用户名: 密码: 验证码:
氮化铬和氮化碳薄膜的径向纳动运行与损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮化铬(CrN_x)薄膜和非晶态氮化碳(a-CN_x)薄膜具有良好的机械性能,被广泛应用作切削刀具、生物医学工程以及微机电系统(MEMS)等领域的耐磨涂层。另外,由于温度变化和机械振动,纳动普遍存在于MEMS中,并已成为导致MEMS失效的重要损伤形式之一。因此,研究CrN_x薄膜和a-CN_x薄膜的纳动特性具有十分重要的意义。
     本文首先利用纳米压痕仪,系统研究了CrN_x薄膜及a-CN_x薄膜径向纳动力~位移曲线的动态变化过程,进而利用扫描电子显微镜(SEM)、激光共焦显微镜(LCSM)等设备对纳动损伤进行微观分析,深入研究了两种薄膜的纳动损伤特性和机理。在此基础上,初步探讨了膜厚与压头曲率半径对薄膜纳动性能的影响。通过研究,本文获得主要结论如下:
     1.在纳动过程中,CrN_x薄膜能够提高40Cr基体的抗压能力,增大其接触刚度,降低其残余压痕深度,减少其在纳动循环过程中的能量耗散。40Cr基体的纳动损伤主要表现为压痕边缘的塑性堆积,而CrN_x薄膜的纳动损伤主要表现为环向裂纹和径向裂纹的萌生与扩展。
     2.随着循环次数的增加,Si(100)基体上的a-CN_x薄膜的损伤可分为压头周围薄膜发生弯曲、环向裂纹形成和薄膜从基体上剥落三个阶段。
     3.材料的接触刚度对其变形和损伤非常敏感,可以从接触刚度随纳动循环次数的变化曲线来判断超薄薄膜的纳动损伤过程。
     4.薄膜与基体的弹性模量越接近,纳动过程中薄膜与基体的变形协调能力越好,膜/基体系的抗纳动损伤能力越强。因此,可利用改变薄膜的弹性模量的方法来提高MEMS的使用寿命。
     5.膜厚对薄膜纳动损伤的影响比较复杂,涉及压头的压入应力、薄膜沉积过程中的残余应力以及薄膜本身的弹塑性变形等。随着压头曲率半径的减小,相同载荷下接触区的最大压入应力急剧增加,使得薄膜纳动损伤的临界载荷不断降低。
Due to their excellent mechanical properties,chromium nitride(CrN_x)and amorphous carbon nitride(a-CN_x)films have been widely employed as protective hard coatings in the areas of cutting tools,biomedical enginerring and microelectromechanical systems(MEMS).On the other hand,because of the variation of temperature and mechanical vibration,nanofretting widely exists in MEMS and has become a key tribological problem of concern.Therefore,it is important to understand the nanofretting properties of the CrN_x and a-CN_x films.
     With a nanoindenter,the nanofretting behaviors of CrN_x film and a-CN_x film were studied by using a spherical diamond indenter under various applied normal load.The nanofretting damage of the films was analyzed by scanning electron microscopy(SEM)and laser confocal scanning microscopy(LCSM).Finally,the effects of film thickness and curvature radius of indenter on the nanofretting damage of film were also discussed.The main conclusions of the research can be summaried as following:
     1.The CrN_x film can effectively improve the anti-pressure ability of 40Cr substrate.Under the same conditions,the CrN_x film exhibited larger contact stiffness,but smaller residual indentation depth and less energy dissipation than 40Cr substrate.The radial nanofretting damage in 40Cr was mainly identified as the pileup of the plastic deformation around indents.However, the radial nanofretting damage in CrN_x film was characterized as the initiation and propagation of the ring and radial cracks,which were raised from the radial and hoop tensile stress on the interface of CrN_x film and substrate.
     2.The nanofatigue damage of the a-CN_x film on Si(100)substrate was found to start from the buckling of the film,follow by the initiation and propagation of the ring-like crack at the edge of the buckled film,and finish at the detachment of the film from the substrate with the increase in the number of the nanofretting cycle.
     3.The contact stiffness is very sensitive to the deformation and damage of the film.Therefore,an indentation method could be developed to characterize the nanofatigue behavior of ultrathin films from the variation of their contact stiffness.
     4.Film-substrate system will exhibit better deformation compatibility and in turn better unti-nanofretting ability when the elastic modulus of the film is similar as that of the substrate.Therefore,it is possible to improve the service life of the MEMS by adjusting the elastic modulus of films.
     5.The film thickness effect on the nanofretting behaviors of the films was very complicated,which may be affected by the indentation stress of indenter,the residual stresses induced in film by the deposition process and the deformation state of the film.With the decrese in the curvature radius of indenter,the maximum contact stress will increase sharply at the same indentation force,which leads to the decrease in the critical load of nanofretting damage.
引文
[1]王亚珍,朱文坚.微机电系统(MEMS)技术及发展趋势[J].机械设计与研究.2004,1(20):10-12.
    [2]赵醇生,陈启东.微型机械的特点、研究现状与应用[J].振动、测试与诊断.1998,18(1):61-70.
    [3]Bryzek J.Impact of MEMS technology on society[J].Sensors and actuators.1996,56:1-9.
    [4]Bao M H,Wang W Y.Future of microelectromechanicalsystems[J].Sensors and actuators.1996,54:135-141.
    [5]海外科技(纳米技术又获新突破)[Z].机电工程技术.2003,28(1):5.
    [6]江刺正喜,藤田博之.微机电工程及微机电一体化[M].东京:东京培风馆,1993.
    [7]章吉良,杨春生.微机电系统及其相关技术[M].上海:上海交通大学出版社,1999.
    [8]周兆英,叶雄英.微型机电系统的进展[J].仪器仪表学报.1996,17(1):17.
    [9]尹宝林.MEMS中的CAD/CAE技术与系统结构[J].仪器仪表学报.1996,17(1):27.
    [10]Cotae C,Baltag O.The study ofamagnetic fluid-based sensor[J].Journal of Magnetism and Magnetic Materials.1999,201:394-397.
    [11]Tabata K.Acceleration sensor has detecting elements that detect change inmagnetic field,and output value corresponding to displacement ofmagnetic fluid based on detection result[P].2003:11-19.
    [12]ManzA,GraberN,Hidmer H M.Miniaturized Total Chemical Analysis Systems-A Novel Conception for Chemical Sensing[J].Sensors and Actuators B.1990,1(126):244-248.
    [13]李洲洋,陈国定.MEMS中的摩擦学研究及发展趋势[J].润滑与密封.2005,4:180-187.
    [14]Qian L M,Zhou Z R,Sun Q P,Yan W Y.Nanofretting behaviors of NiTi shape memory alloy[J].Wear.2007,263:501-507.
    [15]张静宜,钱林茂,周仲荣.高载下单晶铜和单晶硅的径向纳动与损伤行为研究[J].摩擦学学报.2006,26(1):1-6.
    [16]Bhushan B.Modern tribology handbook[M].New York,CRC Press,2001.
    [17]周仲荣,Vincent L.微动磨损[M].北京:科学出版社,2002.
    [18]温诗铸.纳米摩擦学[M].北京:清华大学出版社,1998.
    [19]Qian L M,Tian F,Xiao X D.Tribological properties of self-assembled monolayers and their substrates under various humid environments[J].Tribol.Lett.2003,15(3):169-176.
    [20]Li X D,Bhushan B.A review of nanoindentation continuous stiffness measurement technique and its applications.Materials Characterization.2002,48:11-36.
    [21]Wu T W,Shull A L.Microindentation fatigue tests on submicron carbon films[J].Surface and Coating Technology.1991,47:696-709.
    [22]Li X D,Bhushan B.Development of a Nanoscale Fatigue Measurement Technique and its Application to Ultrathin Amorphous Carbon Coatings[J].Scripta Materialia.2002,47:473-479.
    [23]Ma L W,Cairney J M,Hoffman M,Munroe P R.Deformation mechanisms operating during nanoindentation of TiN coatings on steel substrates[J].Surface & Coatings Technology.2005,192:11-18.
    [24]Ma L W,Cairney J M,McGrouther D,Hoffman M,Munroe P R.Three dimensional imaging of deformation modes in TiN-based thin film coatings[J].Thin Solid Films.2006,ⅹⅹ:ⅹⅹⅹ-ⅹⅹⅹ.
    [25]Cairney J M,Tsukano R,Hoffman M J,Yang M.Degradation of TiN coatings under cyclic loading[J].Acta Materialia.2004,52:3229-3237.
    [26]Polcar T,Parreira N M G,Novak R.Friction and wear behavior of CrN coating at temperatures up to 500℃[J].Surface and Coatings Technology.2007,201(16-17):5228-5235.
    [27]Pradhan S K,Nouveau C,Vasin A,Djouadi M A.Deposition of CrN coatings by PVD methods for mechanical application[J].Surface and Coatings Technology.2005,200(1-4):141-145.
    [28]Xu J H,Umehara H,Kojima I.Effect of deposition parameters on composition,structures,density and topography of CrN films deposited by r.f.magnetron sputtering[J].Applied Surface Science.2002,201(1-4),208-218.
    [29]Weng K W,et al.Tribological property enhancement of CrN films by metal vapor vacuum arc implantation of Vanadium and Carbon ions[J].Thin Solid Films.2008,516(6):1012-1019.
    [30]陈庆东,成钢,蒋仕级.Cr_2N薄膜制备、结构及机械性能的研究[J].云南大学学报(自然科学版).1998,20(物理学专辑):133-136.
    [31]韩增虎,田家万,戴嘉维,张慧娟,李戈扬.磁控溅射CrN_x薄膜的制备与力学性能[J].功能材料.2002,33(5):500-502
    [32]赵韦人,李鸣楚,伍锦添,於元炯.反应磁控溅射制备的Cr2N薄膜的成相行为[J].金属功能材料.2002,11(4):26-28.
    [33]Bertrand G,Savall C,Meunier C.Properties of reactively RF magnetron-sputtered chromium nitride coatings[J].Surface and Coatings Technology.1997,96(2-3):323-329.
    [34]Djouadi M A,Nouveau C,Beer P,et al.Cr_xN_y hard coatings deposited with PVD method on tools for wood machining[J].Surface and Coatings Technology.2000,133-134:478-483.
    [35]Ensinger W,Kiuchi M.Cubic nitrides of the sixth group of transition metals formed by nitrogen ion irradiation during metal condensation[J].Surface and Coatings Technology.1996,84(1-3):425-428.
    [36]Hurkmans T,Lewis D B,Paritong H,et al.Influence of ion bombardment on structure and properties of unbalanced magnetron grown CrN_x coatings [J].Surface and Coatings Technology.1999,114(1):52-59.
    [37]钟彬,苟伟,李国卿,胡远荣.氮气含量对CrN_x薄膜相结构及摩擦磨损性能的影响[J].材料热处理学报.2007,28(3):134-137.
    [38]Conde A,Navas C,Cristobal A B,Housden J,Damborenea J de.Characterisation of corrosion and wear behaviour of nanoscalede-beam PVD CrN coatings.Surface & Coatings Technology[J].2006,201:2690-2695.
    [39]Zhang Z G,Rapaud O,Bonasso N,Meres D,Dong C,Coddet C.Control of microstructures and properties of de magnetron sputtering deposited chromium nitride films[J].Vacuum.2008,82:501-509.
    [40]Liu A Y,Cohen M L.Prediction of new low compressibility solid[J].Science.1989,245:841-842.
    [41]王志光,宋银,金运范,孙友梅,赵志明,刘杰,张崇宏,姚存峰.高能重离子辐照制备碳氮化合物材料研究[J].核技术.2007,30(4):337-341.
    [42]Teter D M,Hemley R J.Low Compressibility Carbon Nitrides[J].Science.1996,271:53-55.
    [43]万军,马志斌.氮化碳晶体的合成研究进展[J].武汉化工学院学报.2006,28(2):52-56.
    [44]毕凯,刘军,陈春.氮化碳薄膜的红外光谱(FTIR)特性分析[J].矿冶工程.2006,26(3):81-87.
    [45]刘军,陈志刚,陈春,毕凯.衬底材料和溅射方法对CN_x薄膜膜基结合力的影响[J].机械工程材料.2006,30(12):7-10.
    [46]毕凯,陈春,刘军.高速钢上磁控溅射氮化碳薄膜的摩擦学性能研究[J].材料保护.2007,40(7):18-20.
    [47]周飞,戴振东,加藤康司.碳基薄膜水润滑性能的研究进展[J].润滑与密封.2006,7:185-189.
    [48]Dillon R O,Woollam J A,Katkanant V.Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films[J].Phys Rev.1984,29(6):3482-3489.
    [49]Marton D,Boyd K J,Al-Bayati A H,et al.Carbon Nitride Deposited Using Energetic Species:A Two-Phase System[J].Phys Rev Lett.1994,73(1):118-121.
    [50]Zhou Z M,Xia L F,Sun Y.The influence of arc current s on the properties of carbon nit ride films deposited by vacuum cathodic arc method[J].Thin Solid Films.2002,413:26-31.
    [51]W.C.Oliver,G.M.Pharr.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].J.Mater.Res.1992,7:1564-1583.
    [52]李东升,杨德仁,阙端麟.单晶硅材料机械性能研究及进展[J].材料科学与工程.2000,18(3):100-104.
    [53]程东,严立,严志军.单晶Cu在纳米压痕过程中的微观破坏机制[J].大连海事大学学报.2005,31(2):72-75.
    [54]Abdul B A,Van D G E.Numerical analysis of indentation-induced cracking of brittle coatings on ductile substrates[J].International Journal of Solids and Structures.2002,39:1427-1442.
    [55]Michler J,Blank E.Analysis of coating fracture and substrate plasticity induced by spherical indenters:diamond and diamond-like carbon layers on steel substrates[J].Thin solid films.2001,381:119-134.
    [56]Oliver W C,Pharr G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].J.Mater.Res.1992,7:1564-1583.
    [57]Chen X,Vlassak J J.Numerical study on the measurement of thin film mechanical properties by means of nanoin dentation[J].Mater J Res.2001,16:2974-2982.
    [58]Marshall D B,Evans A G.Measurement of adherence of residually stressed thin films by indentation.I.Mechanics of interface delamination[J].J.Appl.Phys.1984,56:2632-2638.
    [59]Li X D,Bhushan B.Development of a nanoscale fatigue measurement technique and its application to ultrathin amorphous carbon coatings[J].Scripta.Materialia.2002,47:473-479.
    [60]Evans A G,Hutchison J W.On the mechanics of delamination and spalling in compressed films[J].Int.J.Solids Struct.1984,20(5):455-466.
    [61]Kriese M D,Gerberich W W,Moody N R.Quantitative adhesion measure of multilayer film:Part I.Indentation mechanic[J].J.Mater.Res.1999,14:3007-3018.
    [62]deBore M P,Gerberich W W.Microwedge indentation of the thin film fine line-I,mechanics[J].Acta.Mater.1996,44(8):3169-3175.
    [63]戴嘉维,张惠娟,李戈扬.基片与膜厚对硬质薄膜力学性能的影响[J].真空科学与技术.2003,3(23):147-151.
    [64]张泰华,刘东旭,郇勇,王秀兰.基体对氮化钛膜的微力学和摩擦性能的影响[J].中国表面工程.2003,6:23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700