用户名: 密码: 验证码:
超导装置电流引线的研制及装置级试验检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超导电力技术可望为未来的电力系统带来革命性的技术突破,但超导电力技术要真正进入市场还存在诸多问题,其中,运行成本的降低和入网考核就是两个亟待解决的主要问题。在超导电力装置中,通过电流引线侵入低温环境的热损耗占整个低温系统损耗的绝大部分,为提高超导电力装置的效率,抑制电流引线的热侵入是一个非常重要的技术课题。同时,由于电力系统的重要性,超导电力装置入网前必须通过严格的性能测试,但目前国内外尚未建立一套完善的试验检测规程和方法,无法对超导电力装置是否具备入网条件进行科学的判断。因此,本文以超导电力装置电流引线的设计及装置的试验检测方法为中心展开了研究。
     在电流引线的设计方面,根据传热学理论,构建了一元引线和二元引线的热流模型,应用迭代法对模型低温端的热流进行了分析和仿真。在考虑电流引线的冷却方式、工作温区、工艺制作、经济成本及其所属超导装置的运行状态的前提下,提出了运动型小电流等级超导电力装置宜采用的引线形式和结构。结合引线的运行环境、绝缘水平和工艺特点,对300kVA高温超导变压器的电流引线进行了结构优化。针对电动车组超导变压器的空间限制,提出了延长引线路径的方法,有效解决了引线长度的延长与空间高度的限制之间的矛盾。分析了引线温升、热流与引线横截面积的关系,提出了超导装置电流引线的工程设计应先确定引线横截面积,再进行优化设计的原则。设计并制作了简易的引线漏热测量装置,对仿真结果进行了试验验证,试验结果与仿真计算基本吻合。通过引线预冷试验,探讨了引线绝缘层的覆盖方式和浇铸工艺,较好地完成了从引线优化,到实验验证,再到工艺实现的过渡。
     建立了制冷机直接冷却的高温超导磁储能系统二元引线的热流模型。为便于引线设计、制作和分开检测,提出了模块式引线构造,并分模块对引线进行了优化设计:对三种不同金属材料的最小漏热、价格和机械性能进行了分析和比较,确定了金属模块的材料,优化后的单根铜引线的漏热与Hull所计算的传导冷却形式的电流引线的漏热相当,比Wilson于1983年所得到漏热值略低;设计了引线的绝缘与导热结构,计算了中间连接部分的焦耳热和界面热阻引起的漏热;将理论计算与成本分析相结合,确定了高温超导模块的长度。分析了与引线共用一台制冷机的辐射屏的辐射漏热,在此基础上,得到了所需制冷机的冷量。通过磁体冷却、通额定电流、过载电流、不同升流速率通流和动模实验验证了引线的性能,并对实验结果进行了分析,讨论了改善引线室温端热流分布的措施。探讨了引线通流水平对其密封性能的影响。
     为验证激光切割后氮化铝垫片的适用性,对氮化铝垫片进行了激光打孔试验。将激光打孔后的垫片制成试样,在金相显微镜和电子扫描电镜下进行了形貌观察和成分分析。根据氮化铝的传热机理和激光打孔后孔周区域化学变化的分析,提出了激光打孔后,自孔向外延伸,将激光打孔对氮化铝热导率的影响分为三个区域的观点;阐述了激光打孔后孔周表面Al和Al2O3的析出及其分布状态与孔周绝缘水平的关系。在此基础上,给出了氮化铝激光打孔的适宜切割条件。
     在超导电力装置试验检测方法的研究方面,针对目前国内在超导电力装置性能检测方法研究方面的空白,从超导电力装置的电磁特性出发,对其试验内容和检测方法进行了研究,初步建立了超导电缆、超导限流器、超导变压器和超导磁储能系统的基本试验大纲和检测方法。
The study of service test procedures and design of current leads for superconducting power devices are two important aspects in superconducting power technology. The standardization of service test procedures can help to promote the technical advantage and reliability of the superconducting power devices, and it is necessary to accelerate superconducting power manufactures to go on the market. Current leads are often the major heat link to the low-temperature level of cryogenic systems and cause the main part of the boil-off of the cryogenic liquids or the power consumption of the cryocoolers. Therefore, the standardization of the service test procedures and the design of the current leads are centered about in this paper.
     In the aspect of design of current leads, firstly, the conceptual models of heat load for all-metal current leads and hybrid current leads are conceived, respectively. Secondly, based on the finite element method and heat transfer theory, their low-temperature heat load is analyzed and simulated. Furthermore, considering the dynamic case motion and cooling system of the superconducting power devices, the suitable type of the current leads are brought forward. Thirdly, after the operating condition, insulation level and technics characteristics have been investigated, the current leads for 300kVA high temperature superconducting transformer are optimized. According to the room limitation of the electrical colomotive, a method of prolonging of the path for heat transfer is put forward. Then, a simple test set for heat leakage to liquid nitrogen is desiged and fabricated, and a series of experiments are carried out on measuring the gas flux respectively. The experimental results show a good accordance with the simulation, which show that the unitary helical current lead meets the requirements of design. In order to choose tectorial mode and moulding technics for insulating materials covered on the current leads, a cooling experiment is done in advance and a feasible scheme is determined. Lastly, the current leads are carried to completion.
     A heat transfoer model of the hybrid current lead for cryocooler conduction-cooled high temperature magnetic energe storage system (H-Tc SMES) is schemed to calculate the low-temperature heat load. The current lead consists of three modules. This kind of structure is used to facilitate its design, fabrication and test in division form. According to the requirements for different modules, the current lead is optilized. At first, the minimam heat leakage values for three different metal matirals are calculated and judged. After that, copper is choosed for the metal module. The optimum heat leakage value of a copper current lead is 41.7W/kA which is almost equal to that of 42W/kA of the conduction-cooled case calculated by Hull, but, it is slightly lower than that of 47W/kA obtained by Wilson in 1983. At second, a structure for electrical insulation and thermal conduction is designed, and, the thermal contact resistance and heat leakage of AlN undertaking the work for electrical insulation and thermal conduction. Furthermore, the radiant heat of H-Tc SMES is figured. Based on these above, the electric power consumption of the cryocooler for this case is obtained. Finally, the temperature profiles, such as lead temperature during cooling down, temperature variation of the lead during DC excitation, temperature variation of the lead during different current slopes, temperature of dynamic experiments, are shown and analysed.
     In order to know the serviceability of AlN after laser drilling, its insulating strength and thermal conductivity are studied. According to the infuences of laser drilling on the hole-surface of AlN in the thermal conductivity, a concept of three areas is put forward. The relationship among the contents of Al and Al2O3 on the surface of hole, their distributions and insulation level is illustrated. Then, the suitable laser cutting velocity is represented.
     In the aspect of design of the service test procedures for superconducting power devieds, based on the electromagnetic characteristic, the test items of superconducting magnetic energy storage systems, superconducting fault current limiters, superconducting cables and superconducting transformers are studied and generalized. This work fills a blank in power application on superconductivity in China.
引文
[1]林良真.我国超导技术研究进展及展望.电工技术学报,2005, 20 (1): 1~7
    [2]唐跃进,李敬东,段献忠,等.超导电力科学技术——发展中的新学科和新技术.科技报道, 2000年第4期: 27~30
    [3]唐跃进,李敬东,程时杰,等.发展超导电力科学技术的关键及主要研究课题.电力系统自动化, 2001, 25 (9): 66~67
    [4]唐跃进,李敬东,段献忠,等. 21世纪电力工业的一个重要发展方向——超导电力技术.中国工程科学, 2000, 2 (4): 1~7
    [5]唐跃进,李敬东,叶妙元,等.未来电力系统的超导技术.电力系统自动化, 2001, 25 (1): 70~75
    [6]程时杰,唐跃进.关注超导电力的发展.中国电力企业管理, 2001年第7期: 33~34
    [7]信赢.超导电力技术及其发展前景.国际电力, 2005, 9 (1): 62~64
    [8] D.W. A. Willen, F. Hansen, C.N. Rasmussen, et al. Test results of full-scale HTS cable models and plans for a 36kV, 2kArms utility demonstration. IEEE Transactions on Applied Superconductivity, 2001, 11 (1): 2473~2476
    [9]信赢.超导电缆技术的发展及应用前景.超导经济, 2004, 128 (7): 49
    [10] B.W. McConnell. Transformer——A successful application of hHigh temperature supercon- ductors. IEEE Transactions on Applied Superconductivity, 2000, 10 (1) : 716~720
    [11] Kiyotaka Ueda, Osami Tsukamoto, Shigeo Nagaya, et al. R&D of a 500 m superconducting cable in Japan. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 1946~1951
    [12] Y. Ohki. Tokyo electric power and Sumitomo electric industries develop a high-temperature superconducting cable system. IEEE Electrical Insulation on Magnet, 2001, 17 (6): 67~69
    [13]美国Grid-2030报告:DOE, US.“Grid 2030”----A National Vision for Electricity’s Second 100 years. July, 2003
    [14] Korea Electro-technology Research Institute. DAPAS (Dream of Advanced Power System byApplied Superconductivity technology) program. MOST, Korean, 2004
    [15]电工研究所85m长三相交流高温超导电缆成功并网.新材料产业,2005年1月: 34
    [16]张永,文华,席海霞,等.中国第一组超导电缆并网运行试验.低温物理学报, 2005, 27 (5): 1136
    [17] Y. Tatsuta, S. Koso, H. Abe, etc. Development of SMES for power system control. IEEE Transactions on Applied Superconductivity, 2004, 14 (2): 693~698
    [18] Eddie M. Leung. Superconducting fault current limiters. IEEE Power Engineering Review, 2000, 20 (9): 19
    [19] Toshiro Matsumura, Tomohiro Aritake, Yasunobu Yokomizu, et al. Performances of small fault current limiting breaker model with high Tc superconductor. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 2114~2117
    [20] Ye Ying, Xiao Li-ye. New development of high temperature superconducting fault current limiter system. Automation of Electric Power Systems, 2006, 29 (13): 92~95
    [21] Seungje Lee, Chanjoo Lee. Stability analysis of a power system with superconducting fault current limiter Installed. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2461~2466
    [22] Xiao Xia, Li Jingdong, Ye Miaoyuan, et al. Development of superconducting fault current limiter. Automation of Electric Power Systems, 2001, 25 (5): 64~68
    [23] Slawomir Kozak, Tadeusz Janowski, Beata Kondratowicz-Kucewicz, et al. Experimental and numerical analysis of energy losses in resistive SFCL. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 2098~2110
    [24] Zhang B., Driscoll D., Dombrovski V. Development status of a 1000 HP superconducting motor. Cement industry technical conference, 2000 IEEE-IAS/PCA, 7-12 May 2000: 81~85
    [25] B. Gamble, S. Kalsi, G. Snitchler, et al. The status of HTS motors. IEEE Power Engineering Society. Meeting, Chicago, IL, 2002
    [26] American Superconductor wins multi-year $70 million US Navy contract to design and build HTS electric propulsion motor (2003) [Online]. http://www.amsuper. com/newsevents/newsarchive
    [27] GE team to develop breakthrough technology for generators. General Electric (press release), Schenectady, New York, USA, 2001, Octomber 8
    [28] S.S. Kalsi, D. Madura, R. Howard, et al. Superconducting dynamic synchronous condenser for improved grid voltage support. IEEE Transmission and Distribution Conference, Dallas, TX, 2003
    [29] M. Frank, J. Frauenhofer, P.V. Hasselt, et al. Long-term operational experience with first Siemens 400kW HTS machine in diverse configurations. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 2120~2123
    [30] R. Ackermann, J. Alexander, A. Gadre, et al. Testing of a 1.8MVA high temperature superconducting generator. IEEE 2003 Power Engineering Society Annual Meeting, Emerging Technologies Panel Session, Toronto in Canada
    [31] K. Funaki, M. Iwkuma, M. Takeo, et al. Preliminary test of a 500kVA 2-class oxide superconducting transformer cooled by subcooled nitrogen. IEEE Transactions on Applied Superconductivity, 1997, 7 (2) : 824~827
    [32] Reinhard Schlosser, Heinz Schmidt, Martino Leghissa, et al. Development of high-temperature superconducting transformers for railway applications. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 2325~2330
    [33] M.S. Walker, D.W. Hazelton, F.S. Murray, et al. Priliminary test of a cryocooled 1MVA HTS transformer. Proceeding of Workshop on Superconductivity, 1998, 2 (3): 29~33
    [34] Woo-Seok Kim, Jin-ho Han, Sung-Hoon Kim. Characteristic test of a 1 MVA single phase HTS transformer with pancake windings. Superconductivity Communications, 2004, 14 (2): 904~907
    [35] Sung-Hoon Kim, Woo-Seok Kim, Kyeong-Dal Choi, et al. Characteristic tests of a 1MVA single phase HTS transformer with concentrically arranged windings. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 2214~2217
    [36]全球首台非晶合金铁芯高温超导电力变压器在我国成功运行.电网技术, 2006 (4): 29
    [37]杨秋梅.电动车组高温超导变压器项目通过国家科技部验收.电力机车与城轨车辆, 2006年第1期: 52
    [38] Hou Binglin, Zhu Xuewu. New progress of the high temperature superconductor magnetic energy storage. Cryogenics and Superconductivity, 2005, 33 (3): 46~54
    [39] R.M. Dell, D.A. J. Rand. Energy storage. Journal of Power Sources, 2001, 100(30): 2~17
    [40] Sallbert, H. Krischel, A. Hobl, et al. 2 MJ SMES for an uninterruptible power supply. IEEE Transactions on applied superconcuctivity, 2000, 10 (1): 777~779
    [41] S. Nagaya, N. Hirano, K. Shikimachi, et al. Development of MJ-class HTS SMES for bridging instantaneous voltage dips. IEEE Transactions on applied superconductivity, 2004, 14 (2): 2132
    [42] Cesar A. Luongo, Thomas Baldwin, Paulo Ribeiro, et al. A 100MJ SMES demonstration at FSU-CAPS [J]. IEEE Transactions on applied superconcuctivity, 2003, 13 (2): 1972
    [43] Toshiyuki Mito, Akifumi Kawagoe, Hirotaka Chikaraishi, et al. Development of UPS-SMES as a protection from momentary voltage drop. IEEE Transactions on applied superconcuctivity, 2004, 14 (2): 721~726
    [44] Xiaohua Jiang, Xiaoguang Zhu, Zhiguang Cheng, et al. A 150kVA/0.3MJ SMES voltage sag compensation system. IEEE Transactions on applied superconcuctivity, 2005, 15 (2): 1903~1906
    [45] Shi Jing, Tang Yuejin, Zhou Yusheng, et al. 35 kJ/7kW conduction-cooled high Tc superconducting magnet energy storage. Automation of Electric Power Systems, 2006, 30 (12): 24
    [46] A.A. Malozemoff. Second Generation HTS Wire: An Assessment. America, White Paper of AMSC, 2004
    [47] R. Musenich, P. Fabbrecatore, S. Ferdeghini, et al. Behavior of MgB2 react & wind coils above 10K. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1452~1456
    [48] Tang Yuejin, Li Jingdong, Cheng Shijie, et al. Keys to applying superconducting technique to electric power systems. Automation of Electric Power Systems, 2001, 25 (9): 66 ~69
    [49]焦正宽编译.超导电技术及其应用.北京:国防工业出版社, 1974
    [50] D.G. Akopyan, D.P. Baikin, A.M. Dedjurin, et al. Development of coaxial and detachable current leads. IEEE Transactions on Magnetic. 1992, 28 (1): 964~966
    [51] H. Katheder, L. Shappals. Design and test of a 10kA gas cooled current lead for superconductingmagnets. IEEE Transactions on Magnetics, 1981, 15 (5): 2071~2074
    [52] E. Tada. Development of 30kA vapor-cooled current leads for fusion devices. Proceedings of ICEC11. Berlin-West, Germany, 1986: 528~535
    [53] I.I. Samorodov, V.V. Filatov. Optimization of an independently cooled cryogenic current lead. Cryogenics, 1992, 32 (Supplement 1): 414~418
    [54] D. Leroy, D. Oberli. 18kA vapor-cooled current leads using a stack of copper finned foils. Proceedings of ICEC 12. Southampton, U.K, 1988: 237~244
    [55] D. Hagedorn. 18kA vapor-cooled current leads to test superconducting magnet models for proposed large hadron collider at CERN using wire mesh heat exchangers. Proceedings of ICEC 12. Southampton, U.K, 1988: 242~247
    [56] R. Heller, S. Fink, G. Friesinger. Development of forced cooled current leads for fusion magnets. Cryogenics, 2001, 41 (3): 201~211
    [57] Q.S. Shu, J.A. Demko. The thermal optimum analyses and mechanical design of l0kA vapor cooled power leads for the SSC superconducting magnet tests at MTL. Applied on Superconductivity. 1993, 3 (1): 408~417
    [58] V.D. Bartenev, Yu.A. Shishov. Force-cooled current leads for the force-cooled superconducting magnets of nuclotron. Cryogenics, 1991, 31 (11): 985~991
    [59] K. Maehata, T. Nishioka, R. Ishihashi. Design chart of high temperature superconducting gas cooled current leads. IEEE Transactions on Applied Superconductivity. 1995, 5 (2): 765~768
    [60]王金星.超导磁体.北京:原子能出版社, 1985
    [61] Yu. L. Buyanov. Current leads for use in cryogenic devices: principle of design and formulae for design calculations. Cryogenics, 1985, 25 (2): 13452
    [62] K.F. John Yau, Nick Savvides, C.C. Sorrell. High-Tc superconducting current leads. Physic C, 1998, 307 (1-2): 23~28
    [63]吴千红,余运佳,南和礼.超导装置励磁电流引线的设计问题.电工电能新技术, 2000年第1期: 36~40
    [64] F.J. Mumford. Superconducting current-leads made from high Tc superconductor and normalmetal. Cryogenics, 1989, 29 (3): 206
    [65] J.R. Hull. High temperature superconducting current leads for cryogenic apparatus. Cryogenics, 29 (12): 1116
    [66] R. Wesche, A.M. fuchs. Design of superconducting current leads. Cryogenics, 1994, 34 (2): 145~154
    [67] J.M. Lock. Optimization of current leads into cryostat. Cryogenics, 1969, 19 (3): 438~445
    [68] J.R. Hull, A. Unal, M.C. Chyu. Analysis of self-cooled binary current leads containing high temperature superconductors. Cryogenics. 1992, 32 (9): 822~828
    [69] J. Sankwon, I. Sehwan. Thermal transient characteristics of current leads for superconducting equipment. Proceedings of 19th International Cryogenic Engineering Conference. Grenoble, France. 2002: 629~632
    [70] M.A. Green, L.X. Jia. A design method for multiple tube gas-cooled electrical leads for the g-2 superconducting magnets. Advances in Cryogenic Engineering. 1994, 41 (2): 573~578
    [71] L.X. Jia. Design parameters for gas-cooled electrical leads of the g-2 Magnets. Cryogenics, 1994, 34 (1): 631~634
    [72] K. Maehata, M. Wake, H. Hirabayashi. Co-axial current lead for 14T split solenoid magnet. Cryogenics. 1991, 31 (9): 806~810
    [73] K. Ishibashi, K. Maehata, A. Katase. Design chart of optimum current lead. Cryogenics. 1986, 26 (3): 235~242
    [74] E. Tada, Y. Takahashi. Development of high-current vapor-cool current leads for fusion devices. Cryogenics. 1984, 24 (2): 200~209
    [75] K. Maehata, S. Kawasaki, K. Ishibashi, et al. Operational performance of spiral-fin current leads. Cryogenics. 1993, 33 (7): 680~685
    [76] F. Darmann, R. Zhao. Calculation of the critical Current in pancake-coiled long length Bi_2223/Ag tTapes in non-uniform local magnetic fields perpendicular to the grain alignment axis. Cryogenics, 1999, 39 (2): 445~451
    [77] D.U. Gubser, M.M. Miller, L. Toth, et al. Superconducting current leads of YBCO andPb-BSCCO. IEEE Transactions on Magnetics, 1991, 27 (2): 1854
    [78] B. Dorri, K. Herd, E.T. Laskaris, et al. High temperature superconducting current leads for cryogenic applications in moderate magnetic fields. IEEE Transactions on Magnetics, 1991, 27 (2): 1858
    [79] J.L. Wu, J.T. Dederer, P.W. Eckels, et al. Design and testing of a high temperature superconducting current lead. IEEE Transactions on Magnetics, 1991, 27 (1): 1861
    [80] F. Grivon, A. Leriche, C. Cottevieille, et al. YBaCuO current lead for liquid helium temperature applications. IEEE Transactions on Magnetics, 1991, 27 (2): 1866
    [81] J.R. Hull, A. Unal, M.C. Chyu. Analysis of self-cooled binary current leads containing high temperature superconductor. Cryogenics, 1992, 32 (9): 822
    [82] J.R. Hull. High-temperature superconducting current leads. IEEE Transactions on Applied Superconductivity, 1993, 3 (1): 869
    [83] Y.S. Cha, R.C. Niemann, J.R. Hull. Thermodynamic analysis of helium boil-off experiments with pressure variations. Cryogenics, 1993, 33 (7): 675
    [84] Yukikazu Iwasa, Haigun Lee. High-temperature superconducting current lead incorporating operation in the current-sharing mode. Cryogenics, 2000, 40 (3): 209~219
    [85] A. Ballarino, A. Ijspeert. Design and test of the prototype high Tc current leads for the Large Hadron Collider orbit correctors. IEEE Transactions on Applied Superconductivity, 1995, 5 (2): 805
    [86] Koichi Ohsemochi, Michitaka Ono, Shunji Nomura, et al. Development of 3kA conduction cooled HTS current lead system. Cryogemics, 2003, 43 (10-11): 643
    [87] S.Y. Seol, J.R. Hull. Transient analysis and burnout of high temperature superconducting leads. Cryogenics, 1993, 33 (10): 966
    [88] R. Heller, J.R. Hull. Conceptual design of a 20-kA current lead using forced-flow cooling and Ag-alloy-sheathed Bi-2223 high temperature superconductors. IEEE Transactions on Applied Superconductivity, 1995, 5 (2): 797
    [89] M. Konno, K. Sakaki, T. Uede, et al. Development of HTS current leads for 1 kWh/1 MWmodule type SMES system (1)—design study. IEEE Transactions on Applied Superconductivity, 1995, 5 (2): 805
    [90] T. Isono, K. Kawano, K. Hamada, et al. Test results of 60-kA HTS current lead for fusion application. Physica C, 2003, 392-396 (Part 2): 1291~1224
    [91] Yukikazu Iwasa, Haigun Lee. High-temperature superconducting current leas incorporating operation in the current-sharing mode. Cryogenics, 2000, 40 (3): 209
    [92] Makoto Sugimoto, Takaaki Osono. Development and performance test results of 20kA vapour-cooled current lead for ITER. Cryogenics, 1992, 33 (8): 549~560
    [93] Suntao Yang, P. fotenhauer, M. John. Optinization of the intercept for high temperature superconducting current lead. Advances in Cryogenic Engineering, 1996, 41 (2): 537~572
    [94] T.C. Wang, J.R. Wang, Y.R. Cai, et al. Performance of high temperature superconducting current leads made of bi2223 rods up to 1kA class. Chinese Journal of Low Temperature Physics, 1999, 21(5): 340
    [95] R. Heller, G. Friesinger, A.M. Fuchs, et al. Development of high temperature superconductor current leads for 70kA. IEEE Transactions on Applied Superconductivity, 2002, 12 (1): 1285
    [96] R. Heller, S.M. Darweschsad, G. Dittrich, et al. Experimental Results of a 70 kA high temperature superconductor current lead demonstrator for the ITER magnet system. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1496
    [97] R. Heller, W.H. Fietz, R. Lietzow, et al. 70kA high temperature superconductor current lead operation at 80K. IEEE Transactions on Applied Superconductivity, 2006, 16 (2): 823
    [98] Ren Li, Tang Yue-Jin, Shi Jing, et al. The current leads and their electrical insulation & thermal conduction for 35kJ SMES. Chinese Journal of Low Temperature Physics, 2006, 28(4): 334
    [99] Bi Yanfang. R&D on 15kA HTS current leads for east Tokamak. Chinese Journal of Low Temperature Physics, 2005, 27 (5): 1074
    [100] K. Maehata, K. Ishibashi, Y. Wakuta. Design chart of gas-cooled current leads made of copper of different RRR values. Cryogenics, 1994, 34 (11): 935~940
    [101] Yuejin Tang, Jingdong Li, Shijie Chen, et al. Characteristic of superconducting transformer andits developing status. Automation of Electric Power Systems, 2001, 25 (6): 69~71
    [102] Reinhard Schlosser, Heinz Schmidt, Martino Leghissa, et al. Development of high-temperature superconducting transformers for railway applications. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 2325
    [103] R. Heller, G. Friesinger, A.M. Fuchs, et al. Development of a 20kA high tempetature superconductor current lead. Cryogenics, 2001, 41(5): 539
    [104] Haigun Lee, Ho Min Kim, Yukikazu Iwasa, et al. Development of Vapor-cooled HTS-copper 6-kA current lead incorporating operation in the current-sharing mode. Cryogenics, 2004, 44 (1): 7
    [105] Chang Shancun. Superconducting Technology. Japan: Electric Academy, 1993
    [106] Cryogenic Academy in Japan. Superconducting Cryogenics Handbook. Japan: OHM Society, 1993
    [107]张志鹏,朱玉群.超导磁体.武汉:华中理工大学出版社, 1989
    [108] A. Friedman, N. Shaked, E. Perel, et al. HT-SMES operating at liquid nitrogen temperatures for electric power quality improvement demonstrating. IEEE Transaction on Applied Superconductivity, 2003, 13 (2): 15~64
    [109] Hae-Jong Kim, Ki-Chul Seong, Jeon-Wook Cho, et al. Development of a 3MJ/750kVA SMES system. Cryogenics, 2006, 46 (5): 367
    [110] K. Nemoto, K. Kuwano, T. Okutomi, et al. Development of a low heat leak current-lead system. IEEE Transaction on Applied Superconductivity, 2004, 14 (2): 1222
    [111] T. Isono, K. Kawano, K. Hamada, et al. Test results of 60-kA HTS current lead for fusion application. Physica C, 2003, 392-396 (Part 2): 1219~1224
    [112] H. Okumura, S. Yamaguchi. One dimensional simulation for Peltier current leads. IEEE Transaction on Applied Superconductivity, 1997, 7 (1): 715
    [113] G.K. White. Experimental techniques in low temperature physics. Oxford: Clarendon Press, 1979
    [114]齐欣译.传热学手册.北京:科学出版社, 1992
    [115]康志成,周峰,丁立人,等.超导磁体的气冷电流引线. 2003, 9 (3): 155
    [116] Y. Iwasa. Case studied in superconducting magnet. New York: Plenum Press, 1994
    [117] K.H. Kim, C.H. Chang, Y.M. Koo. Strrctual characterization of AlN thin film deposited on a single crystal of Al2O3 (0001) substrate. Materials Letters, 1998, 34 (2): 15~64
    [118] K. Tsujimoto, H. Shimakage, Z. Wang, et al. Crystallinity and superconductivity of as-grown MgB2 thin films with AlN buffer layers. Physica C, 2005, 426-431 (Part 2): 1464~1468
    [119] H. Shimakage, K. Tsujumoto, Z. W ang, et al. Insulator layer formation in MgB2 SIS junctions. Physica C, 2005, 426-431(Part 2): 1469~1473
    [120]饶荣水,庄汉锐,蔡咏虹.氮化铝陶瓷低温热导率的实验研究.低温与超导, 2003, 31 (3): 41
    [121]袁根福,曾晓燕.硬脆性无机材料激光成形加工研究与应用现状.激光与光电子学进展, 2002, 39 (6): 47
    [122] R. Evans, A. Salifu, G. Zhang, et al. Development of experimental techniques and an analytical model for aluminum nitriding. Surface and Coatings Technology, 2002, 157 (3): 59~63
    [123] F. Boey, A.I. Y. Tok, Y.C. Lam, et al. On the effects of secondary phase on thermal conductivity of AlN ceramic substrates using a microstructural modeling approach. Materials Science and Engineering A, 2002, 335 (5): 281~289
    [124] Young-Soon Kwon, Alexander A. Gromov, Alexander P. Ilyin, et al. The mechanism of combustion of superfine aluminum powders. Combustion and Flame, 2003, 133 (6): 385~391
    [125] V. Rosenband, A. Gany. Activation of combustion synthesis of aluminum nitride powder. Journal of Materials Processing Technology, 2004, 147 (4): 197~203
    [126] Yoshikazu Kameshima, Masaki Irie, Atsuo Yasumori, et al. Mechanochemical effect on low temperature synthesis of AlN by direct nitridation method. Solid State Ionics, 2004, 172 (1): 185~190
    [127] T. Yoshioka, Y. Makino, S. Miyake, et al. Properties and microstructure of aluminum nitride sintered by millimeter-wave heating. Journal of Alloys and Compounds, 2005, 408-412 (Part 2): 566~567
    [128] B. Stolz, R. Poprawe. Surface conductivity modification of ceramics with laser radiation. Surface and Coationgs Technology, 1999, 112 (7): 394~400
    [129] Rongshui Rao, HuilinG Wang. Identification and experimental investigation of thermal interface resistance for cryocooler cooled high-Tc superconductor. Chinese Journal of Low Temperature Physics, 2003, 25 (3): 209~214
    [130] Rongshui Rao, Hanrui Zhuang, Yonghong Cai, et al. Experimental investigation on the low temperature thermal conductivity of aluminum nitride ceramic. Cryocenics and Superconductivity, 2003, 31 (3): 41~44
    [131] Ling Shi, Huiling Wang, Xinming Yu. Experimental investigation of thermal contact resistance of AlN and OFHC-Cu contact at low temperature. Vacuum & Cryogenics, 2004, 10 (2): 82~84
    [132] Mingfeng Zhang, Shengxiong Zhang, Shaoji Zheng, et al. Investigation of optimized cutting condutions of Al2O3 ceramic plate by pulsed CO2 laser. Chinese Journal of Lasers, 2001, 27 (11): 1046~1049
    [133]张珊,康少英.激光加工陶瓷的实验研究.应用激光, 1994, 14 (6): 253~256
    [134]邓英剑.激光切割及其在切割陶瓷材料中的作用.机械, 2004, 31 (3): 55~60
    [135]陈锡让,王忠琪,于思远.工程陶瓷小孔激光加工.天津大学学报, 1996, 29 (1): 152~157
    [136] R.C. Niemann, J.D. Gonczy, P.E. Phelan, et al. Design and performance of low-thermal- resistance, high-electrical-isolation heat intercept connections. Cryogenics, 1995, 35 (11): 829~833
    [137]候炳林,朱学武.高温超导储能应用研究的新进展.低温与超导, 2005, 33 (3): 46~54
    [138]韩翀,李艳,余江,等.超导电力磁储能系统研究进展(一)——超导储能装置.电力系统自动化, 2001, 25 (12): 24
    [139] W. Rucklcs, W.V. Hasscnzahl. Superconducting magnetic energy storage. IEEE Power Engineeringy Review, 2000, 20 (5): 16~20
    [140] Woo-Seok Kim, Sang-Yeop Kwak, Ji-Kwang Lee, et al. Design of HTS magnets for a 600 kJ SMES. IEEE Transactions on Applied Superconductivity, 2006, 16 (2): 620~623
    [141]戴陶珍,唐跃进,李敬东,等.电力系统动模实验用50KJ高温超导磁储能的设计研究.低温与超导, 2003, 31 (4): 24~28
    [142] R.J. Loyd, T.E. Walsh, E.R. Kimmy, et al. Overview of the SMES ETM program: the Bechtelteam's perspective. IEEE Transactions on Magnetics, 1989, 25 (2): 1569~1575
    [143] M.S. Lubell, J.W. Lue. Structure and cost scaling for intermediate size superconducting magnetic energy storage (SMES) systems. IEEE Transactions on Applied Superconductivity, 1995, 5 (2): 345~349
    [144]钱照明,程肇基.电力电子系统——电磁兼容设计基础及干扰抑制技术.杭州:浙江大学出版社, 2000
    [145] GB/T-3859.1-93.半导体变流器基本要求的规定
    [146] C.A. Luongo, K.D. Partain, J.R.Miller, et al. Quench initiation and propagation study (quips) for the SMES-CICC. Cryogenics, 1994, 34 (1): 611~614
    [147] T. Hamajima, K. Kitamura, M. Sakai, et al. Specificaions and performance experiences of internally cooled small-scale SMES. Cryogenics, 1998, 38 (11): 1135~1143
    [148] S. Nagaya, N. Hirano, K. Shikimachi, et al. Development of MJ-class HTS SMES for bridging instantaneous voltage dips. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 2132
    [149] Cesar A. Luongo, Thomas Baldwin, Paulo Ribeiro, et al. A 100MJ SMES demonstration at FSU-CAPS. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 1972
    [150] Toshiyuki Mito, Akifumi Kawagoe, Hirotaka Chikaraishi, et al. Development of UPS-SMES as a protection from momentary voltage drop. IEEE Transactions on Applied Superconductivity, 2004, 14 (2): 721~726
    [151] Xiaohua Jiang, Xiaoguang Zhu, Zhiguang Cheng, et al. A 150kVA/0.3MJ SMES voltage sag compensation system. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1903~1906
    [152] Shi Jing, Tang Yuejin, Zhou Yusheng, et al. 35 kJ/7kW conduction-cooled high-Tc superconducting magnet energy storage. Automation of Electric Power Systems, 2006, 30 (12): 24
    [153] K. Terazono, Y. Hatabe, H. Kimura, et al. Verification test results of the experimental model coil for power system stabilization. Physica C, 2004, 412-414 (part 2) 1251~1255
    [154] Hironobu Kimura, Yasuhiro Hatabe, Hidemi Hayashi, et al. Test results of long-term and over-load operation for a 1 kWh/1 MW module-type SMES. Physica C, 2003, 392=396 (part 2)1196~1200
    [155] S. Nagaya, N. Hirano, M. Kondo, et al. Development and performance results of 5 MVA SMES for bridging instantaneous voltage dips. IEEE Transactions on Applied Superconductivity, 2004, 14 (2): 699~704
    [156] S.S. Kalsi, D. Aized, B. Connor, et al. HTS SMES magnet design and test results. IEEE Transactions on Applied Superconductivity, 1997, 7 (2): 971~976
    [157] H. Gurol, L. Motowidlo, C. Luongo. AC losses in the SMES conductor and coil structure. IEEE Transactions on Magnetics, 1989, 25 (2): 1582~1585
    [158] M. Steurer, W. Hribernik. Frequency response characteristics of a 100 MJ SMES coil- measurements and model refinement. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1887~1890
    [159] GB/T-3859.2-93.半导体变流器应用导则
    [160] GB/T-14549-93.电能质量——公用电网谐波
    [161] M. Minami, T. Nakano, Akita, et al. Research and development of superconducting magnetic energy storage system: Influence of mechanical properties of Bi-2212/Ag Rutherford cable to its critical current. Physica C, 2001, 357-360: 1323~1326
    [162]李超鲲,杨鹏飞.超导电缆行业现状分析及市场前景预测.市场透视, 2006年第10期: 6~10
    [163]杨军,张哲,尹项根,等.我国首套高温超导电缆并网运行情况.电网技术, 2005, 29 (4): 4~7
    [164]周华锋,李敬东,唐跃进,等.高温超导电力电缆的发展.电力系统自动化, 2001, 25 (8): 71~74
    [165] J.O. Willis. Superconducting transmission cables. IEEE Power Engineeringy Review, 2000, 20 (8): 10~14
    [166] Thomas L. Baldwin, Michael Steurer, Yazhou Liu. A novel method of controlling the effective impedance of a cold-dielectric, very low impedance, superconducting cable. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1783~1786
    [167]方进,翁佩德,武松涛,等.管内电缆导体稳定性理论与实验研究.低温与超导, 2001, 29 (1): 39
    [168]李健,林良真.高温超导交流输电电缆导体层电流分布研究.电工电能新技术, 2000年第2期: 7
    [169]范宇峰,徐向东,龚领会,等.高温超导电缆低温系统数据实时监控.低温工程, 2004, 141 (5): 26~30
    [170] Y.F. Fan, L.H. Gong, X.D. Xu, et al. Cryogenic system with the sub-cooled liquid nitrogen for cooling HTS power cable. Cryogenics, 2005, 45 (4): 272~276
    [171]张俊,李敬东,唐跃进.高温超导电缆的过电流保护.电线电缆, 2004年第1期: 35~37
    [172] T. Masuda, T. Kato, H. Yumura, et al. Verification tests of a 66kV HTSC cable system for practical use (first cooling tests). Physica C, 2002, 378-381 (Part 2): 1174~1180
    [173] Takato Masuda, Yuuichi Ashibe, Michihiko Watanabe, et al. Development of a 100m, 3-core 114MVA HTSC cable systemPhysica C 372-376 (2002) 1580~1584
    [174] Hae-Joon Kim, J.H. Kim, J.W. Cho, et al. AC loss characteristics of Bi-2223 HTS tapes under bending. Physica C, 2006, 445-448 (Part 2): 768~771
    [175] H. Suzuki a, J. Ogawa b, M. Ciszek, et al. AC losses in multifilamentary Bi-2223/Ag tapes subjected to bending strains. Physica C, 2005, 426-431 (Part 2): 1333~1338
    [176] Dag Willén, Finn Hansen, Manfred Daümling, et al. First operation experiences from a 30 kV, 104 MVA HTS power cable installed in a utilitysubstation. Physica C, 2002, 372-376 (Part 3):1571~1579
    [177] K. H. Jensen, C. Traeholt, E. Veje, et al. Short-circuit experiments on a high-Tc superconducting cable conductor. Physics C, 2002, 372-376 (Part 3): 1585~1587
    [178]温华明,林良真,林玉宝,等.高温超导输电电缆的交流损耗.高技术通讯, 2001年第9期: 104
    [179] B. ten Haken, V. Ottoboni, M. D. Bentzon, et al. Advanced testbeds for quality control of superconductors in power applications. Supercondor Science and Technology, 2000, 13 (10): 1428
    [180] D.E. Daney, H.J. Boenig, M.P. Maley, et al. Calorimeter for measuring AC losses in HTS cables for superconducting power transmission lines. Cryogenics, 1999, 39 (3): 225~233
    [181] Chresten Tr?holt, S?ren Krüger Llsen, Carsen Rasmussen, et al. Calorimetric measurements of losses in HTS cables. IEEE Transactios on Applied Superconductivity, 2001, 11 (1): 1777~1780
    [182] H. Neumann. Concept for thermal insulation arrangement within a flexible cryostat for HTS power cables. Cryogenics, 2004, 44 (2) 93~99
    [183] H. Noji, K. Ikeda, K. Uto, et al. Calculation of the total AC loss of high-TC superconducting transmission cable. Physica C, 2006, 445-448 (Part 2): 1066~1068
    [184] M. Yagi, S. Tanaka, S. Mukoyama. Measurement of AC losses in an HTS conductor by calorimetric method. Physica C, 2003, 392-396 (Part 2): 1124~1128
    [185] M.J. Gouge, M.J. Cole, J.A. Demko. High-temperature superconducting tri-axial power cable. Physica C, 2003, 392-396 (Part 2): 1180~1185
    [186] S. Honjo, K. Motsuo, T. Mimura, et al. High-Tc superconducting power cable development. Physica C, 2001, 357-360 (Part 2): 1234~1240
    [187]蔡磊,张哲,张勇刚,等.高温超导电缆检测与保护系统下层机单元的研制.继电器, 2005, 33 (11): 55~58
    [188]喻小艳,李敬东,唐跃进.超导电力装置失超检测的基础研究.中国工程科学, 2003, 5 (10): 73~77
    [189] K. Ueda, K. Yasuda, K. Inoue, et al. R&D of HTS power cable and fault current limiter in Super-ACE project. Physica C, 2003, 392-396 (Part 2): 1171~1179
    [190] Shinichi Mukoyama, Satoshi Maruyama, Masashi Yagi, et al. Development of 500m HTS power cable in super-ACE project. Cryogenics, 2005, 45 (1): 11~15
    [191] T. Masuda, Y. Ashibe, M. Wstanabe, et al. Verification tests of a 100m high-Tc superconducting cable. Physica C, 2002, 372-376 (Part 2): 1580
    [192] T. Takahashi, H. Suzuki, M. Ichikawa, et al. Demonstration and verification tests of 500m long HTS power cable. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1823~1828
    [193] D.S. Kwag, H.G. Cheon, J.H. Choi, et al. The electrical insulation characteristics for a HTS cable termination. IEEE Transactions on Applied Superconductivity, 2006, 16 (2): 1618~1621
    [194] Seung-Myeong Baek, Hee-Seok Ryoo, Sang-Hyun Kim, et al. A study on the surface flashovercharacteristics for a HTS cable termination. Cryogenics, 2005, 45 (1): 51~55
    [195] S. Mukoyama, S. Maruyama, M. Yagi, et al. Demonstration and verification tests of a 500m HTS cable in the super-ACE project. Physica C, 2005, 426-431 (Part 2): 1365~1373
    [196] Jeonwook Cho, Joon-Han Bae, Hae-Jong Kim, et al. Development of a single-phase 30 m HTS power cable. Cryogenics, 2006, 46 (6): 333~337
    [197] Kiyotaka Ueda, Osami Tsukamoto, Shigeo Nagaya, et al. R&D of a 500 m Superconducting Cable in Japan. IEEE Transactions on Applied Superconductivity, 20035, 13 (2): 1951
    [198] H.M. Wen, L.Z. Lin, Y.B. Lin, et al. AC losses measurement of 1m long HTS cable. Physica C, 2003, 386 (4): 52~55
    [199] A. Kühle, C. Tr?holt, S. Krüger Olsen, et al. Measuring AC-loss in high temperature superconducting cable-conductors using four probe methods. IEEE Transactions on Applied Superconductivity, 1999, 9 (2): 1169~1172
    [200]谭恢曾.超导在电力系统中的应用.湖南电力, 2004, 24 (1): 63
    [201]张绪红,周有庆.超导故障限流器的结构及特点.低温与超导, 2002, 30 (4): 20
    [202]吴起凡,吴美潮.高温超导限流器的新进展.电气时代, 2002年第5期: 12
    [203] Slawomir Kozak, Tadeusz Janowski, Beata Kondratowicz-Kucewicz, et al. Experimental and numerical analysis of energy losses in resistive SFCL. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 2098~2101
    [204]叶林,林良真.超导故障限流器的电力应用研究进展.电力系统自动化, 1999, 23 (7): 53
    [205]肖立业,林良真.超导限流器——超导技术产业化的领头产品.科技导报, 1999年第7期: 37
    [206] Hiroyuki Hatta, Tanzo Nitta, Shinichi Muroya, et al. Study on recovery current of transformer type superconducting fault current limiter. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 2096~2099
    [207] P. Tixador, J. Leveque, Y. Brunet, et al. Pham. Hybrid AC superconducting current limiter: small-scale experimental model. IEE Proceedings: Generation, Transmission and Distribution, 1994, 141 (2): 117~124
    [208]李建基.超导限流器.电工技术, 2002年第7期: 54
    [209]余江,段献忠,何仰赞.不同结构超导故障限流器在电力系统中的应用研究. 2001, 25 (6): 42
    [210] Michiharu Ichikawa, Masayuki Okazaki. A magnetic shielding type superconducting fault current limiter using a Bi2212 thick film cylinder. IEEE Transactions on Applied Superconductivity, 1995, 5 (2): 1067~1070
    [211] J. R. Cave, D. W. A. Willen, Y. Brissette. Test results for laboratory scale inductive high-Tc superconducting fault current limiters. IEEE Transactions on Magnetics, 1994, 30 (4): 1067~1070
    [212]肖立业,林良真,赵彩宏.有源超导限流器.低温物理学报, 2003, 25 (10): 302~303
    [213]林玉宝,林良真.超导故障限流器及其研究现状.电工电能新技术, 1997年第3期: 14~18
    [214]钱家骊,徐国政,刘卫东.超导故障电流限制器的技术参数和要求的讨论.高压电器, 2002, 38 (3): 42~43
    [215]肖霞,李敬东,叶妙元,等.超导限流器研究与开发的最新进展.电力系统自动化, 2001, 25 (5): 64~66
    [216] Duck Kweon Bae, Hyoungku Kang, Min Cheol Ahn, et al. Design and manufacturing of the large Scale high-Tc superconducting DC magnet for the 2.3MVA SFCL. IEEE Transactions on Applied Superconductivity, 2005, 15 (2): 1965~1969
    [217] Takashi Yazawa, Eriko Yoneda, Jun Matsuzaki, et al. Design and test results of 6.6kV high-Tc superconducting fault current limiter. IEEE Transactions on Applied Superconductivity, 2001, 11 (1): 2511~2514
    [218] Seungje Lee, Chanjoo Lee, Student Member, et al. Stability analysis of a power system with superconducting fault current limiter installed. IEEE Transactions on Applied Superconductivity, 2001, 11 (1): 2098~2101
    [219]唐跃进,李敬东,程时杰,等.超导变压器的基本特点和开发现状.电力系统自动化, 2001, 25 (6): 69~72
    [220] D.W. McConncll, S.P. Mehta, M.S. Walker. HTS Transformers. IEEE Power Engineering Review, 2000, 20 (6): 7~11
    [221] C.T. Reis, S.P. Mehta, B.W. McConnell, et al. Development of high temperature superconducting power transformers. IEEE Power Engineering Society Winter Meeting, 2002, 1 (27): 151~156
    [222] Reinhard Schlosser, Heinz Schmidt, Martino Leghissa, et al. Development of high-temperature superconducting transformers for railway applications. IEEE Transactions on Applied Superconductivity, 2003, 13 (2): 2325~2330
    [223]应百川. 21世纪的节能变压器——超导电力变压器.电工技术杂志, 1999年第6期: 10~12
    [224] T. Ishigohka. M. Kobayashil A. Ninomiya, et al. Fabrication and test of force-balanced-coil type air-core superconducting transformer using parallel conductor. IEEE Transactions on Applied Superconductivity, 2002, 12 (1): 816~819
    [225] S. Nagaya, N. Hirano, K. Shikimachi, et al. Development of MJ-class HTS SMES for bridging instantaneous voltage dips. IEEE Transactions on Applied Superconductivity, 2004, 14 (2): 2132
    [226] Seungwook Lee, Hee Joon Lee, Gueesoo Cha, et al. Test results of a three phase HTS transformer with double pan cake windings. IEEE Transactions on Applied Superconductivity, 2002, 12 (1): 808~811
    [227] Takeshi Ishigohka, Kenji Uno, Sakio Nishimiya. Experimental study on effect of in-rush current of superconducting transformer. IEEE Transactions on Applied Superconductivity, 2006, 16 (2): 1473~1475
    [228] Hideki Tanaka, Kouki Matsuda, Masataka Iwakuma, et al. Experimental study on the dependence of AC losses in superconducting parallel conductors on the distance between strands. Physica C, 2002, 372-376 (Part 3): 1810~1813
    [229] K. Funaki, M. Iwakuma, M. Takeo, et al. Preliminary tests of a 500 kVA-class oxide superconducting transformer cooled by subcooled nitrogen. IEEE Transactions on Applied Superconductivity, 1997, 7 (2): 824~827
    [230] H. Kimura, K. Honda, H. Hayashi, et al. Test results of a HTS power transformer connected to a power grid. Physica C, 2002, 372-376 (Part 3): 1694~1697
    [231] T. Ishigohka, M. Kobayashil, A. Ninomiya, et al. Fabrication and test of force-balanced-coil type air-core superconducting transformer using parallel conductor. IEEE Transactions on Applied Superconductivity, 2002, 12 (1): 816~819

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700