用户名: 密码: 验证码:
金刚石和氮化锌半导体材料电子性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的工作是通过第一性原理计算,结合分子轨道理论和半导体理论等对金刚石和氮化锌半导体电子材料的相关性质进行探索和研究。近年来随着密度泛函理论和数值算法的发展,基于密度泛函理论的第一性原理方法已成为凝聚念物理和材料科学等领域开展研究的重要工具。本论文通过第一性原理计算对金刚石和氮化锌半导体材料性质进行了研究,涉及的材料物性包括几何构型、电子结构、光学性质等。
     金刚石作为光电子材料具有优异的物理、化学性能,非常适合制作高频、高温、大功率电子元件和电化学元件。氢、氧吸附金刚石表面表现出完全不同的电学性质,对电子器件的质量有直接影响。而空位缺陷是影响金刚石薄膜质量的又一个重要因素。随着电子器件尺寸的继续减小和集成度的增加,这种影响越来越重要。因此,深入研究金刚石材料表面的相关杂质、缺陷的微观结构及电子性质对金刚石材料在电子学领域的应用具有重要的指导意义,是碳材料应用领域的一个重要前沿。对于块体材料,随着重硼掺杂金刚石高温超导现象的发现,重硼掺杂金刚石材料的电子性质及其超导转变机理成为人们关注的焦点,并引发了对同族元素硅材料在重硼掺杂条件下相关性质研究的兴趣。硅和金刚石具有相似的晶体结构,那么,是否意味着硼对两者的电子性质影响是相似的呢?如果不是,影响又是怎样的呢?因此,重硼掺杂金刚石(硅)材料相关性质的理论研究,对理解超导转变机理及其应用具有重要的意义,是金刚石(硅)材料研究的又一热点和亮点。
     氮化锌是锌的多种化合物中研究较少的一种二元材料。它是制造发光二极管的潜在材料,另外通过热氧化氮化锌可以合成高质量的ZnO薄膜。实验上测得氮化锌的性质尤其是带隙值多种多样,且合成的氮化锌薄膜呈现偶然的n型导电特性。在缺乏实验数据的前提下,第一性原理计算可以提供相关的性质研究,既从理论上解释了实验现象,又为实验提供了新的思想。
     本论文结构如下:
     第一章说明了本课题的研究背景和意义。介绍了金刚石和氮化锌材料的实验和理论研究现状。指出了目前研究中存在的问题和可能的解决方法。阐明了进行该研究的理论意义和实际意义。
     第二章简要介绍了密度泛函理论的基本框架和近年来的理论发展。密度泛函理论的发展以寻找合适的交换相关能量泛函为主线。从最初的局域密度近似(LDA)、广义梯度近似(GGA)到现在的杂化泛函,使计算结果的精确度越来越高。除了改进交换相关泛函,近年来密度泛函理论向动力学平均场和含时等方面的扩展也很活跃,使得密度泛函理论的应用领域不断扩大。
     第三章基于密度泛函理论的广义梯度近似(GGA)方法研究了一系列氢、氧吸附金刚石(100)表面的几何、电子结构,及空位在(100)表面的扩散行为。判定了表面氢原子、氧原子的稳定存在方式。计算的结果表明桥位氧结构(C-O-C)比顶位氧(C=O)能量低,最稳定的结构是羟基吸附的表面。这些结论与最大硬度原理(HOMO-LUMO)分析的结果一致。电子结构的分析表明,氧吸附表面的极化比氢终止表面强烈得多,这是由于电荷转移的程度前者比后者强烈,是通常情况下氢吸附表面易被氧化的原因之一。态密度分析表明氢吸附金刚石p型表面电导归因于费米能级附近电子局域化程度降低,使得电子易于从内部转移至表面,在次表面形成空穴积聚层。由于氧在费米能级附近引入了更多的局域表面态,致使氧吸附表面的表面电导被削弱。但是价带顶若出现更多表面态却可以产生“跳跃”电导,解释了最近的实验现象。此外,对于金刚石(100)(2×1)表面上中性和带电的单空位和双空位的几何、电子结构的研究表明,中性双空位有较低的形成能,表明它在(100)表面浓度较高。单空位很难从第一层扩散到第二层,需要克服的能量势垒为2.7 eV。总能量表明中性空位是最稳定的缺陷。而且,计算与分析表明随表面费米能级的变化,空位可以存在多种电荷态,空位扩散可以通过电荷状态的改变来进行。
     第四章研究了重硼掺杂金刚石(硅)体系的电子性质。详细研究了孤立替位硼和硼团簇对金刚石(硅)电子结构的影响。确定了金刚石晶格常数随硼浓度增加呈线性关系。通过对重硼掺杂金刚石(硅)材料电子性质的研究,探讨了硼元素在金刚石(硅)高温超导转变过程中的影响及其与超导转变温度的关系。得到了硼二聚体在金刚石(硅)中的稳定存在形式。指出了三个替位硼复合物在金刚石中的稳定组态。电子结构的计算结果表明,硼团簇(除了金刚石中的硼二聚体)引起的杂质带和价带相混合且费米能级位于价带,支持了从金属到超导体的转变机理。通过比较重硼掺杂金刚石和硅材料的电子结构,发现硼浓度相同时,硼二聚体掺杂金刚石费米能级附近态密度的影响比对掺杂硅的影响大,得到了超导转变温度与基质材料有关的结论,进而研究发现,前者的超导临界温度与硼浓度和硼缺陷的组态都有关系,而后者只与硼浓度有关系。
     第五章利用第一性原理计算研究了氮化锌材料中可能的氧缺陷和本征缺陷电子结构,分析讨论了该材料实验样品中出现的带隙不一致等现象。通过形成能的比较研究探讨了样品中各种可能存在的缺陷及其相关电子性质,发现氧替位氮的缺陷或氮空位缺陷可能是导致偶然n型导电的原因。并讨论了可能的光学跃迁,给出了实验上氮化锌带隙存在不同值的可能原因。
     第六章对本论文进行了总结,并对今后拟开展的工作进行了展望。本论文在密度泛函理论框架下从理论上解释了氢、氧对金刚石(100)表面导电性质的影响,研究指出吸附的氢可导致p型表面电导,顶位氧可导致“跳跃”电导。讨论比较了硼浓度和组态对重硼掺杂金刚石(硅)体系超导临界温度的影响,指出前者与硼浓度和硼组态都有关系,后者只与硼浓度有关系。研究了氧缺陷和本征缺陷对氮化锌材料的几何、电子和光学性质的影响,得到了合理的结果,很好地解释了实验现象。
The dissertation is devoted to the properties study of diamond and zinc nitride semiconductor materials from first-principles, molecular orbital theory and semiconductor theory. With the progress in density functional theory (DFT) and its numerical methods, DFT method on the basis of first-principles has become one of the important tools, which was applied to the condensed matter physics and material science etc. In this dissertation, we studied the geometric structure, electronic structure and optical properties of diamond and Zn_3N_2 semiconductor materials by means of first-principles calculations.
     Diamond as a photoelectronic material possesses outstanding physical and chemical properties, which can be applied to the electronic and electrochemical devices enduring high frequency, high temperature and large power. Diamond film terminated with hydrogen and oxygen can exhibit different electronic behaviors, which affect the quality of devices directly. Vacancy defect is another important factor affecting the quality of diamond films and become more and more dominative with the size scale downward of devices and the increase of integration degree. Therefore, it is important to study the micro-structure and electronic properties of impurities and defects on diamond surface, which can be of great significance for its application in the field of electronics, and becomes a frontier issue of the carbon materials. For the bulk materials, with the discovery of high temperature superconducting phenomenon the electronic properties and superconducting transition mechanism in heavily B-doped diamond have been intensively studied, which also leads to the study interest in related properties of heavily B-doped silicon due to similar crystal structure between diamond and silicon. Thus, does it mean that effects of B in the two doped systems are similar? If not, what's the difference? Consequently, it is necessary to investigate the electronic properties of B-doped diamond (silicon) for understanding the superconducting transition mechanism.
     Zinc nitride film is one of the rare touched zinc binary compounds. It's a potential material to fabricate emitting diode and it can be also used to fabricate ZnO film by thermal oxidation method. So far, the experimental band gap of zinc nitride appeared differences. Furthermore, the as-grown samples were found to exist accidental n-type conductivity. First-principle can provide relevant properties in the absence of experimental data. It can not only explain experimental phenomena, but also provide new ideas.
     In chapter 1, we introduce the background and significance of the dissertation. Subsequently, we present the recent progress of diamond and zinc nitride materials in experiment and theory and point out the problems and its solving possible ways. We also elucidate the theoretical and actual significance of the dissertation.
     In chapter 2, we briefly introduced the basic concept of DFT and reviewed its recent progress. Finding good approximation for exchange-correlation functional is one of the main targets in DFT research. With the development of functionals research, DFT leads to more and more accurate results from the initial LDA, GGA to hybridization functional. Besides the improvement of exchange-correlation, extension of DFT to the time dependent region and combination of DFT with dynamic mean field theory (DMFT) are also active topics recently. All these progress lead DFT application to a broad range of problems.
     In chapter 3, based on GGA method, we studied geometrical structures and electronic properties for a series of C (100) surface terminated with hydrogen and oxygen, and determines their stable configurations. The calculated results indicated that bridge oxygen is more stable than top oxygen, and the most stable configuration is hydroxyl terminated surface. The results are also consistent with the analysis from the viewpoint of HOMO-LUMO theory. The electronic structures show that surface polarization is stronger in the O-terminated surface than in H-terminated surface due to the more charge transfer in former case than latter case, which is one of the reasons that the H-terminated diamond surface can be easily oxidized under normal conditions. Analysis of density of states indicated that the p-type surface conductivity in the hydrogenation diamond surface may be ascribed to the electron localization weakening near the Fermi level and the electrons transformation from the interior to the surface to form a hole accumulation layer in the subsurface. The oxygenation diamond surface may weaken the surface conductivity due to more introduced localized states near the Fermi level, whereas the increasing of the surface states up the top of the valence band may lead to the hopping conductivity, which explains the recent experimental observation. In addition, we calculated the geometrical and electronic structures of neutral and charged monovacancy and divacancy on C(100)(2xl) surface from first-principles. Calculation results indicated very low formation energies for divacancies on the C(100) surface, implying a high concentration of vacancies is expected on the C(100) surface. The monovacancy on the first layer is hard to migrate into the second layer because of a large barrier about of 2.7 eV. The total energies demonstrated that neutral vacancies are the most stable defect. Moreover, the results have also offered strong evidence for the existence of multiple charge states whose individual stabilities depend on the position of the surface Fermi level. The diffusion of vacancy can be mediated by charged defects.
     In chapter 4, we studied of the electronic properties in boron heavily boron doped diamond (silicon). The influence of isolated substitutional B and B clusters on electronic structure of diamond was systemically investigated. We confirmed that the lattice parameter increases with the boron concentration in a proximity linear relation. By study of the electronic properties of heavily B-doped diamond (silicon), we discussed the effects of B on high-temperature superconducting and the relationship between B and superconducting transition temperature in heavily B-doped diamond and silicon. We obtained the stable configurations of B-pair and three-substitutional-B in two doped systems. The electronic structures showed that the impurity band induced by B cluster (except B dimer in diamond) mixes with valence band and the Fermi level locates in the valence band in heavily boron-doped diamond and silicon, which support that the superconducting mechanism is metal-superconductor transition. Comparing their electronic structures, we found that the influence of B on the states around Fermi level E_F in silicon is less than that in diamond at the same doping level. So, superconducting critical temperature T_C is related to the host material. Furthermore, T_C is only related to B content in silicon but plus B configurations in diamond.
     In chapter 5, we performed electronic structures calculations for oxygen and intrinsic defects in zinc nitride using first-principles to discuss the origin of the various band gap values appeared in different experimental samples. We investigated electronic properties for various possible defects based on the formation energy and found that substitutional oxygen for nitrogen and nitrogen vacancy are the reasons, which should be responsible for n-type conductivity. We also discussed possible photo-transitions to probe the origin responsible for the different optical band gap experimentally.
     In chapter 6, we summaried the conclusions of this dissertation and previewed the further studies. Within the framework of DFT, we explain the influences of oxygen on the properties of C( 100) surface. The research points out that top oxygen can lead to hopping conductivity. We firstly discussed that the superconducting critical temperature dependence of B content and B configurations on heavily B-doped diamond and silicon and drawn the conclusion that it depends on B content and B configurations in the former case, wheaers only relates to B content in the latter case. Finally, we have investigated geometrical, electronic and optical properties of oxygen and intrinsic defects in zinc nitride and given reasonable explainations to experimental phenomena.
引文
[1]P.W.May,Diamond thinfilms:A 21st century material.Phil.Trans.R.Scc.Lond.A358(2000)473.
    [2]Gehan A.J.Amaratunga,Science,297(2002)1657.
    [3]M.Ogura et al.,Diam.Relat.Mater.14(2005)2023.
    [4]S.Yalapatra,P.G.Ganesan,et al.Phys.Rev.Lett.95(2005)097201.
    [5]J.P.Goss,P.R.Briddon et al.Phys.Rev.B 74,(2006)245217.
    [6]I.Sakaguchi,et al.Phys.Rev.B 60(1999)2139.
    [7]R.Kalish,A.Reznik et al.Appl.Phys.Lett.76(2000)757.
    [8]J.A.Garrido,,C.E.Nebel,et al.,Phys.Rev.B 65(2002)165409.
    [9]Dai Y,Yan C X,et al.Carbon,43(2005)1009.
    [10]P.Zapol.M.Sternberg et al.Phys.Rev.B 65,(2002)045403.
    [11]R.B.Corvin,G.Joseph et al.Appl.Phys.Lett.80,(2002)2550.
    [12]Zephirin Teukam,Jacques Chevallier et al.,Nature Mater,12(2003)482.
    [13]Y.Dai,D.Dai,D.Liu et al.Appl.Phys.Lett.84,(2004)1895..
    [14]E.B.Lombardi,A.Mainwood,K.Osuch.Phys.Rev.B 70,(2004)205201.
    [15]A.Mainwood,J Mater Sci:Mater Electron 17(2006)453.
    [16]J.P.Goss,P.R.Briddon et al.Phys.Rev.B 74,(20069)245217.
    [17]E.A.Ekimov,V.A.Sidorov,E.D.Bauer,N.N.Melnik,N.J.Curro,J.D.Yhompson,S.M.Stishov,Nature(London)428,(2004)542.
    [18]Y.Takano,M.Nagao,I.Sakaguchi,M.Tachiki,T.Hatano,K.Kobayashi,H.Umezawa,and H.Kawarada,Appl.Phys.Lett.85,(2004)2851.
    [19]Z.L.Wang,Q.Luo,L.W.Liu,C.Y.Li,H.X.Yang,H.F.Yang,J.J.Li,X.Y.Lu,Z.S.Jin,L.Lu,and C.Z.Gu,Diam.Relat.Mater.15,(2006)659.
    [20]H.Umezawa,T.Yakenouchi,Y.Takano,K.Kobayashi,M.Nagao,I.Sakaguchi,M.Tachiki,T.Hatano,G.Zhong,M.Tachiki,and H.Kawarada,http://www.arXiv.org/cond-mat/0503303
    [21]T.Yokoya,T.Nakamura,et al.Nature 438(2005)647.
    [22]Negoro Y et al.J.Appl.Phys.96(2004)4916.
    [23] J.Kortus, Nature Mater. 4 (2005) 879.
    [24] V. V. Brazhkin, E. A. Ekimov, A. G. Lyapin, S. V. Popova, A.V. Rakhmanina, S. M. Stishov, V. M. Lebedev, Y. Katayama, and K. Kato Phys. Rev. B 74 (2006) 140502.
    [25] V. A. Sidorov, E. A. Ekimov, S. M. Stishov, E. D. Bauer, and J. D. Thompson, Phys. Rev. 5 71(2005)060502.
    
    [26] N. Tsubouchi, M. Ogura et al. Appl. Phys. Lett. 89 (2006) 012101.
    [27] A. V. Hamza G. D. Kubiak R. H. Stulen. Surf. Sci. 237(1990) 35.
    [28] C.Kanai, Y.Shichibu, K. Watanabe et al. Phys. Rev. B 65 (2002) 153312.
    [29] P. E. Phersson, T. W. Mercer. Surf. Sci. 460 (2000) 49.
    [30] Y. Mori, H. Kawarada, A.Hirak. Appl. Phys. Lett. 58 (1991) 940.
    [31] K. Slawomir, P. Jaromir, R. Franciszek. Chem. Phys. Lett. 391 (2004) 56.
    [32] M. I. Landstrass, K. V. Ravi. Appl. Phys. Lett. 55 (1989) 1391.
    [33] S.Yamanaka, K. Ishikawa, N. Mizuochi, et al. Diam. Relat. Mater. 14 (2005) 1939.
    [34] H. Kiyota, E. Matsushima, K. Sato et al. Appl. Phys. Lett. 67 (1995) 3596.
    [35] M J. Rutter, J. Robertson. Phys. Rev. B. 57 (1998) 9241.
    [36] A. J. Garrido, T. Heimbeck, M. Stutzmann. Phys. Rev. B 71 (2005) 245310.
    [37] Y. Bar-Yam, T. D. Moustakas, Nature, 342 (1989) 786.
    [38] T. Haliciogu, Thin Solid Films, 228 (1993) 295.
    [39] X. J. Hu, Y. B. Dai, R. B. Li, H. S. Shen, and X. C. He, Solid Stae communications 122 (2002) 45.
    
    [40] R. E. Stallcup, J. M. Perez, Appl. Phys. Lett. 81 (2002) 4538.
    [41] T.Yokoya, T. Nakamura, T. Matsushita, T. Muro, Y. Takana, M. Nagao, T. Takenouchi, H. Kawarada, and T. Oguchi, Nature (London) 438 (2005) 647.
    [42] E. Bustarret, J. Kacmarcik, C. Marcenat, E. Gheeraert, C. Cytermann, J. Marcus, and T. Klein, Phys. Rev. Lett. 93 (2004) 237005.
    [43] B. Sacepe, C. Chapelier, C. Marcenat, J. Kacmarcik, T. Klein, M. Bernard, and E. Bustarret, Phys. Rev. Lett. 96 (2006) 097006.
    [44] M. Ortolani, S. Lupi, L. Baldassarre, P. Calvani, U. Schade, Y. Takano, M. Nagao, T. Takenouchi, and H. Kawarada, http://www.arXiv.org/cond-mat/0602150
    [45] J. Nakamura, E. Kabasawa, N. Yamada, Y. Einaga, D. Saito, H. Isshiki, S. Yugo, R. C. C. Perera, Phys. Rev. B 70 (2004) 245111.
    [46] J. Nakamura, T. Oguchi, N. Yamada, K. Kuroki, K. okada, Y. Takano, M. nagao, I. Sakaguchi, H. Kawarada, R. C. C. Perera, D. L. Ederer, http://www.arXiv.org/cond-mat/0410144
    [47] M. Hoesch, T. Fukuda, T. Takenouchi, J.P. Sutter, S. Tsutsui, A.Q.R. Baron, M. Nagao, Y. Takano, H. Kawarada, and J. Mizuki, http://www.arXiv.org/cond-mat/0512424.
    [48] M. Ortolani, S. Lupi, L. Baldassarre, U. Schade, P. Calvani, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada, Phys. Rev. Lett. 97 (2006) 097002.
    [49] V. A. Sidorova, E. A. Ekimova, E. D. Bauerb, N. N. Mel'nikc, N. J. Currob, V. Fritschb, J. D. Thompsonb, S. M. Stishova, A. E. Alexenkod, B. V. Spitsyn, Diam. Relat. Mater. 14 (2005) 335.
    [50] B. Sacepe, C. Chapelier, C. Marcenat, J. Kacmarcik, T. Klein, F. Omnes, E. Bustarret,phys. stat. sol. (a) 203 (2006) 3315.
    [51] J. J. Mares, P. Hubik, M. Nesladek, D. Kindl, and J. Kristofik, Diam. Relat. Mater. 15(2006)1863.
    [52] J. J. Mares, P. Hubik, M. Nesladek, D. Kindl, and J. Kristofik, Diam. Relat. Mater. 16(2007)1.
    [53] J. J. Mares, P. Hubik, M. Nesladek, and J. Kristofik, Diam. Relat. Mater. 16 (2007) 921.
    
    [54] L. Boeri, J. Kortus, and O. K. Andersen, Phys. Rev. Lett. 93 (2004) 237002.
    [55] K.W. Lee, and W. E. Pickett, Phys. Rev. Lett. 93 (2004) 237003.
    [56] Y. Ma, J. S. Tse, T. Cui, D. D. Klug, L. Zhang, Y. Xie, Y. Niu, G. Zou, Phys. Rev. B 72(2005)014306.
    
    [57] H. J. Xiang et al., Phys. Rev. B 70 (2004) 212504.
    
    [58] X. Blase, Ch. Adessi, and D. Connetable, Phys. Rev. Lett. 93 (2004) 237004.
    [59] Y. Dai, R. Long, B. B. Huang, Z. K. Zhang, Diam. Relat. Mater. 2006.
    [60] K.W. Lee, W. E. Pickett, Phys. Rev. B 73 (2006) 075105.
    [61] G. Baskaran, http://arXiv.org/list/cond-mat/ (2004) (0404286 and 0410296).
    [62] G. Baskaran, Phys. Rev. Lett. 90 (2003) 197007.
    [63]E.Bourgeois,E.Bustarret,P.Achatz,F.Omnès,X.Blasé Phys.Rev.B 74(2006)094509.
    [64]J.P.Goss,and P.R.Briddon,Phys.Rev.B 73(2006)085204.
    [65]E.Bustarret,C.Marcenta,P.Achatz,J.Kacmarcik,F.Lévy,A.Huxley,L.Ortéga,E.Bourgeois,X.Blase,D.Débarre,J.Bohlmer,Nature(London)444(2006)465.
    [66]H.Juza,Z.Haha,Anor.Allg.Chem.224(1940)125.
    [67]K.Kuriyama,Y.Takahashi,and F.Sunohara,Phys.Rev.B 48(1993)2781.
    [68]D.E.Partin,D.J.Williams,and M.O'Keefee,J.SolidState Chemistry 132(1997)56.
    [69]M.Futsuhara,K.Yoshioka,and O.Takai,Thin Solid Films 317(1998)322.
    [70]M.Futsuhara,K.Yoshioka,and O.Takai,Thin Solid Films 312(1998)274.
    [71]F.J.Zong.H.L.Ma,J.Ma,W.Du,X.J.Zhang,H.D.Xiao,F.Ji,and C.S.Xue.Appl.Phys.Lett.87(2005)233104.
    [72]F.J.Zong,H.L.Ma,W.Du,J.Ma,X.J.Zhang,H.D.Xiao,F.Ji,and C.S.Xue.Appl.Surf Sci.252(2006)7983.
    [73]Z.Y.Xiao,Y.C.Liu,J.Y,Zhang.Semi.Sci.and Tech.20(2005)796.
    [74]Y.Nakano,T.Morikawa,T.Ohwaki,and Y.Taga.Appl.Phys.Lett.88(2006)172103.
    [75]陈光华,张阳等.金刚石薄膜的制备与应用.北京:化学工业出版社2004.
    [76]方奇,于文涛等.晶体学原理.北京:国防工业出版社2002.
    [1] M. Born and J. R. Oppenheimer. Zur Quantentheorie der Molekeln. Ann. Phys., 84 (1927)457.
    [2] D. R. Hartree. Proceedings of the Cambridge Philosophical Society 24 (1928) 89-110.
    
    [3] D. R. Hartree. Proceedings of the Cambridge Philosophical Society 24 (1928) 111.
    [4] V. Fock. Z. Phys. 61 (1930) 126.
    [5] L. H. Thomas. Proc. Camb. Phil. Soc. 23 (1927) 542.
    [6] E. Fermi. Z Phys. 48 (1928) 73.
    [7] P. Hohenberg and W. Kohn, Phys. Rev. B. 136, (1964) 864.
    [8] W. Kohn and L. J. Sham. Phys. Rev. A 140, (1965) 1133.
    [9] C. M. Ceperley and B. J. Alder. Phys. Rev. Lett. 45, (1980) 566.
    [10] J. P. Perdew and A. Zunger. Phys. Rev. B 23 (1981) 5048.
    [11] J. P. Perdew and Y. Wang. Phys. Rev. B 45 (1992) 13244.
    [12] Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais. Phys. Rev. B 46 (1992) 6671.
    
    [13] J. P. Perdew, K. Burke and M. Ernzerhof. Phys. Rev. Lett. 11 (1996) 3865.
    [14] C. Filippi, C. J. Umrigar, and M. Taut. J. Chem. Phys. 100 (1994) 1290.
    [15] A. D. Becke, J. Chem. Phys. 98 (1993) 5648.
    [16] X. Xu and W. A. Goddard III, Proc. Natl. Acad. Sci. USA 101 (2004) 2673.
    [17] W. Koch and M. C. Holthausen, A Chemist's guide to density functional theory second edition Wiley-VCH (2001).
    [18] D. Vanderbilt. Phys. Rev. B 41 (1990) 7892.
    [19] S. G. Louie, S. Froyen, M. L. Cohen. Phys. Rev. B 26 (1982) 1738.
    [20] D. R. Hamann, M. Schluter, C. Chiang. Phys. Rev. Lett. 43 (1979) 1494.
    [21] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod Phys. 64(1992) 1045.
    
    [22] K. Bueke and E. K. U. Gross, Density Functionals: Theory and Applications, Springer, Belin(1998).
    [23] A. K. Rajagopal and J. Callaway. Phys. Rev. B 7 (1973) 1912.
    [24] V. I. Anisimov, J. Zaanen and 0. K. Andersen. Phys. Rev. B 44 (1991) 943.
    [25] L. Hedin. Phys. Rev. A 139, 796-823 (1965).
    [26] G. Vignale and M. Rasolt. Phys. Rev. Lett. 59 (1987) 2360.
    
    [27] S. Baroni, S. de Gironcoli, A. Dal Corso and P. Giannozzi. Rev. Mod. Phys. 73 (2001)515.
    [1] M. I. Landstrass, K. V. Ravi, ,Appl. Phys. Lett. 55 (1989) 975.
    [2] T. Maki, S. Shikama, M. Komori, Y. Sakaguchi, K. Sakuta, T. Kobayashi, Jpn. J. Appl. Phys. 31 (1992) L1446.
    [3] K. Hayashi, S. Yamanaka, H. Watanabe, T. Sekiguchi, H. Okushi, K. Kajimura, J. Appl. Phys. 81(1997)744.
    
    [4] S. Kulesza, P.Jaromir, R. Franciszek, Chem. Phys. Lett. 391 (2004) 56.
    [5] H. Kawarda, H. Sasaki, A. Sato, Phys. Rev. B 52 (1992) 11351.
    [6] F. Marier, M. Ridelm, B. Mantel, J. Ritein, L.Ley, Phys. Rev. Lett. 85 (2000) 3472.
    [7] Y. Dai, B. B. Huang, D. D. Dai, Diam. Relat. Mater. 12 (2003) 15.
    [8] C. Kanai, Y. Shichibu, K. Watanabe, Y. T. Akatuwa, Phys. Rev. B 65 (2002) 153312.
    [9] W. Deferme, G. Tanasa, J. Amir, K. Haenen, M. Nesladek, C. F. J .Flipseet, Diam. Relat. Mater. 15(2006)687.
    
    [10] P. E. Pehrsson, T. W. Mercer, Surf. Sci. 460 (2000) 49.
    [11] P. E. Pehrsson, T. W. Mercer, Surf. Sci. 460 (2000) 74.
    [12] B. L. Mackey, J. N. Jr. Russel, J. E. Crowell, P. E. Pehrsson, B. D. Thorns, J. E. Butler, J. Phys. Chem. B 105 (2001) 3803.
    
    [13] Y. Mori, H. Kawarada, A. Hiraki, Appl. Phys. Lett. 58 (1990) 940.
    [14] H. Tamura, H. Zhou, K. Sugisako, Y. Yokosi, S. Takami, M. Kubo, K. Teraishi, A. Miyamoto, Phys. Rev. B 61 (2000) 11025.
    
    [15] S. J. Sque, R. Jones, P. R. Btiddon, Phys. Rev. B 73 (2006) 085313.
    [16] R. Graupner, M. Hollering, A. Ziegler, J. Ristein, L. Ley, Phys. Rev. B 55 (1997) 10841.
    
    [17] J. J. Dannenberg, R. Rios,J. Phys. Chem. 98 (1994) 6714.
    [18] K. Slawomir, P. Jaromir, R. Franciszek, Chem. Phys. Lett. 391 (2004) 56.
    [19] R. E.Thomas, R. A. Rudder, R. J. Markunas, J. Vac. Sci. Technol. A. 10 (1992) 2451.
    [20] K. Bobrov, G. Comtet, L. Hellner et al. Appl. Phys. Lett. 85 (2004) 296.
    [21] M. D. Segall, P. J. D. Lindan, M. J. Probert, et al., J. Phys.: Cond. Matt. 14 (2002) 2717.
    [22] J. P. Perdew, K. Burke, M. Emzerhof, Phys. Rev. Lett. 77 (1996) 3865.
    [23] H. J. Monkhrost, J. D. Pack, Phys. Rev. B. 13 (1976) 5188.
    [24] J. Furthmuller, J. Hafner, and G. Kresse, Phys. Rev. B 53 (1996) 7334.
    [25] Y. Yu, C. Z. Gu, L. F. Xu, S. B. Zhang, Phys. Rev. B 70 (2004)125423.
    [26] M. D. Segall, C. J. Pickard, R. Shah, M. C. Payne, Mol. Phys. 89 (1996) 571.
    [27] J. F. Prins, Phys. Rev. B 31 (1985) 2472.
    [28] R. F. Mamin, T. Inushima, Phys. Rev. B 63 (2001) 033201.
    [29] B. L. Mackey, Jr. J. N. Russel, J. E. Crowell, J. E. Butler, Phys. Rev. B 52 (1985) 17010.
    
    [30] Y. Bar-Yam, T. D. Moustakas, Nature 342 (1989)786.
    [31] S. J. Breuer and P. R. Briddon, Phys. Rev. 5 51 (1995) 6984.
    [32] J. Bernholc, A. Antonelli, T. M. Del Sole, Y. Bar-Yam, and S. T. Pantelides, Phys. Rev. Lett. 61 (1988)2689.
    [33] M. Heidari Saani, M. A. Vesaghi, K. Esfarjani, and A. Shafiekhani, Diam. Relat. Mater. 13(2004)2125.
    [34] X. J. Hu, Y. B. Dai, R. B. Li, H. S. Shen, and X. C. He, Solid Stae Communications 122(2002)45.
    
    [35] T. Haliciogu, Thin Solid Films 228 (1993) 295
    [36] F. Bechstedt, W. G. Schhmidt, and A. Scholze, Europhys. Appl. Phys. Lett. 35 (1996) 585.
    [37] R. Q. Hood, P. R. C. Kent, R. J. Needs, P. R. Briddon Phys. Rev. B 91 (2003) 076403.
    
    [38] R. E. Stallcup, J. M. Perez, Appl. Phys. Lett. 81 (2002) 4538.
    [39] A. Mainwood, Phys. Status Solidi. (A) 172 (1999) 25.
    [40] B. Delley, J. Chem. Phys. 92 (1990)508.
    [41] B. Delley, J. Phys. Chem. 100 (1996)6107.
    [42] B. Delley, J. Chem. Phys. 113 (2000) 7756.
    [43] G. Makov, and M. C. Payne, Phys. Rev. 5 51 (1995) 4014.
    [44] J. Lento, J. L. Mozos, and R. M. Nieminen, J. Phys.: Condens. Matter. 14 (2002) 2637.
    [45] Suklyun Hong, Phys. Rev. B 65 (2002) 153408.
    [1] E.A. Ekimov, V.A. Sidorov, E.D. Bauer, N.N. Melnik, N.J. Curro, J.D.Thompson, S.M. Stishov, Nature (London) 428 (2004) 542.
    [2] T.Yokoya, T. Nakamura, T. Matsushita, T. Muro, Y. Takana, M. Nagao, T. Takenouchi, H. Kawarada, and T. Oguchi, Nature (London) 438 (2005) 647.
    [3] Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa, and H. Kawarada, Appl. Phys. Lett. 85 (2004) 2851.
    [4] E. Bustarret, J. Kacmarcik, C. Marcenat, E. Gheeraert, C. Cytermann, J. Marcus, and T. Klein, Phys. Rev. Lett. 93 (2004) 237005.
    [5] H. Umezawa, T. Takenouchi, Y Takano, K. Kobayashi, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, G. Zhong, M. Tachiki, and H. Kawarada, http://www.arXiv.org/cond-mat/0503303.
    [6] Z. I. Wang, Q. Luo, L. W. Liu, C. Y. Li, H. X. Yang, H. F. Yang, J. J. Li, X. Y. Lu, Z. S. Jin, L. Lu, and C. Z. Gu, Diam. Relat. Mater. 15 (2006) 659.
    [7] B. Sacepe, C. Chapelier, C. Marcenat, J. Kacmarcik, T. Klein, M. Bernard, and E. Bustarret, Phys. Rev. Lett. 96 (2006) 097006.
    [8] M. Ortolani, S. Lupi, L. Baldassarre, P. Calvani, U. Schade, Y. Takano, M. Nagao, T. Takenouchi, and H. Kawarada, http://www.arXiv.org/cond-mat/0602150.
    [9] J. Nakamura, E. Kabasawa, N. Yamada, Y. Einaga, D. Saito, H. Isshiki, S. Yugo, R. C. C. Perera, Phys. Rev. B 70 (2004) 245111.
    [10] J. Nakamura, T. Oguchi, N. Yamada, K. Kuroki, K. okada, Y. Takano, M. nagao, I. Sakaguchi, H. Kawarada, R. C. C. Perera, D. L. Ederer, http://www.arXiv.org/cond-mat/0410144.
    [11] M. Hoesch, T. Fukuda, T. Takenouchi, J.P. Sutter, S. Tsutsui, A.Q.R. Baron, M. Nagao, Y. Takano, H. Kawarada, and J. Mizuki, http://www.arXiv.org/cond-mat/0512424.
    [12] M. Ortolani, S. Lupi, L. Baldassarre, U. Schade, P. Calvani, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada, Phys. Rev. Lett. 97 (2006) 097002.
    [13] V. A. Sidorov, E. A. Ekimov, S. M. Stishov, E. D. Bauer, and J. D. Thompson, Phys. Rev. 5 71(2005)060502.
    [14] V. A. Sidorova, E. A. Ekimova, E. D. Bauerb, N. N. Mel'nikc, N. J. Currob, V. Fritschb, J. D. Thompsonb, S. M. Stishova, A. E. Alexenkod, B. V. Spitsyn, Diam. Relat. Mater. 14 (2005) 335.
    [15] B. Sacepe, C. Chapelier, C. Marcenat, J. Kacmarcik, T. Klein, F. Omnes, E, Bustarret, phys. stat. sol. (a) 203 (2006) 3315.
    [16] J. J. Mares, P. Hubik, M. Nesladek, D. Kindl, and J. Kristofik, Diam. Relat. Mater. 15(2006)1863.
    [17] J. J. Mares, P. Hubik, M. Nesladek, D. Kindl, and J. Kristofik, Diam. Relat. Mater. 16(2007)1.
    [18] J. J. Mares, P. Hubik, M. Nesladek, and J. Kristofik, Diam. Relat. Mater. 16 (2007) 921.
    
    [19] L. Boeri, J. Kortus, and O. K. Andersen, Phys. Rev. Lett. 93 (2004) 237002.
    [20] K.W. Lee, and W. E. Pickett, Phys. Rev. Lett. 93 (2004) 237003.
    [21] Y. Ma, J. S. Tse, T. Cui, D. D. Klug, L. Zhang, Y. Xie, Y. Niu, G. Zou, Phys. Rev. 5 72(2005)014306.
    
    [22] H. J. Xiang et al., Phys. Rev. B 70 (2004) 212504.
    [23] X. Blase, Ch. Adessi, and D. Connetable, Phys. Rev. Lett. 93 (2004) 237004.
    [24] Y. Dai, R. Long, B. B. Huang, Z. K. Zhang, Diam. Relat. Mater. 16 (353) 2007.
    [25] K.W. Lee, W. E. Pickett, Phys. Rev. B 73 (2006) 075105.
    [26] G. Baskaran, http://arXiv.org/list/cond-mat/ (2004) (0404286 and 0410296).
    [27] G. Baskaran, Phys. Rev. Lett. 90 (2003) 197007.
    [28] V. V. Brazhkin, E. A. Ekimov, A. G. Lyapin, S. V. Popova, A.V. Rakhmanina, S. M. Stishov, V. M. Lebedev, Y. Katayama, and K. Kato Phys. Rev. B 74 (2006) 140502.
    [29] E. Bourgeois, E. Bustarret, P. Achatz, F. Omnes, X. Blase Phys. Rev. B 74 (2006) 094509.
    
    [30] J. P. Goss, and P. R. Briddon, Phys. Rev. B 73 (2006) 085204.
    [31] E. Bustarret, C. Marcenta, P. Achatz, J. Kacmarcik, F. Levy, A.Huxley, L. Ortega, E. Bourgeois, X. Blase, D. Debarre, J. Bohlmer, Nature (London) 444 (2006) 465.
    [32] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys., Condens. Matter 14 (2002) 2717.
    [33] J. P. Perdw, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
    [34] D. Vanderbit, Phys. Rev. B 23 (1990) 5408.
    [35] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 13 (1976) 5188.
    [36] W. L.McMillan, Phys. Rev. 167 (1968) 331.
    [37] F. Fontaine,J. Appl. Phys. 85 (1999) 1409
    [38] P. W. Anderson, Phys. Rev. 124 (1961) 41.
    [39] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.
    [40] E. Bourgeois, and X. Blase, Appl. Phys. Lett. 90 (2007) 142511.
    [41] J. Yamauchi, N. Aoki, I. Mizushima, Phys. Rev. B 63 (2001) 073202.
    [1] F. J. Zong, H. L. Ma, J. Ma, W. Du, X. J. Zhang, H. D. Xiao, F. Ji, C. S. Xue, Appl. Phys.Lett. 87(2005)233104.
    [2] D. Wang, Y. C. Liu, R. Mu, J. Y. Zhang, Y. M. Lu, D. Z. Shen, X. W. Fan, J. Phys.: Condens. Mater 16 (2004) 4635.
    
    [3] M. Futsuhara, K. Yoshioka, O. Takai, Thin Solid Films 322 (1998) 274.
    [4] F. J. Zong, H. L. Ma, W. Du, J. Ma, X. J. Zhang, H. D. Xiao, F. Ji, C. S. Xue, Appl. Surf. Sci. 252,(2006)7583.
    
    [5] K. Kuriyama, Y. Takahashi, F. Sunohara, Phys. Rev. B 48 (1993) 2781.
    [6] R. Q. Zhang, Y. H. Lifshitz, S. T. Lee, Adv. Mater. 15 (2003) 635.
    [7] R. Juza, H. Z. Hahn, Anorg. Allg. Chem. 224 (1940) 125.
    [8] D. E. Partin, D. J. Williams, M. J. O'Keeffe, Solid State Chem. 132 (1997) 56.
    [9] B. Delley, J. Chem. Phys. 92 (1999) 508.
    [10] B. Delley, J. Phys. Chem. 100 (1996) 6107.
    [11] B. Delley, J. Chem. Phys. 113 (2000) 7756.
    [12] B. Delley, Phys. Rev. B 66 (2002) 155125.
    [13] Perdew, J. P.; Wang, Y. Phys. Rev. B 45 (1992) 13244.
    [14] J. P Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B 46 (1992) 6671.
    [15] H. Monkhorst, J. Pack, Phys. Rev. B 13 (1976) 5188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700