用户名: 密码: 验证码:
反硝化细菌的分离筛选及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
越来越严重的富营养化,尤其是亚硝酸盐污染已成为水产养殖业常见且难以预防的危害因素之一。微生物的反硝化脱氮法是解决上述问题的有效手段之一。
     本课题通过广泛取样,分离出202株反硝化细菌。用灭菌的LB培养基调节控制水样的COD_(Mn)约为25 mg/L,以此水样为基础,通过定量测定菌株反硝化能力的方法,同时结合实验室保存的反硝化芽孢杆菌DNF409的反硝化特点,筛选出一株同等条件下不会严重积累亚硝酸盐的菌株A13。通过生理生化试验和16S rDNA序列分析,菌株A13鉴定为地衣芽孢杆菌。
     研究表明:在影响反硝化效率的因素中,COD_(Mn)是关键因素。在COD_(Mn)低于10.5 mg/L时,两株菌A13和DNF409都只能进行微弱的反硝化作用。添加碳源后能显著提高反硝化作用,其中以添加乙醇效果最明显,向水样中添加0.2%(v/v)的乙醇后,反硝化脱氮率达99%以上。在pH为6.0-8.0的范围内,反硝化效率没有明显的差别,即在自然水体中,pH不会成为反硝化脱氮的限制因素。在温度超过20℃时,反硝化作用能进行得比较完全。投菌量对反硝化作用也有明显的影响,在COD_(Mn)为19 mg/L时,一次投菌量需要达到10~(7) cfu/mL才会有明显效果。由于反硝化作用的进行,两株菌对降低水样的COD_(Mn)也能起到一定的作用。
     研究过程中发现,不灭菌水样中,两株菌的反硝化效率明显优于灭菌水样;相同COD_(Mn)的野芷湖水样和蒸馏水样,前者的反硝化作用明显优于后者。分析可能是微生物菌群的协同反硝化作用。因此将两株菌协同联合应用。为了确定它们的联合应用方式,分别跟踪检测了它们各自的反硝化特点。研究结果显示:在前12 h内,DNF409降解硝酸盐的速度明显优于A13,但同时迅速积累大量的亚硝酸盐;在前24 h内,它们都能将硝酸盐降解到很低的水平,但DNF409积累的亚硝酸盐比A13严重,随着时间的进一步延长,达到156 h时,亚硝酸盐均会上升。根据两株菌的不同的作用特点及协同作用原理,通过试验建立了组合应用模式,首先使用DNF4`09菌株,24 h后再向水样中投加A13,比仅仅应用单株菌脱氮率提高近30%。以此组合应用模式为基础运用响应面分析法,得出最佳反硝化作用条件为:COD_(Mn)为35.1 mg/L,温度为32.5℃,投菌量为6.2×10~6 cfu/mL,反硝化时间为114.2 h,此时脱氮率达99%以上。
     本课题研究了在特殊条件下的反硝化作用。在有机氮如酵母粉存在的条件下,能促进反硝化过程的进行;在无机氮如硫酸铵存在的情况下,仍能进行反硝化作用;如果溶氧较高,将会显著的抑制反硝化作用。
The deterioration of aquarium water,especially nitrite pollution which was difficult to prevent,had being becoming an usual harmful factor of national aquiculture development in our country. Biodenitrification is one of the effective methods to remove nitrite from water at present.
     202 denitrifying strains were separated from numbers of samples. Their respective denitrifying activities were idetified quantitively in the condition that the CODMn of water sample controlled by sterilized LB medium was about 25 mg/L.At last,thinking the characters of denitrification about DNF409, A13 was obtained. Physiological and biochemical tests besides the analysis of 16SrDNA revealed that the A13 stain was Bacillus Licheniformis.
     The research result indicated that CODMn was the critical facters which affected denitrification efficiency. when CODMn was below 10.5 mg/L,they could denitrify slenderly.Adding carbon source,especial ethanol,could enhance denitrification obviously.In the range of pH from 6.0 to 8.0,the denitrification efficiency had no difference.In other words, the value of pH would not be a limited facter in actual water.When temperature exceeded 20℃, they could denitrify smoothly.The bacterial concentration also affected denitrification clearly.And they could play the role of eliminating the CODMn .
     The result showed that denitrification efficiency in actual water was much higher than that in sterilized water.Comparing Yezhi lake water with distilled water,the former advanced the latter obviously.Maybe it was the cooperation of microorganisms in denitrification.So the two strains were applied.Their respective denitrification characters were checked .The research revealed that DNF409 advanced A13 for the degradation of nitrate before 12 hrs,while DNF409 accelerated accumulation of nitrite heavily.They could both degradate nitrate to the low level,but DNF409 also exceeded A13 in the terms of the accumulation of nitrite.With time extending to 156 hrs,nitrite would both elevate.According to this result and the principle of cooperation,the combination application model was confirmed that DNF409 strain was used first,then 24 hrs later A13 strain was applied. Compared with the use of single strain, the combination application of DNF409 and A13 increased the percentage of denitrification about 30%.On the base of this model, response surface analysis was implemented. The result showed that the optimum denitrification condition included as follows: COD_(Mn) 35.1 mg/L, temperature 32.5℃, bacterial concentration 6.2×10~6 cfu/mL, time 114.2 hrs.
     This article studied the dinitrification in the outstanding condition.For example,organic nitrogen existing,it could accelerate denitrification.Too much oxygen would inhibit denitrification.
引文
1.陈忠余,黄钧,卢世珩,李毅军.高活性反硝化颗粒污泥的研究.微生物学通报,1995,22(4):219-221
    2.崔莹,臧维玲.水产养殖与渔业水域环境的关系.现代渔业信息,2006,21(4):9-11
    3.东秀珠,蔡妙英.常见细菌系统鉴定手册(第二版)[M].北京:科学出版社,2001:62-65
    4.冯叶成,王建龙,钱易.生物脱氮新工艺研究进展.微生物学通报,2001,28(4):88-91
    5.高大文,彭永臻,王淑莹.控制pH实现短程硝化反硝化生物脱氮技术.哈尔滨工业大学学报,2005,37(12):1664-1666
    6.高守有,彭永臻,王淑莹,白璐.低溶解氧短程硝化及同步脱氮研究.高技术通讯,2006,16(10):1067-1072
    7.国家环境保护局.2004年中国环境状况公报.环境保护.2004,6
    8.胡家文,姚维志.养殖水体富营养化及其防治.水利渔业,2005,25(6):74-76
    9.胡咏梅,葛向阳,梁运祥.枯草芽孢杆菌FY99-01菌株的净水作用.华中农业大学学报,2006,25(4):404-407
    10.金雪标,刘国红,阎宁,赵庆祥,刘勇弟.一种高速反硝化颗粒污泥的培养.环境污染治理技术与设备,2006,7(8):52-56
    11.孔庆鑫,李君文,王新为,金敏,古长庆.一种新的好氧反硝化菌筛选方法的建立及新菌株的发现.应用与环境生物学报,2005,11(2):222-225
    12.李阜隶,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996:65
    13.李海云,张肇铭.亚硝酸型反硝化菌脱氮研究.山西农业大学学报,2004,24(2):153-155
    14.李平,张山,郑永良,江月,陈舒丽,邹煜平,刘德立.反硝化真菌-细菌优化组合及其脱氮能力研究.环境科学与技术,2006,29(3):9-10
    15.李树刚,马光庭.生物脱氮菌种筛选及条件选择的研究.广西大学学报(自然科学版),2003,28(2):173-176
    16.李秀辰,吕善志,孟飞.利用反硝化技术净化养殖水体的研究进展.大连水产学院学报,2006,21(4):366-370
    17.刘建,孟运生,郑英,樊保团.用反硝化微生物脱除铀水冶工艺废水中的 NO_3~-.湿法冶金,2005,24(4):212-217
    18.刘俊岭,吴正高,赵宗升.同步硝化反硝化影响因素的研究.坏境科学与管理,2006,31(8):166-168
    19.陆斌,葛景信,张芳西.水产养殖污水的净化与回用研究.华东工业大学学报,1997,19(1):54-58
    20.罗启芳,谭佑铭,王琳,曾欣.饮用水反硝化脱氮方法研究.安全与环境学报,2003,3(2):58-61
    21.林桂炽,黄玲珍.不同碳源对冷轧不锈钢废水生物脱氮的影响研究.广东化工,2007,34(165):77-78
    22.梁刘艳,汪萍.废水脱氮中好氧反硝化现象的研究.工业用水与废水,2004,35(2):33-35
    23.廖绍安,郑桂丽,王安利,黄洪辉,孙儒泳.养虾池好氧反硝化细菌新菌株的分离鉴定及特征.生态学报,2006,26(11):3718-3724
    24.马放,周丹丹,王宏宇,董双石.一株好氧反硝化细菌生理生态特征的研究.哈尔滨工业大学学报,2006,38(4):575-577
    25.马文漪,杨柳燕.环境微生物工程.南京:南京大学出版社,1998
    26.梅丽鹃,毛健,杨林章,王德建,尹斌,胡健,朴哲,殷士学.土壤中“接力反硝化”机制的部分证据.土壤学报,2004,41(3):408-413
    27.彭自然,臧维玲,高杨,江敏,徐桂荣,丁福江.氨和亚硝酸盐对凡纳滨对虾的毒性影响.上海水产大学学报,2004,13(3):274-278
    28.全为民,沈新强,甘居利,沈晓盛,陈亚瞿.海洋沉积物中反硝化细菌的分离及去除硝酸盐氮的模拟试验.海洋渔业,2005,27(3):232-235
    29.R.E.布坎南.伯杰细菌鉴定手册(第九版)[M].1986,776-780
    30.沈梦蔚.地下水硝酸盐去除方法研究.浙江大学硕士学位论文.2004
    31.宋艳绒.脱氮菌群的分离培养及其性能和荧光标记研究.浙江工业大学硕士学位论文.2006
    32.王晋,孙晓娟,傅飞云.同步硝化反硝化脱氮影响因素探讨.江苏工业学院学报,2003,15(3):24-26
    33.王黎,郑龙熙,孙桂大,刘振新.现代生物脱氮技术发展趋势.石油化工高等学校学报,1999,12(2):36-40
    34.王丽丽,赵林,谭欣,闫博.不同碳源及其碳氮比对反硝化过程的影响.环境保护科学,2004,30(121):15-18
    35.王晓莲,彭永臻,王淑莹,马浩敏.生物脱氮工艺控制优化策略的研究进展.环境污染治理技术与设备,2004,5(11):6-13
    36.魏泰莉,余瑞兰,聂湘平,赖子尼,郭叶华.水中亚硝酸盐对彭泽鲫鱼血红 蛋白及高铁血红蛋白的影响.大连水产学院学报,2001,16(1):67-71
    37.温东辉,唐孝炎.异养硝化及其在污水脱氮中的应用.环境污染与防治,2003,25(5):283-284
    38.项慕飞.好氧反硝化菌的分离筛选和鉴别研究.北京工商大学硕士研究生学位论文.2007
    39.肖锦.城市污水处理及回用技术.北京:化学工业出版社,2002
    40.徐亚同.pH值、温度对反硝化的影响.中国环境科学,1994,14(4):308-313
    41.杨麒,李小明,曾光明,谢珊,刘精今.同步硝化反硝化的形成机理及影响因素.环境科学与技术,2004,27(3):102-104
    42.叶姜瑜,罗固源,吉芳英,王希,王丹云.污水生物处理功能微生物的多样性.重庆大学学报(自然科学版),2005,28(10):119-123
    43.于爱茸,李尤,俞吉安.一株耐氧反硝化细菌的筛选及脱氮特性研究.微生物学杂志,2005,25(3):77-81
    44.张玉芹,刘开启,王革,陈静,潘好芹.反硝化细菌的筛选及培养条件的研究.农业环境科学学报,2005,24(1):165-168
    45.张智,杨华仙,张晓卫,浦军毅.生活污水的好氧反硝化研究.生态环境,2006,15(5):905-908
    46.郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004,55-74
    47.周德庆.微生物学教程[M].北京:高等教育出版社,1993:10-200
    48.周立祥,黄峰源,王世梅.好氧反硝化菌的分离及其在土壤氮素转化过程中的作用.土壤学报,2006,43(3):430-435
    49.Azarn F,Muller C,Weiske A,Benckiser G,Ottow JCG.Nitrification and denitrification as sources of atmospheric nitrous oxide-role of oxidizable carbon and applied nitrogen.Biol Fertil Soils,2002,35:54-61
    50.Bell L C,Richardson D J,Ferguson S J.Periplasmic and membrane--bound respiratory nitrate reductases in Thiophaera pantotropha.The periplasmic enzyme catalyzes the first step in aerobic denitrification.FEBS letters,1990,265:85-87
    51.Berks BC,Ferguson SJ,Moir JW,Richardson DJ.Enzymes and associated electron transport systems that catalyse the respiratory reduction of nitrogen oxides and oxyanions.Biochim.Biophys.Acta,1995,1232:97-173
    52.Blaszczyk M.Effect of medium composition on the denitrification of nitrate by Paracoccus denitrificans.Appl Environ Microbiol,1993,59:3951-3953
    53.Breton J,Berks BC.Characterization of the paramagnetic iron-containing redox centers of Thiosphaera pantotropha periplasmic nitrate reductase.FEBS Lett,1994,345:76-80
    54.Desimone L A,Howes B L.Nitrogen transport and transformation in a shallow aquifer receiving wastewater discharge:a mass balance approach.Water Resour Res,1998,34(2):271-285
    55. Esteves FA, Enrich-Prast A, BiesboerDD. Potential denitrification in submerged natural and impacted sediments of Lake batata , an Amazonian lake.Hydrobiologia, 2001, 444: 111-117
    
    56. Ferguson SJ. Denitrification and its control. Antonie van Leeuwenhoek, 1994, 66: 89-110
    
    57. Hamid-reza, Kariminiaae-Hamedaani, Kohzo Kanda, Fumio Kato. Denitrification Activity of the Bacterium Pseudomonas sp.ASM-2-3 Isolated from the Ariake Sea Tideland. J Bioscience and Bioengineering, 2004, 97(1): 39-44
    
    58. Hietanen Susanna, Kuparinen Jorma. Seasonal and short-term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea. Hydrobiologia, 2008, 596: 67-77
    
    59. Jacinthe PA, Dick WA, Owens LB. Overwinter soil denitrification activity and mineral nitrogen pools as affected by management practices.Biol Fertil Soils, 2002, 36: 1-9
    
    60. Koeing A, Liu L H. Autotrophic denitrification of landfill leachate using elemetal sulfur. Wat Sci Tech, 1996, 34(56): 469-476
    
    61.Kostyal E , Nurmiaho-Lassila E-LPuhakka J A , Salkinoja-Salonen M. Nitrification, denitrification and dechlorination in bleached kraft pulp mill wastewater. Appl Microbiol Biotechnol, 1997, 47: 734-741
    
    62. Labbe Normannd, Laurin Veronique, Juteau Pierre, Parent Serge, Villemur Richard. Microbiological community structure of the biofilm of a methanol-fed, marine denitrification system and identification of the methanol-utilizing microorganisms.Microbial Ecology, 2007, 53: 621-630
    
    63. Lofton DendyD, Hershey AnneE, Whalen SteveC. Evaluation of denitrification in an urban steam receiving wastewater effluent. Biogeochemistry, 2007, 86: 77-90
    
    64. Lukou T, Diekmann H. Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1.Biotechnology Letters, 1997, 19(11): 1157-1159
    
    65. Lukow T, Diekmann H. Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1. Biotechnology letters, 1997, 11(19): 1157-1159
    
    66. Mahmood T, Malik KA, Shamsi SRA, Sajjad MI. Denitrification and total N losses from an irrigated sandy-clay loam under maize-wheat cropping system.Plant and Soil, 1999, 199: 239-250
    
    67. McMahon PB, Bohlke JK, Bruce BW. Denitrification in marine shales in northeastern Corolado. Water Resour Res, 1999, 35(5): 1629-1642
    
    68. Merino P, Estavillo JM, Besga G, Pinto M, Gonzalez-Murua C . Nitrification and denitrification derived N2O production from a grassland soil under application of DCD and Actilith F2.Nutrient cycling in Agroecosystems, 2001, 60: 9-14
    
    69. Patureau D, Bernet N, Delgenes JP, Moletta R. Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium.Appl Microbiol Biotechnol, 2000, 54: 535-542
    
    70. Peng Yongzhen, Zhu Guibing. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol, 2006, 73: 15-26
    
    71. Robertson L A, EWJ van Niel, RAM Torreman. Simultaneous nitrification and denitrification in aerobic chemostat culture of Thiosphaera pantotroph. Appl Environ Microbiol, 1988, 54: 2812-2818
    
    72. Starr RC, Gillham RW. Controls on denitrification in shallow unconfined aquifers. In:Kobus HE, Kizzelbach Weds, Contaminant Transport in Groundwater. Balkema, Rotterdam, 1989, 51-56
    
    73. Venterink Olde H, Hummelink E, Van Den Hoorn M W. Denitrification potential of a river floodplain during flooding with nitrate-rich water:grasslands versus reedbeds. Biogeochemistry, 2003, 65: 233-244
    
    74. Vidal S, Rocha C, Galvao HA. Comparison of organic and inorganic carbon controls over biofilm system. Wat Sci Tech, 1998, 37(45): 183-187
    
    75. Wang G, Skipper H D. Identification of denitrifying rhizobacteria from bentgrass and Bermudagrass golf greens.J Applied Micrology, 2004, 97: 827-837
    
    76. Zayed G, Winter J. Removal of organic pollutants and of nitrate from wastewater from the dairy industry by denitrification. Appl Microbiol Biotechnol, 1998, 49: 469-474

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700