用户名: 密码: 验证码:
吸附材料和水肥因子对N、P的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类经济活动不断深入,水环境污染已成为全球性问题。农业面源污染成为导致水环境污染的重要原因,它对受纳水体的污染接近甚至大于点源污染,国内外以及三峡库区农业面源污染形式严峻。通过农田径流进入江河和湖泊是农业面源污染的一条最主要的途径。
     以N、P为量化因子,基于农田径流的污染控制出发,可将径流封闭的稻田生态系统作为一种拦截缓冲带来治理农田径流形成的农业面源污染。将农田地表径流引入稻田,降低其流动性,通过施用吸附材料来截留N、P污染物。同时,通过水稻的消纳吸收以及水稻土的沉降,来降低滞留或流经稻田的农田径流污染物。目前,吸附材料用于吸附农田径流的研究相对较少,因此筛选吸附NH4-N、NO3-N、TP的最佳吸附材料,以及找到最佳经济施用量十分必要;对稻田生态系统消纳和沉降农业面源污水已开展了很多的研究,包括耕作方法、排水措施、平衡施肥等,但依据三峡库区水稻种植习惯进行的水稻移栽期水肥因子模拟较少。据此,通过改进后的水肥因子管理-施肥后不同时期灌水,以种植户习惯的施用尿素和过磷酸钙底肥后当天灌水处理为对照,采用施肥后不同时期灌水,通过检测稻田生态系统中田面水对N、P的沉降,以及水稻土的供肥能力,找到稻田施肥后最佳灌水时期,对治理农田径流形成的面源污染有重要意义。
     结果表明:铵态氮、硝态氮沉降效果最好的吸附材料分别是人造沸石、活性炭,沉降率分别达到87%和32%;对磷沉降效果最好的也是活性炭,沉降率达到35%。综合去除率和经济效益,浓度为1.5g/L的沸石是最佳的铵态氮沉降投加量;浓度为12g/L、2.0g/L的活性炭分别是最佳的硝态氮沉降和磷沉降投加量。
     振荡作用时间、pH、P浓度直接影响吸附材料对模拟污水中可溶态N、P的沉降:振荡作用时间影响沉降率,人造沸石沉降铵态氮,解吸临界点为15分钟;用活性炭沉降硝态氮,解吸临界点为30分钟;用活性炭沉降磷,振荡作用时间与沉降率成正比。污水pH值也影响沉降率,pH值6-7时,人造沸石对铵态氮沉降率最高,达到82.02%;pH值5-6时,活性炭分别对硝态氮和磷沉降率最高,沉降率分别达到31.5%、52.74%。对磷浓度为1-9mg/L的模拟污水而言,人造沸石对铵态氮均能保持稳定的吸附,平均沉降率73.5%;活性炭对硝态氮保持稳定的吸附,沉降率在29.97%-31.13%之间;活性炭对磷沉降率随磷浓度上升而递减,沉降率从70.32%降至15.85%。
     施肥后不同时期灌水措施可降低水田田面水中的TN、TDN、TP含量,能将水田生态系统COD控制在较低水平,对pH影响不明显。以施肥当天灌水为参照,施肥灌水间隔期7d、14d、30d对TN均有极高的去除率,平均去除率分别为21.79%、33.88%、34.09%;各处理的TP平均去除率分别为4.81%、16%、21.5%。7d间隔期铵态氮平均浓度最高,达到1.38mg/L;硝态氮最低,值为2.79mg/L。TDN最低,值为4.97mg/L,TPN最高,值为5.29mg/L。TDP平均含量随间隔期的增加而递减,值分别为1.01、0.54、0.31、0.18mg/L,相反TPP平均含量依次升高,值分别为0.83、1.2、1.28、1.31mg/L。可见,经过施肥后7d、14d、30d灌水处理,相对施肥当天灌水而言,田面水中可溶态氮减少,颗粒态氮增加,可溶态磷减少,颗粒态磷增加。施肥后7-14 d灌水,可有效降低稻田田面水中硝态氮和的磷含量。施肥后不同时期灌水措施对水稻产量影响很小。
     因此,施用尿素和过磷酸钙底肥7d-14d后灌水是三峡重庆库区稻田移栽期最佳水肥因子管理措施。同时将农田径流引入稻田生态系统,并施加人造沸石和活性炭,可有效吸附农田径流中N、P污染物,进而治理农业面源污染。
With the development of human economic activities, water pollution has been become a global issue. The important reason leading to water pollution is agricultural non-point resource pollution, the degree of its pollution to the receiving water bodies closer to or greater than point source pollution. It an serious challenge for agricultural nonpoint source pollution in domestic and foreign, as well as the Three Gorges reservoir area. The best important ways for running into rivers and lakes to agricultural nonpoint source pollution is farmland runoff.
     Choosed the content of N,P as quantitative parameter, based on controlling the farmland runoff pollution, the closed runoff paddy ecosystem can be regared as a interception buffer field which can eliminate the agricultural non-point resource by farmland runoff. Directing the paddy surface runoff to paddy field for reducing the mobility, retain N,P pollutants by using the adsorption materials, Meanwhile, through absorbing and consuming by rice and sedimentated by paddy soil, it is feasible to reduce the farmland runoff pollutants which have been retained or flowed through the paddy fields. At present, it is relatively absent to the research of adsorption materials on which be used for adsorbing the field runoff, so choosing the best qualitive adsorption materials which be used for absorb NH4-N,NO3N,TP, as well as to find the best economic application rate is necessary. It have many research on the consumption and settlement about agricultural nonpoint source water by rice ecosystems has carried out, including farming practices, drainage measures, balanced fertilization, etc., but based on the paddy rice cultivation habits of farmers in Three Gorges Reservoir Area, less water and fertilizer management factor simulation in paddy transplanting period accordingly. Through improved water and fertilizer management factor-at different stages between fertilization and irrigation. Accustomed to urea and superphosphate as basal fertilizer, contrasted to the zero day between fertilization and irrigation, treatments were used at different stages between fertilization and irrigation, by detecting the content of N, P in surface water of the paddy ecosystem and its capacity to support plant growth to find the best rice irrigation period after fertilization, it is important to control agricultural non-point resoure pollution which produced by farmland runoff.
     The results showed that:the best adsorption materials for ammonium and nitrate deposition was artificial zeolite and activated carbon, sedimentation rates were 87% and 32% respectively; the best adsorption materials for phosphorus sedimentation is also the best activated carbon, sedimentation rate of 35%.Comprehensive removal percent and economic benefits, the concentration of 1.5g/L of zeolite is the best dosage of ammonium deposition; concentration of 12g/L,2.0g/L of activated carbon were the best N deposition and phosphorus deposition dosage.
     Oscillating function time, pH, P concentration directly affect the content of soluble N, P by settlement of adsorption materials in simulative water:the time of oscillation affect the deposition rate, for depositing ammonium by the artificial zeolite, desorption critical point is 15 minutes; for depositing nitrate by carbon deposition,desorption critical point for 30 minutes; for depositing phosphorus by activated carbon, the time of oscillation is proportional to sedimentation rate. The pH value also affects the deposition rate, pH value of 6-7, the artificial zeolite on the highest ammonium deposition,reaching 82.02%; pH value of 5-6, the activated carbon on nitrate and phosphorus were the highest settlement rates, settlement rate reached 31.5%,52.74%. Phosphorus concentration of 1-9mg/L of simulated wastewater, the artificial zeolite can maintain the stability of the ammonium adsorption, the average settlement rate of 73.5%;the artificial zeolite can maintain the stability of the nitrate adsorption,sedimentation rate between 29.97% -31.13%; the rate of activated carbon sedimentation for phosphorus increased with the phosphorus concentration.
     The measures obout different days between fertilization and irrigation to reduce the content of TN, TDN, TP in surface water,it could control the paddy field ecosystem COD on low level, no significant effect on the pH. For irrigation after fertilization in the same day as a reference, the TN removal rates depend on the fertilization and irrigation interval 7d,14d,30d were very high, the average removal rates were 21.79%,33.88%,34.09%; the average removal rate of TP is 4.81%, 16%,21.5% respectively.7d interval of the average concentration of ammonium is highest of value 1.38mg/L; N lowest value of 2.79mg/L. TDN lowest of 4.97mg/L, TPN highest value of 5.29mg /L. With the average interval inceased, TDP content decreasing values of 1.01,0.54,0.31,0.18 mg/L, the opposite order of average content of TPP with values of 0.83,1.2,1.28,1.31 mg/L respectively. For irrigation after fertilization in the same day as a reference, it is evident that the measures at different times between fertilization and irrigation, an increase in surface water particulate nitrogen, soluble nitrogen reduction, reduction of dissolved phosphorus, particulate phosphorus increased. The trentments obout 7-14 d between fertilization and irrigation, can effectively reduce the nitrate and phosphorus content on surface water of paddy field. Irrigation at different stages after fertilization measures have little effect on rice yield.
     Therefore, the stages about 7d-14d between fertilized with urea and superphosphate as basal and irrigation is the best rice transplanting fertilizer management factor practices in Three Gorges. Directed agricultural runoff into the paddy ecosystem, and imposed artificial zeolite and activated carbon meanwhile, which can effectively retained and sedimentated N, P pollutants from farmland runoff, and it could further control agricultural non-point source pollution。
引文
[1]Novotny V,Chester G.面污染源管理与控制手册.林芳荣.李学灵.吴亚蒂译.广州:科学普及出版社广州分社,1987:85-89
    [2]单真莹,董斌.水稻灌区非点源污染治理新方法初探.中国农村水利水利水电,2008:63-66.
    [3]郑丙辉,王丽婧,龚斌.三峡水库上游河流入库面源污染负荷研究.环境科学研究:2009(2)Vol.22,No.2
    [4]朱兆良,孙波,杨林章,等.我国农业面源污染的控制政策和措施.科技导报,2005,23(4):47-51.
    [5]贺缠生,傅伯杰.非点源污染的管理及控制.环境科学,1998,19(5):87-91
    [6]Yong,R.A.et al.AGNPS:A Nonpoint-Source Pollution Modeling for Evaluation Acricultural Watersheds. Soil and Water Conservation.1989.March-April.
    [7]曹彦龙,三峡重庆库区面源污染分析及数字模拟研究.重庆大学硕士论文.2006:9-13
    [8]张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策·Ⅰ—21世纪初期中国农业面源污染的形势估计.中国农业科学.2004,37(7):1008-1017
    [9]张维理,冀宏杰,KolbeH.等.中国农业面源污染形势估计及控制对策Ⅱ—欧美国家农业面源污染状况及控制.中国业科学.2004,37(7):1018-1025
    [10]张维理,徐爱国,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅲ—中国农业面源污染控制中存在问题分析.中国农业科学.2004,37(7):1024-1033
    [11]郭鹏.基于Geodatabase农业面源污染数据库的建立与应用.西南大学硕士论文,2004,9
    [12]U S Environmental protection Agency.Chesapeake Bay:A framework for action.Chesapeake Bay Program.Environmental protection Agency Chesapeake Bay Liaison Office, Annapolis, Maryland,1983
    [13]J S Shortle, D G Abler.Envir onmental policies for agricultural pollution control. Department of Agricultural Economics and Rural Sociology Pennsylvania State University US A,2001.
    [14]杨爱玲,地表水环境非点源污染研究.环境科学进展,1998,7(5):60-67.
    [15]刘光德,赵中金,李其林.三峡库区农业面源污染现状及其防治对策.中国生态农业学报,2004(4),Vol.12,No.2
    [16]杨蓉,重庆市农业面源污染分析.西南大学硕士论文,2009:14-17
    [17]徐谦,我国化肥和农药的非点源污染状况综述.农村生态环境,1996,12(2):39-43
    [18]田猛,张永春.用于控制太湖流域农村面源污染的透水坝技术试验研究.环境科学学报,2006(10):1665-1670.
    [19]中国科学院三峡工程生态与环境的影响及对策研究领导小组.长江三峡工程对生态与环境的影响及对策研究[M].北京:科学出版社,1988.
    [20]陈利顶,李俊然,傅伯杰.三峡库区生态环境综合评价与聚类分析.农村生态环境,2001,17(3):35-38
    [21]孙阳,王里奥,袁辉.三峡水库氮磷污染贡献率估算.重庆大学学报,2004,27(10):139
    [22]曹彦龙,李崇明.重庆三峡库区非点源污染来源分析及负荷计算.重庆建筑大学学报,2007(8):Vol.29 No.4
    [23]周丽娟,重庆市循环农业测度与农业面源污染负荷的关系,西南大学硕士论文,2008:1-2
    [24]李其林,魏朝富,王显均,等.农业面源污染发生条件与污染机理.土壤通报,2008,39(1)170-176
    [25]ANDREW N, SHARPLEY, WILLIAM J, et al. Pionke. Sources of phosphorus exported from an agricultural watershed in Pennsylvania.Agricultural Water Management,1999,41:77-89.
    [26]王莉玮,重庆市农业面源污染的区域分异与控制.西南大学硕士论文.2005:1
    [27]Midwest Plan Service. Livestock waste facilities handbook [M],3rd ed., Iowa State University, Ames, IA, MWPS-18,1993.[27] COPPOCK R, MEYER R D. Nitrate losses from irrigated cropland. Divisionof Agricultural Sciences.University of California,1980,Leaflet 21136.
    [28]ZHU Z L. Loss of fertilizer N from plant-soil system and the strategiesand techniques for its reduction.Soil Environ. Sci.,2000,9(1):1-6.
    [29]YUAN F M, CHEN Z M, YAO Z H. Nitrogen leaching from soils[A].In:Chen, Z.M. (Ed.), Nitrogen, Yield and Environment. Chinese Agri-Tech Press, Beijing,1996.
    [30]STREBEL O, DUYNISVELD W H M, BOTTCHER J. Nitrate pollutionof groundwater in western Europe. Agric. Ecosyst. Environ.,1989,26:189-214
    [31]熊正琴,邢光熹,沈光裕,等.太湖地区湖、河和井水中氮污染状况的研究.农村生态环境,2002,18(2):29-33.
    [32]SAUNDERS D L, KALFF J. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia, 2001,443:205-212.
    [33]WEDDING B. Dammar som reningsverk (in Swedish). Report from Ekologgruppen, Landskrona, Sweden,2000.
    [34]HELFAND G E, HOUSE B W. Regulating non-point source pollution under heterogeneous conditions. Am. J. Agric. Econ.,1995,77 (4),1024-1032.
    [35]BERGE D, FJELD E, HINDAR A, KASTE. Nitrogen retention in twoNorwegian watercourses of different trophic status. Ambio,1997,26:282-288.
    [36]CORRELL D L. Phosphorus:a rate limiting nutrient in surface waters. Poult. Sci.,1999,78: 674-682.
    [37]STEVENSON F J.Cycles of Soil:C, N, P, S, Micronutrients. John Wiley and Sons, New York, NY, USA,1986.
    [38]SHARPLEY A,FOY B,WITHERS P.Practic81 and InnovativeMeasures for the Control of Agricuhural Phosphorus Losses to Water:An Overview.Journal of Environmental Quality, 2000,29(1):1-9.
    [39]章明奎.农业系统中氮磷的最佳管理实践.北京:中国农业出版社,2005:145.
    [40]HOODA P S,MOYNAGH M,SVOBODA I F,et al.PhosphorusLoss in Drain/low From Intensively Managed Grassland Soils.Journal of Environmental Quality.1999,28(4): 1235-1242.
    [41]HECKRATH G,BROOKES P C,POULTON P R,et al.Phos-phorus I.laching From Soils Containing Diferent Phosphorus Concentrations in the Broadbalk Experiment.Journal of Environmental Quality,1995,24(4):904-910.
    [42]宋勇生,范晓晖.稻田氨挥发研究.生态环境,2003,12(2):240-244
    [43]许春华,周琪,宋乐平.人工湿地在农业面源污染控制方面的应用.重庆环境科学,2001,23(3):70-72.
    [44]尹澄清,单保庆.多水塘系统:控制面源磷污染的可持续方法.AMB10——人类环境杂志,2001,30(6):369-375.
    [45]毛战坡,彭文启,尹澄清,等.非点源污染物在多水塘系统中的流失特征研究.农业环境科学学报,2004,23(3):530-535.
    [46]DUNNE E J,CULLETON N,O DONOVAN G,et al.An Integrated Constructed Wetland to Treat Contaminants and Nu-emsFrom Dairy Farmyard Dirty Water.Ecological Engineering,2005,24(3):219-232.
    [47]曹志洪,林先贵,杨林章,胡正义,董元华,尹睿.论“稻田圈”在保护城乡生态环境中的功能Ⅰ.稻田土壤磷素径流迁移流失的特征.土壤学报,2005,42(5):799-804.
    [48]袁俊吉,马永玉,周鑫斌,等.稻田生态系统对污水中无机态氮的消纳.西南大学学报,2009,31(9):7-14.
    [49]袁俊吉,马永玉,蒋先军,等.模拟稻田生态系统对农村污水中磷的消纳.水土保持学报,2009,23(4):28-32.
    [50]王小治,朱建国.施用尿素稻田表层水氮素的动态变化及模式表征.农业环境科学学报2004,23(5):852-856
    [51]Ikuo Yoshinaga,Asa Miura.Runoff nitrogen from a large sized paddy field during a crop period, agri cul t u r a 1 water management.87(2007)217-222
    [52]LIANG Xin-qiang, CHEN Ying-xu,Nitrogen interception in floodwater of rice field in Taihu region of China.J of Environmental Sciences.2007,19(12):1474-1481
    [53]王忠理,陈双.水稻施肥的科学依据.农民致富之友,2008(7):24
    [54]杨茹,刘凡.水稻一次性深施肥技术.河北农业科技,2008(5):44
    [55]石太宏,方建章,王松平,等.活性碳吸附Zn(Ⅱ)的热力学与机理研究.水处理技术,1999,25(2):103.
    [56]李立清.利用谷壳灰吸附水中Hg(Ⅱ).污染防治技术,1998,11(2):98.
    [57]聂发辉,李田.粘土矿物在污水处理中的应用及展望.华东交通大学学报,2006,23(4):22-24.
    [58]袁东海,高士祥,景丽洁,等.几种粘土矿物和粘土对溶液中磷的吸附效果.农村生态环 境,2004,20(4):1-5.
    [59]崔丹.沸石在水处理中的应用与展望.市政技术,2008,26(1):36-38.
    [60]Rozic M, Cerjan-Stefanovic S, Kurajica Se, et al.Ammoniacal nitrogen removal from water by treament with clays and zeolites.Wat.Res,2000,34(14):3675-3681.
    [61]陈翠玲,蒋爱凤,阴云剑,等.活性炭对磷吸附的研究.河南职技师院学报,1996,24(4):19-21.
    [62]Kronvang B, Grsboll P, Larsen S E, et al. Diffuse nutrient lossesin denmark. Water Science and Technology,1996,33(4-5):81-88.
    [63]Sprynskyy M, Lebedynets M, Terzyk A P, et al. Ammonium sorption from aqueous solutions by the natural zeolite transcarpathian clinoptilolite studied under dynamicconditions. J Colloid& Interface Science,2005,284(2):408-415.
    [64]Boers P C M. Nutrient emissions from agriculture in the netherlands, causes and remedies. Water Science and Technology,1996,33(4-5):183-189.
    [65]汤艳杰,贾建业,谢先德.地学前缘.2002,9(2):337-344.
    [66]曹志洪,林先贵,杨林章,等.论“稻田圈”在保护城乡生态环境中的功能Ⅱ稻田土壤氮素养分的累积、迁移及其生态环境意义.土壤学报,2006,43(2):256-260
    [67]凌启鸿.论水稻生产在我国南方经济发达地区可持续发展中的不可替代作用.中国稻米.2004(1):5-9
    [68]JI Xiong-huil, ZHENG Sheng-xian, Study of Dynamics of loodwater Nitrogen and Regulation of Its Runoff Loss in Paddy Field-Based Two-Cropping Rice with Urea and Controlled ReleaseNitrogen Fertilizer Application. Agricultural Sciences in China 2007,6(2):189-199
    [69]王强,杨京平.稻田田面水中三氮浓度的动态变化特征研究.水土保持学报:2003(9):51-54
    [70]张志剑.水田土壤磷素流失的数量潜能及控制途径的研究.浙江大学博士论文.2001:20-29
    [71]Dontsova K M, Norton L D, Johnston C T,2005.Calcium andmagnesium effects on ammonia adsorption by soil clays.Soil Sci Soc Am J,69(4):1225-1232.
    [72]张绍冰.农业面源污染的来源及防治措施.现代农业科技,2007(8):110-110.
    [73]Alabama Department of public health. Rules of the State Bpard of Health Bureau of Environmental and Health Service Standards Division of Community Environmental Protection. Amend,1992,420(3-1).
    [74]全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施.生态学报,2002,22(3):291-299.
    [75]鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000:121-135.
    [76]皮广洁.农业环境监测原理与应用.成都:成都科技出版社,1998:15-16.
    [77]常卫民,王荟,王瑛.沸石对水中氨氮的吸附性能初探.能源环境保护,2008,22(1):39-40.
    [78]屠拢,徐承天,韩庆平,等.天然沸石对溶液中氨氮的吸附性能.净水技术,2007,26(1):10-13.
    [79]潘嘉芬,卢杰.天然斜发沸石吸附高浓度氨氮废水试验研究.中国矿业,2008,17(2):87-89
    [80]程玉良.活性炭材料的改性及其应用.中国科技信息,2005,2(19):66.
    [81]王宝庆,陈亚雄,宁平.活性炭水处理技术应用.云南环境科学,2000,19(3):46-47.
    [82]林亚萍.粘土矿物对富营养化水体中磷的吸附研究.扬州大学硕士论文,2008:35-42
    [83]袁东海,高士祥,景丽洁.几种黏土矿物和粘土对溶液中磷的吸附效果.农村生态环境,2004,20(4):1-5
    [84]陈晋阳,黄卫.用低成本的粘土矿物吸附水溶液中镉离子的研究.应用科技,2002,29(2):41-43
    [85]贾晓燕.废水除磷技术的研究进展.重庆环境科学,2003,25(12):191-192.
    [86]王全金,李丽,李忠卫.四种植物潜流人工湿地脱氮除磷的研究.环境污染与防治,2008,30(2):33-36.
    [87]Dierberg F E, Debusk T A, Jackson S D, et al.Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff:response to hydraulic and nutrient loading Water Research,2002,36(6):1409-1422.
    [88]吴晓磊.人工湿地废水处理机理.环境科学,1994,6(3):83-86.
    [89]Nelsonn M,Alling A,Dempster W F,et al.Advantages of using subsurface flow constructed wetlands for wastewater treatment in space applications:Ground-based mars base prototype [J].Advances in Space Research,2003,31(7):1799-1804.
    [90]Senzia M A, Mashauri D A, Mayo A W. Suitability of constructed wetlands and waste stabilisation ponds in wastewater treatment:nitrogen transformation and removal. Physics and Chemistry of the Earth,2003,28:1117-1124.
    [91]Robert L. Knight, Victor W. E. PayneJr., Robert E. Borer, Ronald A. ClarkeJr.,John H. Pries. Constructed wetlands for livestock wastewater management. Ecological Engineering,2000,15(1-2): 41-55.
    [92]Julie K. Cronk. Constructed wetlands to treat wastewater from dairy and swine operations:a review. Agriculture, Ecosystems & Environment,1996,58(2-3):97-114.
    [93]M. E. Poach, P. G Hunt, M. B. Vanotti, K. C. Stone, T. A. Matheny, M. H. Johnson, E. J. Sadler. Improved nitrogen treatment by constructed wetlands receiving partially nitrified liquid swine manure. Ecological Engineering,2003,20(2):183-197.
    [94]R.H. Kadlec. The effects of wetland vegetation and morphology on nitrogen processing. Ecological Engineering,2008,33(2-3):126-141.
    [95]Gong Z T, Wetland soils in China. Wetland:Characterization Classification and Utilization IRRI, pilippines.1985.
    [96]Greenland D J. The Sustainability of Rice Farming. London:CAB International Publication in Association with the International Rice Research Institute,1998.110-113.
    [97]高明,张磊,魏朝富,等.稻田长期垄作免耕对水稻产量及土壤肥力的影响研究.植物营养与肥料学报,2004,10(4):343-348.
    [98]边秀举,巨晓棠.尿素与有机物肥料在土壤中的分解转化特征研究.河北农业大学学报.199,23(2):23-26
    [99]李庆荣等,尿素施用技术.黑龙江:黑龙江科技出版社,1982年
    [100]杨林章,王德建,夏立忠.太湖地区农业面源污染特征及控制途径.中国水利,2004,20:29-30.
    [101]北京市园林学校主编,土壤与肥料学.北京,北京科技出版社,1989年3月.
    [102]Brij G. Natural and constructed wetlands for wastewater treatment:Potential and problems. Water Sci Technol,1999,40(3):27-35.
    [103]Brix H.1997. Do macrophytes play a role in constructed treatment wetlands[J].Water Sci Technol,35(5):11-17.
    [104]陈翔,武周虎,孔德刚,孔德玉.表面流人工湿地COD、NH4+-N和TP的动力学探讨.青岛理工大学学报,2007,28(5):62-65.
    [105]宋勇生,范晓晖.稻田氨挥发研究进展.生态研究,2003,12(2):240-244
    [106]鲁如坤.土壤-植物营养学原理和施肥.化学工业出版社.北京:1998.
    [107]SHARPLEY A,FOY B,WITHERS P.Practics and InnovativeMeasures for the Control of Agricuhural Phosphorus Losses to Water:An Overview[J].Journal of Environmental Quality,2000,29(1):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700