用户名: 密码: 验证码:
小柘皋河农田土壤氮磷迁移模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业非点源污染是致使湖泊富营养化的一个重要因素,本文依托国家水体污染控制与治理专项(2008ZX07103-002-005),选取巢湖流域的小柘皋河流域三种典型作物的土壤即水稻土、旱地土和菜地土作为研究对象,分别考察其营养盐流失规律。
     实验采用室内模拟降雨法,设置三种降雨强度和两种施肥量水平,测定不同深度的土壤和水质氮磷等指标,分析其分布特征,探讨流失规律,为农业科学管理和治理面源污染提供理论依据。
     实验测定了区域土壤及壤中流营养盐本底值情况,水稻土铵氮、全氮、速效磷、总磷及表层有机质含量较高,菜地土硝氮和平均有机质较高、旱地土pH值较高。
     考察了施肥量对各指标的影响,发现施加氮肥后各土壤的铵氮、硝氮和全氮含量均升高,铵氮较易被土壤吸附,而硝氮易随降水流失,磷素的移动性较弱,但随着施肥量的增大中底层的磷素含量增加,施肥后pH值普遍降低且施肥量越大pH值越降低,有机质含量增加,高锰酸盐指数提高。
     分析了降雨强度对各指标的影响,发现随着降雨强度的增大,土壤铵氮、硝氮和总氮含量减小而壤中流氨氮、硝氮含量增大,土壤固液相的有效磷均有增加,总磷主要在表层积累,pH升高,有机质含量先升高后降低,高锰酸盐指数降低。
     研究了土壤剖面高度各指标的变化规律,发现随着土层加深,铵氮、硝氮、全氮、有效磷、总磷、有机质减小,pH值增大,而渗漏液高锰酸盐指数普遍高于壤中流的。
     探索了氮、磷淋失量的特点,发现铵氮、硝氮、总氮、有效磷及总磷的淋失量均与施肥量和降雨量呈正相关,其中土壤的硝氮淋失量与降雨强度线性相关系数均在0.96以上,而总氮流失量随施肥量的增加而显著增加,并且超过了相应施肥量增加的倍数。
     最后对未来研究提出展望,计划将通过实际田间试验,并结合农田径流与排水,建立面源污染数据库与模型,计算出污染源负荷从而确定重点削减对象与削减程度,提出经济、政策及工程措施建议。
Agricultural non-point source pollution is already an important cause of eutrophication. Relying on the national project of water pollution control and management (2008ZX07103-002-005),the paper chooses paddy soil, upland soil and vegetable soil in typical watershed in Chaohu lake basin, little Zhegaohe watershed, as the research odject to analyze the rule of nutrient loss.
     Adopted indoor simulated rainfall method, the experiments set three rainfall intensities and two fertilizer levels to measure nitrogen and phosphorus content in soil and water and analyze the distribution feature and loss rule in order to provide theoretical basis of scientific agriculture management and control non-point pollution.
     The background values of nutrient in soil and water were measured. Ammonium nitrogen,total nitrogen,Olsen-P,total phosphorus and orgnic matter of paddy soil was the highest, while nitrate nitrogen and average orgnic matter in vegetable soil was highest and the pH value of the upland soil was highest.
     The infulence of fertilizer amount was investigated. With the increase of fertilizer amount, content of ammonium nitrogen, nitrate nitrogen and total nitrogen all grew. Ammonium nitrogen was easily absorbed by soil,while nitrate nitrogen was easily lost with rainfall.Mobility of phosphorus was relatively inferior, but content of phosphorus in deeper soil increased with more fertilizer. The pH value decreased with fertilizing and decreased more greatly after adding fertilizer. The orgnic matter and CODMn both increase with fertilizing.
     The infulence of rainfall intensity was investigated. With the increase of rainfall intensity, content of ammonium nitrogen, nitrate nitrogen and total nitrogen in soil decreased while ammonium nitrogen and nitrate nitrogen in water increased.Olsen-P in both solid and liquild phase increased; total phosphorus accumulated mainly on the surface layer; the orgnic matter increased first and then decreased; CODMn decreased.
     The rule of nitrient content changed with soil depth was studied. With deeper soil layer, content of ammonium nitrogen, nitrate nitrogen, total nitrogen, Olsen-P, total phosphorus and orgnic matter all decreased, meanwhile the pH value increased. The CODMn in leachate was generally higher than that in through flow.
     The feature of nitrogen and phosphorus loss amount was quested. It's found that ammonium nitrogen, nitrate nitrogen, total nitrogen, Olsen-P, total phosphorus loss amount correlated with fertilizer amount and rainfall intensity. The linear correlation coefficient between loss amount of nitrate nitrogen in soil and rainfall intensity is above 0.96. The total nitrogen loss amount notably increased with added fertilizer amount, and surpassed the corresponding multiple of added fertilizer amount.
     At last the outlook of future research is proposed:non-point pollution database and model should be established through actual field test combined with field runoff and drain; pollution load should be calculated to determine keypoint reducing object and degree; economic,policy and engineering measures advice should be put forward.
引文
[1]张鑫,史奕,赵天宏等.我国农业非点源污染研究现状及控制措施[J].安徽农业科学,2006,34(20):5303-5305
    [2]肖强.太湖平原地区模拟降雨条件下麦田径流氮磷流失研究[D].沈阳农业大学硕士学位论文,2004
    [3]Castillo M M, Allan JD, Brunzell S. Nutrient concentrations and discharge in a midwenstem agricultural catchment [J].Environ. Qual,2000,29(4):1142-1153.
    [4]白由路,卢艳丽,杨俐苹.农业种植对水体富营养化的影响[J].中国农业资源与区划,2009,29(3):11-15
    [5]Mander u. Nutrient runoff dynamics in a rural watershed influence of land-use change, climatic fluctuations and ecotechnological measures[J]. Ecol. Eng,2000,14(4):405-417.
    [6]王立明,林超,刘德文.水动力学条件下潘家口水库富营养化的控制[J].水资源保护,2009,25(4):8-11
    [7]J. Hoorman, T. Hone, T. Sudman Jr.etc. Agricultural Impacts on Lake and Stream Water Quality in Grand Lake St. Marys, Western Ohio[J]. Water Air Soil Pollut (2008) 193: 309-322
    [8]Adelaide Munodawafa. Assessing nutrient losses with soil erosion under different tillage systems and their implications on water quality[J]. Physics and Chemistry of the Earth 32 (2007)1135-1140
    [9]Tomasz Kowalkowski. Classification of nutrient emission sources in the Vistula River system[J]. Environmental Pollution 157 (2009) 1867-1872
    [10]Lucy O'Shea, AndrewWadeb. Controlling nitrate pollution:An integrated approach[J]. Land Use Policy 26 (2009) 799-808
    [11]Felix Herzog, Volker Prasuhn, Ernst Spiess, etc. Environmental cross-compliance mitigates nitrogen and phosphorus pollution from Swiss agriculture [J]. Envi ronmental science & policy 11(2008)655-668
    [12]B.C. Braskerud.Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution[J].Ecological Engineering 18 (2002) 351-370
    [13]L. Ribbe, P. Delgado, E. Salgado. Nitrate pollution of surface water induced by agricultural non-point pollution in the Pocochay watershed, Chile[J]. Desalination 226 (2008) 13-20
    [14]Keigo Nakamura. Performance and design of artificial lagoons for controlling diffuse pollution in Lake Kasumigaura, Japan[J]. ecological engineering 35(2009)141-151
    [15]A. Leone, M.N. Ripa, L. Boccia. Phosphorus export from agricultural land:a simple approach[J]. biosystems engineering 101 (2008)270-280
    [16]Petri Ekholm, Eila Turtola, Juha Gronroos, Phosphorus loss from different farming systems estimated from soil surface phosphorus balance[J]. Agriculture, Ecosystems and Environment 110 (2005) 266-278.
    [17]单保庆等.降雨-径流过程中土壤表层磷迁移过程的模拟研究[J].环境科学学报,2001,21(1):7-11
    [18]朱继业等.不同农地利用方式下地表径流中氮的输出特征[J].南京大学学报(自然科学),2006,42(6):621-627
    [19]王秀丽,孙波.红壤旱地施用有机肥的氮素淋失过程[J].土壤学报,2008,45(4):745-749
    [20]单艳红,杨林章,颜廷梅.水田土壤溶液磷氮的动态变化及潜在的环境影响[J].生态学报,2005,25(1):115-121
    [21]徐爱兰,王鹏.太湖流域典型圩区农田磷素随地表径流迁移特征[J].农业环境科学学报205,27(3):1106-1111
    [22]张玉铭,张佳宝,胡春胜.华北太行山前平原农田土壤水分动态与氮素的淋溶损失[J].土壤学报,2006,43(1):17-25
    [23]朱新开,盛海君,夏小燕等.稻麦轮作田氮素径流流失特征初步研究[J].生态与农村环境学报2006,22(1):38-41,66
    [24]陈子聪,章明清,陈防等.氮肥对菜园土壤硝态氮淋溶流失的影响[J].生态环境2008,17(3):1230-1234
    [25]范丽丽,沈珍瑶,刘瑞民.不同降雨一径流过程中农业非点源污染研究[J].环境科学与技术,2008,31(10):5-8
    [26]周慧平,高超.巢湖流域非点源磷流失关键源区识别[J].,环境科学,2008,29(10):2696-2702
    [27]王卫平,朱凤香,王钫等.不同施肥方式对水稻产量及土壤氮磷运移的影响[J].安徽农学通报,2008,14(23):118-119
    [28]晏维金等,磷氮在水田湿地中的迁移转化及径流流失过程[J].应用生态学报,1999(10)3:312-316
    [29]段亮,段增强,夏四清.农田氮、磷向水体迁移原因及对策[J].中国土壤与肥料2007(4): 6-11
    [30]谢林花,吕家珑,张一平等.长期施肥对石灰性土壤磷素肥力的影响[J].应用生态学报,2004(15)5:787-789
    [31]焦少俊,胡夏民,潘根兴等,施肥对太湖地区青紫泥水稻土稻季农田氮磷流失的影响[J].生态学杂志,2007,26(4):495-500
    [32]李粉茹,于群英,邹长明.设施菜地土壤pH值、酶活性和氮磷养分含量的变化[J].农业工程学报,2009,25(1):217-222
    [33]黄明蔚,刘敏,陆敏等.稻麦轮作农田系统中氮素渗漏流失的研究[J].环境科学学报,2007,27(4):629-636
    [34]丁京涛,姚波,许其功.基于SWAT模型的大宁河流域污染物负荷分布特性分析[J].环境工程学报,2009,3(12):2153-2158
    [35]胡万里,付斌,段宗颜.低纬高原湖泊农业面源污染防治研究进展[J].中国农学通报2009,25(08):250-255
    [36]孙大志,刘华中,孟凡宇.氨氮在土壤中吸附影响因素的研究[J].吉林化工学院学报,2007,24(4):31-33
    [37]王立春,赵兰坡,朱平等.不同施肥方式对黑土春玉米田硝态氮和铵态氮的影响[J].东北林业大学学报,2009,37(12):85-87
    [38]郭佩秋,李絮花,王克安.氮肥用量对日光温室黄瓜和土壤硝态氮含量的影响[J].华北农学报,2009,24(1):185-188
    [39]张相松,刘兆辉,江丽华.设施菜地土壤硝态氮淋溶防控技术的研究[J].青岛农业大学学报(自然科学版),2009,26(2):207-211
    [40]许祥富,林钊沐,林清火.施氮量对橡胶园土壤铵态氮和硝态氮垂直分布的影响[J].热带农业科学,2009,29(5):6-11
    [41]杨云马,贾树龙,孟春香.施用复混肥对硝态氮淋溶及肥效影响研究[J].河北农业科学,2009,13(2):44-47
    [42]赵新峰,杨丽蓉,施茜.东北海伦地区农村地下饮用水硝态氮污染特征及其影响因素分析[J].环境科学,2008,29(1)
    [43]王凌,张国印,孙世友。河北省蔬菜高产区化肥施用对地下水硝态氮含量的影响[J].河北农业科学,2008,12(10):75-77
    [44]李金荣,杨振放,李金玲.不同深度的土壤中硝态氮的空间变异性研究[J].郑州大学学报(工学版),2008,29(4):54-57
    [45]黄学芳,池宝亮,张冬梅.长期施肥对晋西北农田硝态氮累积与分布的影响[J].华北农学报,2008,23(4):204-207
    [46]储燕宁,孙权,于大华等.灌淤土施氮后土壤硝态氮的动态变化[J].农村生态环境,2003,19(4):31-34,58
    [47]黄云凤,张路平,洪华生.小流域氮流失特征及其影响因素[J].水利学报,2006,37(7):801-807
    [48]张永兰,于群英.长期施肥对潮菜地土壤磷素积累和无机磷组分含量的影响[J].中国农学通报,2008,24(3):243-247
    [49]黄绍敏,宝德俊,皇甫湘荣.长期施肥对潮土土壤磷素利用与积累的影响[J].中国农业科学2006,39(1):102-108
    [50]常智慧.氮磷耦合效应对新建果岭草坪磷淋溶的影响[J].安徽农业科学,2009,37(3):1214-1216
    [51]姜波,林成永,章永松.杭州市郊典型菜园土壤磷素状况及磷素淋失风险研究[J].浙江大学学报(农业与生命科学版),2008,34(2):207-213
    [52]牛明芬,温林钦,赵牧秋.可溶性磷损失与径流时间关系模拟研究[J].环境科学,2008,29(9):2580-2585
    [53]戴照福,王继增,程炯.流溪河流域菜地土壤磷素特征及流失风险分析[J].广东农业科学,2006,(4):82-84
    [54]盛海君,夏小燕,杨丽琴.施磷对土壤速效磷含量及径流磷组成的影响[J].生态学报,2004,24(12):2837-2840
    [55]赵建宁,沈其荣,冉炜.太湖地区侧渗水稻土连续施磷处理下稻田磷的径流损失[J].农村生态环境,2005,21(3):29-33
    [56]李广,黄高宝.模拟降雨与水土流失试验研究[J].农业系统科学与综合研究,2008,24(4): 463-465
    [57]赵鹏宇,徐学选,李波.黄土丘陵区不同土地利用方式降雨产流试验研究[J].中国水土保持,2009(1):55-57
    [58]黄满湘,章申,唐以剑等,模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境2001,10(1):6-10
    [59]张继宗,雷秋良,左强.模拟降雨条件下太湖地区稻田氮素径流流失特征[J].湖北农业科学,2009,48(11):2688-2692
    [60]李彦,高燕,张英鹏.模拟降雨条件下施磷量对褐土无机磷含量及形态转化的影响[J].华北农学报,2009,24(3):194-200
    [61]徐力刚等.不同降雨强度对营养盐垂向迁移过程和淋失量的影响[J].土壤学报,2008,45(3):437-443
    [62]单保庆,尹澄清,白颖.小流域磷污染物非点源输出的人工降雨模拟研究[J].环境科学学报,2000,20(1):33-37
    [63]吉文帅,韩玉刚,管义国.基于RS和GIS的柘皋河流域景观空间格局研究.中国农学通报,2007,23(1):140-143
    [64]王绪伟,王心源,封毅等.巢湖沉积物总磷分布及其地质成因[J].安徽师范大学学报(自然科学版),2007,30(4):496-499
    [65]彭星辉,谢晓阳,纪雄辉.淹水稻田氮素淋溶损失及其控制[J].湖南农业科学,2006,5:58-61
    [66]孙大志,刘华中,孟凡宇.氨氮在土壤中吸附影响因素的研究[J].吉林化工学院学报,2007,24(4):31-33
    [67]连彦峰,刘树庆.农田土壤中磷素流失与水体富营养化[J].河北农业科学,2008,12(7):91-93,99.
    [68]魏孝荣,邵明安.黄土沟壑区小流域土壤pH值的空间分布及条件模拟[J].农业工程学报,2009,25(5):61-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700