concentration in the rumen. Nutrition Reports International.1987,35:25–38.
    21. ARC. The nutrient requirements of ruminant livestock, Suppl. No.1, Commonwealth AgriculturalBureaux, Slough.1984.
    22. ARC. The nutrition of goats. New York, N Y: CAB International.1998:7–64.
    23. Archimède, H., Sauvant, D., Schmidely, P. Quantitative review of ruminal and total tract digestionof mixed diet organic matter and carbohydrates. Reproduction, Nutrition, Development.1997,37:173–189.
    24. Bach, A., Calsamiglia, S., Stern, M. D. Nitrogen metabolism in the rumen. Journal of DairyScience.2005,88(E Suppl.):E9–E21.
    25. Bailey, R. W., and MacRae, J. C. The hydrolysis by rumen and caecal microbial enzymes ofhemicellulose in plant and digesta particles. The Journal of Agricultural Science.1970,75:321–326.
    26. Balcells, J., Fondevila, M., Guada, J.A., et al. Urinary excretions of purine derivatives and nitrogenin sheep given straw supplemented with different sources of carbohydrates. Animal Production.1993,57:287–292.
    27. Balcells, J., Guada, J. A., Castrillo, C., et al. Urinary excretion of allantoin and allantoin precursorsby sheep after different rates of purine infusion into the duodenum. Cambridge Journal ofAgriculture Science.1991,116:309–317.
    28. Bartram, C. G. The endogenous protein content of ruminant proximal duodenal digesta. Universityof Nottingham.1987.
    29. Belanche, A., de la Fuente, G., Yá ez-Ruiz, D. R., et al. Technical note: The persistence ofmicrobial-specific DNA sequences through gastric digestion in lambs and their potential use asmicrobial markers. Journal of Animal Science.2011,89:2812–2816.
    30. Belenguer. A., Yańez. D., Balcells. J., et al. Urinary excretion of purine derivatives and predictionof rumen microbial outflow in goats. Livestock Production Science.2002,77:127–135.
    31. Blaxter, K. L., and Martin, A. K. The utilization of protein as a source of energy in fattening sheep.British Journal of Nutrition.1962,16:397–407.
    32. Brandt, M., Rohr, K., Lebzien, P. Determination of microbial protein synthesized in the rumen bymeans of15N. In: Oslage, H.J., Rohr, K.(Eds.), Protein Metabolism and Nutrition, EAAPPublication No.23.1980:496–503.
    33. Broderick, G. A., and Kang, J. H. Automated simultaneous determination of ammonia and totalamino acids in ruminal fluid and in vitro media. Journal of Dairy Science.1980,63(1):64–75.
    34. Broderick, G. A., and Merchen, N. R. Markers for quantifying microbial protein synthesis in rumen.Journal of Dairy Science.1992,75:2618–2632.
    35. Brody, S. Bioenergetics and growth: with special reference to the efficiency complex in domesticanimals. Hafner Pub. Co.1964.
    36. Bruce, C. I., Marsden, M., Buttery, P. J. Leucine metabolism by rumen bacteria in vivo (Abstract).Proceedings of the Nutrition Society.1985,44:143.
    37. Bums, R. H., and Wilson, P. W. Methods for measurement of nitrogen fixation. Page355inMethods in Enzymology. Vol.4. S. P. Colowick and N.0. Kaplan, ed. Academic Press, New York,NY.1957.
    38. Burris, R. H., and Wilson, P. W. Methods for measurement of nitrogen fixation. Methods inenzymology.1957,4:355–366.
    39. Calsamiglia, S., Stern, M. D., Firkins, J. L. Comparison of nitrogen-15and purines as microbialmarkers in continuous culture. Journal of animal science.1996,74(6):1375–1381.
    40. Cantalapiedra–Hijar, G., Yá ez–Ruiz, D.R., Martín–García, A.I., et al. Effects offorage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, andmicrobial growth in goats. Journal of Animal Science.2009,87:622–631.
    41. Cao, Y.C., and Yang, H.J. Ruminal digestibility and fermentation characteristics in vitro offenugreek and alfalfa hay combination with or without the inoculation of Neocallimastix sp.YAK11. Animal Feed Science and Technology2011,169:53–60.
    42. Carro, M. D., and Miller, E. L. Comparison of microbial markers (15N and purine bases) andbacterial isolates for the estimation of rumen microbial protein synthesis. Animal Science.2002,75:315–321.
    43. Carro, M.D., Valdés, C., Ranilla, M.J., et al. Effect of forage to concentrate ratio in the diet onruminal fermentation and digesta flow kinetics in sheep offered food at a fixed and restricted levelof intake. Animal Science.2000,70:127–134.
    44. Cecava, M. J., Merchen, N. R., Berger, L. L., et al. Effect of energy level and feeding frequency onsite of digestion and postruminal nutrient flows in steers. Journal of Dairy Science,1990,73:2470.
    45. Cecava, M. J., Merchen, N. R., Berger, L. L., et al. Effects of dietary energy level and proteinsource on nutrient digestion and ruminal nitrogen metabolism in steers. Journal of Animal Science.1991,69:2230–2243.
    46. Cecava, M. J., Merchen, N. R., Gay, L. C., et al. Composition of ruminal bacteria harvested fromsteers as influenced by dietary energy level, feeding frequency, and isolation techniques. Journal ofDairy Science.1990,73:2480–2488.
    47. Cetinkaya, N., Yaman, S., Baber, N. H. O. The use of purine derivatives/creatinine ratio in spoturine samples as an index of microbial protein supply in Yerli Kara crossbred cattle. LivestockScience.2006,100:91–98.
    48. Chen, X. B., Chen, Y. K., Franklin, M. F., et al. The effect of feed intake and body weight onpurine derivative excretion and microbial protein supply in sheep. Journal of Animal Science.1992b,70:1534–1542.
    49. Chen, X. B., Chowdhury, S. A., Hovell, F. D. D., et al. Endogenous allantoin excretion in responseto changes in protein supply in sheep. Journal of Nutrition.1992a,(122):2226–2232.
    50. Chen, X. B., and Gomes, M. J. Estimation of microbial protein supply to sheep and cattle based onurinary excretion of purine derivatives.An overview of the technical details. International FeedResources Unit, Rowett Research Institute, Bucksburn, Aberdeen, UK,1995.
    51. Chen, X. B., Hovell, F. D. D., rskov, E. R. Excretion of purine derivatives by ruminants-recyclingof allantoin into the rumen via saliva and its fate in the gut. British Journal of Nutrition,1990c,63:197–205.
    52. Chen, X. B., Hovell, F.D.D., rskov, E. R., et al. Excretion of purine derivatives by ruminants:effect of exogenous nucleic acid supply on purine derivative excretion by sheep. British Journal ofNutrition.1990a,63(1):131–142.
    53. Chen, X. B., Jayasuriya, M. C. N., Makkar, H. P. S. Measurement and application of purinederivatives: creatinine ratio in spot urine samples of ruminants. In: Estimation of Microbial ProteinSupply in Ruminants Using Urinary Purine Derivatives. Kluwer Academic Publishers, Dordrecht.2004:167–179.
    54. Chen, X. B., Kyle, D. J., rskov, E. R., et al. Renal clearance of plasma allantoin in sheep.Experimental Physiology.1991,76:59–65.
    55. Chen, X.B., Mejia, A. T., rskov, E. R., et al. Evaluation of the use of the purine derivative:creatinine ratio in spot urine and plasma samples as an index of microbial protein supply inruminants:studies in sheep. Cambridge Journal of Agriculture Science.1995,125:137–143.
    56. Chen, X. B., and rskov, E. R. Research on urinary excretion of purine derivatives on ruminants:Past, present and future. International Feed Research Unit, Aberdeen, United Kingdom.2003.
    57. Chen, X. B., rskov, E. R., Hovell, F.D.D. Excretion of purine derivatives by ruminants:endogenous excretion, differences between cattle and sheep. British Journal of Nutrition.1990b,64:359–370.
    58. Chen, X. B., Subba, D. B., rskov, E. R., et al. Purine Nitrogen Index, a potentially new parameterfor rapid feed evaluation in ruminants. IAEA-TECDOC-1093.1999:97-110. Study on N retentionand urinary excretion of purine derivatives in mutton sheep offered different level of feed intake.
    59. Chizzotti, M. L., Filho, S. C. V., Valadares, R. F. D., et al. Determination of creatinine excretionand evaluation of spot urine sampling in Holstein cattle. Livestock Science.2008,113:218–225.
    60. Clark, J.H., Klusmeyer, T.H., Cameron, M.R. Microbial protein synthesis and flows of nitrogenfractions to the duodenum of dairy cows. Journal of Dairy Science1992,75:2304–2323.
    61. Condon, R. J., and Hatfield, E. E. Metabolism of abomasally infused RNA by sheep. Journal ofAnimal Science.1970,31:1037A.
    62. Condon, R. J., Hall, G., Hatfield, E. E. Metabolism of abomasally infused14C-labelled RNAadenine, uracil and glycine. Journal of Animal Science.1970,31:1037–1038.
    63. Craig, W. M., Broderick, G. A., Ricker, D. B. Quantitation of microorganisms associated with theparticulate phase of ruminal ingesta. Journal of Nutrition.1987,117:56.
    64. CSIRO. Nutrient requirements of domesticated ruminants. Collingwood, Australia: CSIROPublishing.2007:296.
    65. De Boever, J. L., Iantcheva, N., Cottyn, B. G., et al. Microbial protein synthesis ingrowing-finishing bulls estimated from the urinary excretion of purine derivatives. Animal FeedScience and Technology.1998,75:93–109.
    66. Egan, A. R., and Moir, R. J. Nutritional status and intake regulation in sheep. I. Effects ofduodenally infused single doses of casein, urea, and propionate upon voluntary intake of alow-protein roughage by sheep. Crop Pasture Science.1965,16:437–449.
    67. Elliott, R.C., and Topps, J. H. Nitrogen metabolism of African cattle fed diets with an adequateenergy, low protein content. Nature (Lond.)1963,197:668–670.
    68. Ellis, W. C., and Pfander, W. H. Rumen microbial polynucleotide synthesis and its possible role inruminant nitrogen synthesis. Nature (Lond.).1965,205:974.
    69. Faichney, G. J. The use of markers to partition digestion within the gastro-intestinal tract ofruminants. I. W. Mcdonald and A. C. I. Warner, ed. University of New England Publishing Unit,Armidale, Australia.1975.
    70. Fernandes, M. H. M. R., Resende, K. T., Tedeschi, L. O., et al. Energy and protein requirements formaintenance and growth of Boer crossbred kids. Journal of Animal Science.2007,85(4):1014–1023.
    71. Firkins, J. L., Lewis, S. M., Montgomery, L., et al. Effects of feed intake and dietary ureaconcentration on ruminal dilution rate and efficiency of bacterial growth in steers. Journal of DairyScience.1987,70:2312–2321.
    72. Firkins, J. L., Yu, Z., Morrison, M. Ruminal nitrogen metabolism: Perspectives for integration ofmicrobiology and nutrition for dairy. Journal of Dairy Science.2007,90(E Suppl.):E1–E16.
    73. Fujihara, T., Shem, M. N., Nakamura, K. Effect of dietary energy levels on the urinary excretion ofpurine derivatives in sheep. Animal Science Journal.2005,76(5):441–445.
    74. Funaba, M., Kagiyama, K., Iriki, T., et al. Duodenal flow of microbial nitrogen estimated fromurinary excretion of purine derivatives in calves after early weaning. Journal of Animal Science.1997,75:1965–1973.
    75. Galvani, D. B., Pires, C. C., Kozloski, G. V., et al. Protein requirements of Texel crossbred lambs.Small Ruminant Research.2009,81:55–62.
    76. Garrett, J. E., Goodrich, R. D., Meiske, J. C. Measurement of bacterial nitrogen using D-alanine. In:Owens, F. N.(Eds.), Protein Requirements for Cattle: Symposium. Stillwater: Oklahoma StateUniversity.1982:23–25.
    77. George, S. K., Dipu, M. T., Mehra, U. R., et al. Improved HPLC method for the simultaneousdetermination of allantoin, uric acid and creatinine in cattle urine. Journal of Chromatography B.2006,832(1):134–137.
    78. George, S. K., Verma, A. K., Mehra, U. R., et al. Nitrogen utilization in goats fed various oil cakes.Archiva Zootechnica.2011,14(2):76–91.
    79. Giesecke, D., Ehrentreich, L., Stangassinger, M., et al. Mammary and renal excretion of purinemetabolites in relation to energy intake and milk yield in dairy cows. Journal of Dairy Science.1994,77:2376–2381.
    80. Goering, H. G., and Van Soest, J.P. Forage fiber analysis. Agricultural Handbook, vol.379. UPSDA,Agriculture Research Service, Washinton, DC.1970.
    81. Gonda, H. L., and Lindberg, J. E. Evaluation of dietary nitrogen utilization in dairy cows based onurea concentrations in blood, urine and milk, and on urinary concentration of purine derviatives.Acta Agriculturae Scandinavica.1994,44:236–245.
    82. González-Ronquillo, M., Balcells, J., Guada, J. A., et al. Purine derivative excretion in dairy cows:endogenous excretion and the effect of exogenous nucleic acid supply. Journal of Dairy Science.2003,86:1282–1291.
    83. Gueroulai, A., El Gass, Y., Balcells, J., et al. Urinary excretion of purine derivatives and itsutilization as an index of microbial protein synthesis in camel. British Journal of Animal Science.2004,92:225–232.
    84. Hall, M.B. Calculation of non-structural carbohydrate content of feeds that contain non-proteinnitrogen. Bulletin339: A–25. University of Florida, Gainesville.2000.
    85. Hoover, W.H. Chemical factors involved in ruminal fiber digestion. Journal of Dairy Science.1986,69:2755–2766.
    86. Horigane, A., and Horiguchi, M. Nutritional aspects and metabolism of aminophosphonic acids inruminants. Page51in The Rumen Ecosystem. The Microbial Metabolism and Its Regulation. S.Hoshino, R. Onodera, H. Minato, and H. Itabashi. ed. Springer Verlag, New York, NY.1990.
    87. Hristov, A. N., McAllister, T. A., Ouellet, D. R., et al. Comparison of purines and nitrogen-15asmicrobial flow markers in beef heifers fed barley-or corn-based diets. Canadian Journal of AnimalScience.2005,85:211–222.
    88. Hutton, K., Bailey, F. J., Annison, E. F. Measurement of the bacterial nitrogen entering theduodenum of the ruminant using diaminopimelic acid as a marker. British Journal of Nutrition.1971,25:165–173.
    89. Jackson, T. C., Schelling, G. T., Tucker, R. E., et al. Nucleic acid bases in the small intestine ofsheep. Journal of Animal Science.1077,45(Suppl.1):242.
    90. Jetana, T., Abdullah, N., Halim, R. A., et al. Effects of energy and protein supplementation onmicrobial-N synthesis and allantoin excretion in sheep fed guinea grass. Animal Feed Science andTechnology.2000,84:167–181.
    91. Johnson, L.M., Harrison, J.H., Riley, R.E. Estimation of the flow of microbial nitrogen to theduodenum using urinary uric acid or allantoin. Journal of Dairy Science.1998,81:2408–2420.
    92. Kahn, L. P., and Nolan, J. V. Kinetics of allantoin metabolism in sheep. Brtish Journal of Nutrition.2000,84:629–634.
    93. Kiran, D., and Mutsvangwa, T. Effects of barley grain processing and dietary ruminally degradableprotein on urea nitrogen recycling and nitrogen metabolism in growing lambs. Journal of AnimalScience.2007,85:3391–3399.
    94. Klevesahl, E. A., Cochran, R. C., Titgemeyer, E. C., et al. Effect of a wide range in the ratio ofsupplemental rumen degradable protein to starch on utilization of low-quality grass hay by beefsteers. Animal Feed Science and Technology.2003,105:5–20.
    95. Koenig, K. M., Ivan, M., Teferedegne, B. T., et al. Effect of dietary enterolobium cyclocarpum onmicrobial protein flow and nutrient digestibility in sheep maintained fauna-free, with total mixedfauna or with entodinium caudatum monofauna. British Journal of Nutrition.2007,98:504–516.
    96. Kreuzer, M., Kirchgessner, M., Kellner, R. J., et al. Effect of varying protein and energyconcentration on digestibility of nutrients, nitrogen metabolism and allantoin excretion in wethers.Journal of Animal Physiology and Animal Nutrition.1986,55:144–159.
    97. Laurent, F., and Vignon, B. Factors of variations in urinary excretion of allantoin in sheep andgoats. Archiv fur Tierernahrung.1983,33:671–681.
    98. Legay-Carmier, F., and Bauchart, D. Distribution of bacteria in the rumen contents of dairy cowsgiven a diet supplemented with soya-bean oil. British Journal of Nutrition.1989,61:725.
    99. Lindberg, J. E. Nitrogen metabolism and urinary excretion of purines in goat kids. British Journalof Nutrition.1989,61:309–321.
    100. Lindberg, J. E., and Jacobsson, K. G. Nitrogen and purine metabolism at varying energy andprotein supplies in sheep sustained on intragastric infusion. British Journal of Nutrition.1990,64:359-370.
    101. Ling, J. R., and Buttery, P. J. The simultaneous use of ribonucleic acid,35S,2,6-diaminopimelicacid and2-aminoethylphosphonic acid as markers for microbial nitrogen entering the duodenum ofsheep. British Journal of Nutrition.1978,39:165.
    102. Makkar, H. P. S., and Chen, X. B. eds. Estimation of microbial protein supply in ruminants usingurinary purine derivatives. Kluwer Academic.2004.
    103. Mansillal, W., Columbus, D., Htoo, J. K., et al. Urea nitrogen absorbed from the hindgut is usedefficiently for body protein deposition in pigs fed a diet deficient in non-essential amino acidnitrogen. Energy and protein metabolism and nutrition in sustainable animal production.Wageningen Academic Publishers.2013,134:413.
    104. Martín-Orúe, S. M., Balcells, J., Guada, J. A., et al. Microbial nitrogen production in growingheifers: direct measurement of duodenal flow of purine bases versus urinary excretion of purinederivatives as estimation procedures. Animal Feed Science and Technology.2000,88:171–188.
    105. McAllan, A. B. The fate of nucleic acids in ruminants. Proceedings of the Nutrition Society,1982,(41):309–317.
    106. McAllan, A. B., and Smith, R. H. Degradation of nucleic acids by rumen bacteria in vitro. BritishJournal of Nutrition.1973,29:467–474.
    107. McAllan, A. B., and Smith, R. H. Degradation of nucleic acids in the rumen. British Journal ofNutrition.1973,29:331–345.
    108. McAllan. A. B., and Smith, R. H. Nucleic acid metabolism in the ruminant. Determination ofnucleic acids in digesta. British Journal of Nutrition.1969,23:671.
    109. McDonald, I. W. The extent of conversion of food protein to microbial protein in the rumen ofsheep. Journal of Biochemistry.1954,56:120–125.
    110. McDonald, P., Edwards, R. A., Greenhalgh, et al. Animal nutrition. Fifth edition, Longmanscientific and technical, New York.1995.
    111. Moorby, J.M., Dewhurst, R.J., Evans, R.T., et al. Effects of dairy cow diet forage proportion onduodenal nutrient supply and urinary purine derivative excretion. Journal of Dairy Science.2006,89:3552–3562.
    112. Morris, S., and Ray, S.C. The fasting metabolism of ruminants. Journal of Biochemistry.1939,33:1217–1230.
    113. Mota. M., Balcells. J., Ozdemir Baber. N. H., et al. Modeling purine derivative excretion in dairygoats: endogenous excretion and the relationship between duodenal input and urinary output.Animal.2008,2:44–51.
    114. Mould, F. L., and rskov, E. R. Manipulation of rumen fluid pH and its influence on cellulolysis insacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate.Animal Feed Science and Technology.1983,10:1–14.
    115. Mould, F. L., rskov, E. R., Mann, S. O. Associative effects of mixed feeds. I. Effects of type andlevel of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and drymatter digestion of various roughages. Animal Feed Science and Technology.1983,10:15–30.
    116. Nagaraja, T. G., and Town, G. Ciliated protozoa in relation to ruminal acidosis and lactic acidmetabolism. Page194in Rumen Ecosystem: Microbial Metabolism and Regulation. R. Oneora, H.Minato, and H. Itabashi, ed. SpringerVerlag, New York, NY.1990.
    117. Nocek, J. E. In situ and other methods to estimate ruminal protein and energy digestibility: areview. Journal of Dairy Science.1988,71:2051–2069.
    118. NRC. Nutrient Requirements of Dairy Cattle.6th rev. ed. Natl. Acad. Sci., Washington, DC,1989.
    119. NRC. Nutrient requirements of small ruminants: sheep, goats, cervids and new worldcamelids.Washington D.C. National Academy Press.2007:384.
    120. NRC. Ruminant Nitrogen Usage. National Academy of Science. Washington, DC.1985.
    121. Nsahlai, I. V., Osuji, P. O., Umunna, N. N. Effect of form and of quality of feed on theconcentrations of purine derivatives in urinary spot samples, daily microbial N supply andpredictability of intake. Animal Feed Science and Technology.2000,85(3):223–238.
    122. Offer, N. W., Axford, R. F. E., Evans, R. A. The effect of dietary energy source on nitrogenmetabolism in the rumen of sheep. British Journal of Nutrition.1978,40:35–44.
    123. Oliveira, A.S., Valadares, R.F.D., Valadares Filho, S.C., et al. Microbial protein production, purinederivatives and urea excretion estimate in lactating dairy cows fed isoprotein diets with differentnon-protein nitrogen compounds levels. Revista Brasileira de Zootecnia.2001,30:1621–1629.
    124. Orellana Boero, P., Balcells, J., Martín-Orúe, S. M., et al. Excretion of purine derivatives in cows:endogenous contribution and recovery of exogenous purine bases. Livestock Production Science.2000,68:243–250.
    125. rskov, E. R., Grubb, D. A., Wenham, G., et al. The sustenance of growing and fattening ruminantsby intragastric infusion of volatile fatty acid and protein. British Journal of Nutrition.1979,41:553-558.
    126. Owens, F., N., and Isaacson, H. R. Ruminal microbial yields: factors influencing synthesis andbypass. Federation Proceedings.1977,36:198.
    127. Peoples, M. B., Bergersen, F. J., Turner, G. L., et al. Use of the natural enrichment of15N in plantavailable soil N for the measurement of symbiotic N2fixation//Proceedings Series (IAEA).1991.
    128. Pérez, J. F., Balcells, J., Guada, J. A., et al. Determination of rumen microbial nitrogen productionin sheep: A comparison of urinary purine excretion with methods using15N and purine bases asmarkers of microbial-nitrogen entering the duodenum. British Journal of Nutrition.1996,75:699–709.
    129. Pérez, J. F., Balcells, J., Guada, J. A., et al. Rumen microbial production estimated either fromurinary purine derivative excretion or from direct measurements of15N and purine bases asmicrobial markers: effect of protein source and rumen bacteria isolates. Animal Science.1997,65:225–236.
    130. Pina, D. S., Valadares Filho, S. C., Tedeschi, L. O., et al. Influence of different levels ofconcentrate and ruminally undegarded protein on digestive variables in beef heifers. Journal ofAnimal Science.2009,87:1058–1067.
    131. Poshiwa, X., Ngoni, N. T., Manyuchi, B., et al.The effect of plane of nutrition on the urinary purinederivative excretion in sheep and goats. In Makkar, H. P. S., and Chen, X. B. Estimation ofmicrobial protein supply in ruminants using urinary purine derivatives. Kluwer AcademicPublishers, Dordrecht, the Netherlands.2004:140–148.
    132. Puchala, R., and Kulasek, G. Estimation of microbial protein flow from the rumen of sheep usingmicrobial nucleic acid and urinary excretion of purine derivatives. Canadian Journal of AnimalScience.1992,72:821–830.
    133. Ramos, S., Teijido, M.L., Martínez, M.E., et al. Microbial protein synthesis, ruminal digestion,microbial populations, and nitrogen balance in sheep fed diets varying in forage–to–concentrateratio and type of forage. Journal of Animal Science.2009,87:2924–2934.
    134. Razzaque, M. A., and Topps, J.H. Determination of hypoxanthine, xanthine and uric acid inruminant’s urine. Journal of Science of Food and Agriculture.1978,29:935–939.
    135. Razzaque, M. A., Topps, J. H., Kay, R. N. B., et al. Metabolism of the nucleic acids of rumenbacteria by preruminant and ruminant lambs. British Journal of Nutrition.1981,45:517–527.
    136. Reynal, S. M., and Broderick, G. A. Effect of dietary level of rumen-degraded protein onproduction and nitrogen metabolism in lactating dairy cows. Journal of Dairy Science.2005,88:4045–4064.
    137. Reynal, S. M., Broderick, G. A., Bearzl, C. Comparison of four markers for quantifying microbialprotein flow from the rumen of lactating dairy cows. Journal of Dairy Science.2005,88:4065–4082.
    138. Roberts, S. A., and Miller, E.L. An estimate of bacterial protein synthesis in sheep on a constantfeeding regime (Abstract). Proceddings of the Nutrition Society.1968,28:32.
    139. Rodriguez, C. A., Gonzalez, J., Alvir, M. R., et al. Composition of bacteria harvested from theliquid and solid fractions of the rumen of sheep as influenced by feed intake. British Journal ofNutrition.2000,(84):369–376.
    140. Rys, R., Antoniewicz, A., Maciejewicz, J. Allantoin in urine as an index of microbial protein in therumen. Tracer studies on non-protein nitrogen for ruminants.2, IAEA, Vienna.1975:95–98.
    141. Satter, L. D., and Slyter, L. L. Effect of ammonia concentration on rumen microbial proteinproduction in vitro. British Journal of Nutrition.1974,32(02):199–208.
    142. Sauvant, D., Baumont, R., Faverdin, P. Development of a mechanistic model of intake and chewingactivities of sheep. Journal of Animal Science.1996,74:2785–2802.
    143. Schelling, G. T., and Byers, F. M. Cytosine as a marker for microbial nitrogen leaving the rumen.Canadian Journal of Animial Science.1984,64(Suppl.):52.
    144. Schelling, G. T., Koenig, S. E., and Jackson, T. C. Jr. Nucleic acids and purine or pyrimidine basesas markers for protein synthesis in the nuncn. Page1in Protein Requirements for Cattle:Symposium. F. N. Owens, ed. Oklahoma State Univ. Stillwater.1982.
    145. Siddons, R. C., Paradine, J., Beever, D. E., et al. Ytterbium acetate as a particulate-phasedigesta-flow marker. British Journal of Nutrition.1985,54(02):509–519.
    146. Silva, R.M.N., Valadares, R.F.D., Valadares Filho, S.C., et al. Urea for dairy cows.2. Estimates ofurinary volume, microbial production and urea excretion. Revista Brasileira de Zootecnia.2001,30:1948–1957.
    147. Sinclair, L. A., Garnsworthy, P. C., Newbold, J. R., et al. Effect of synchronizing the rate of dietaryenergy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. TheJournal of Agricultural Science.1993,120:251–263.
    148. Smith, R. C., Moussa, N. M., Hawkins, G. E. Utilization of the nucleic acids of Escherichia coliand rumen bacteria by sheep. Journal of Biology Chemistry.1973,32.
    149. Smith, R. H., and McAllan, A. B. Nucleic acid metabolism in the ruminant.2. Formation ofmicrobial nucleic acids in the rumen in relation to the. Digestion of food nitrogen and the fate ofdietary nucleic acids. British Journal of Nutrition.1970,24:545.
    150. Smith, R. H., McAllan, A. B., Hewitt, P., et al. Estimation of amounts of microbial and dietarynitrogen compounds entering the duodenum of cattle. Journal of Agricultural Science.1978,90:557–568.
    151. Steinhour, W. D., Stokes, M. R., Clark, J. H., et al. Estimation of the proportion ofnon-ammonia-nitrogen reaching the lower gut of the ruminant derived from bacterial and protozoalnitrogen. British Journal of Nutrtion.1982,48:417.
    152. Subba, D. B. Purine nitrogen index, a possible parameter for rapid feed evaluation in ruminants. Athesis for the degree in M. Sc. In animal nutrition. University of Aberdeen.1997:12.
    153. Tamminga, S. Nutrition management of dairy cows as a contribution to pollution control. Journalof Dairy Science.1992,86:3620–3633.
    154. Tas, B. M., and Susenbeth, A. Urinary purine derivatives excretion as an indicator of in vivomicrobial N flow in cattle: A review. Livestock Science.2007,111:181–192.
    155. Timmermans Jr, S. J., Johnson, L. M., Harrison, J. H., et al. Estimation of the flow of microbialnitrogen to the duodenum using milk uric acid or allantoin. Journal of Dairy Science.2000,83:1286–1299.
    156. Titgemeyer, E.C. Design and interpretation of nutrient digestion studies. Journal of Animal Science.1997,75:2235–2247.
    157. Topps, J. H., and Elliott, R. C. Relationships between concentrations of ruminal nucleic acid andexcretion of purine derivatives by sheep. Nature (Lond.).1965,205:498.
    158. Udén, P., Colucci, P. E., Van Soest, P. J. Investigation of chromium, cerium and cobalts as markersin digesta: Rate of passage studies. Journal of the Science of the Food and Agriculture.1980,31:625–632.
    159. Ushida, K., Lassalas, B., Jouany, J. P. Determination of assay parameters for RNA analysis inbacterial and duodenal samples by spectrophotometry influence of sample treatment andpreservation. Reproduction Nutrition Development.1985,25:1037–1046.
    160. Valadares, R. F. D., Gon alves, L. C., Rodriguez, N. M., et al. Methodology for urine collection incows using foley catheters. Revista Brasileira de Zootecnia.1997,26:1279–1282.
    161. Valadares, R. F. D., Broderick, G. A., Valadares, S. C., et al. Effect of replacing alfalfa silage withhigh moisture corn on ruminal protein synthesis estimated from excretion of total purinederivatives. Journal of Dairy Science.1999,82:2686–2696.
    162. Van Soest, P. J., Robertson, J. B., Lewis, B. A. Methods for dietary fiber, neutral detergent fiberand non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science.1991,74:3583–3597.
    163. Verbic, J., Chen, X. B., Macleod, N. A., et al. Excretion of purine derivatives by ruminants-effectof microbial nucleic acid infusion on purine derivative excretion by steers. Journal of AgriculturalScience.1990:243–248.
    164. Volden, H., and Harstad, O.M. Effect of rumen incubation on the true indigestibility of feed proteinin the digestive tract determined by nylon bag techniques. Acta Agricultura Scandinavica., Sect. A,Anim. Sci.1995,45:106–115.
    165. Waldo, D. R. Extent and pattition of cereal grain starch digestion in ruminants. Journal of AnimalScience.1973,37:1062.
    166. Walker, D. M., and Faichney, G. J. Nitrogen balance studies with the milk fed lamb.2. The partionof urinary nitrogen and sulphur. British Journal of Nutrition.1964,18:201–215.
    167. Wattiaux, M. A., and Reed, J. D. Fractionation of nitrogen isotopes by mixed ruminal bacteria.Journal of animal science.1995,73(1):257–266.
    168. Webster, A. J. F., Kaya, S., Djouvinov, D. S., et al. Purine excretion and estimated microbialprotein yield in sheep fed diets differing in protein degradability. Animal Feed Science andTechnology.2003,105:123–134.
    169. Whittet, K.M. Factors affecting the variability in urinary creatinine and purine derivative excretionin beef cattle. M.S. Dissertation. University of Nebraska, Lincoln, NE, USA.2004.
    170. Yu, P., Egan, A. R., Boon-ek, L., et al. Purine derivative excretion and ruminal microbial yield ingrowing lambs fed raw and dry roasted legume seeds as protein supplements. Animal Feed Scienceand Technology.2002,95:33–48.
    171. Zhang, Y., Zhou, J. W., Guo, X. S., et al. Influences of dietary nitrogen and non-fiber carbohydratelevels of apparent digestibility, rumen fermentation and nitrogen utilization in growing yaks fedlow quality forage based-diet. Livestock Science.2012,147:139–147.
    172. Zinn, R. A., and Owens, F. N. A rapid procedure for purine measurement and its use for estimatingnet ruminal protein synthesis. Canadian Journal of Animal Science.1986,66:157–166.
    173. Zinn, R. A., and Owens, F. N. A rapid procedure for quantifying nucleic acid content of digesta.Page26in Protein Requirements for Cattle: Symposium. F. N. Owens, ed. Oklahoma State Univ.,Stillwater.1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700