用户名: 密码: 验证码:
华北平原冬小麦/夏玉米水氮优化利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北平原生产的粮食超过了我国粮食总量的20%,以冬小麦/夏玉米轮作为主要种植模式,然而,为了追求高产,冬小麦/夏玉米轮作系统水肥投入量过高现象十分普遍,导致水肥利用率低下,同时造成环境污染,加剧水资源短缺,因此,研究不同水肥条件下冬小麦/夏玉米轮作模式中冬小麦和夏玉米水氮利用特征及产量,探索一种水肥资源高效利用且高产的优化管理模式,对保障我国粮食安全和农业可持续发展具有十分重要的意义。
     为研究华北平原不同水肥条件下冬小麦/夏玉米轮作模式中冬小麦和夏玉米水氮利用特征及产量,于2007-2010年在河北辛集马庄试验站布置了冬小麦和夏玉米田间小区试验和15N示踪的微区试验。冬小麦试验设置3个灌水水平:传统3次灌水(I3);2次灌水(I2);1次灌水(I1),每个灌水水平下设置5个施肥处理:完全无肥(CK),施磷钾肥(N0),在N0基础上施氮150(N150)、210(N210)及270kg N ha~(-1)(N270,传统施氮处理)。夏玉米试验设2个灌水水平,传统2次灌水(I2)条件下设置6个施肥处理:完全无肥(CK),施磷钾肥(N0),在相同磷钾肥(N0)基础上增施氮肥90(N90)、180(N180)及270kg N ha~(-1)(N270,传统施氮处理)及1次性施氮180kg N ha~(-1)(N180y),其他氮肥均分2次施用。在1次灌溉(I1)条件下,设置3个施肥处理;完全无肥(CK),施磷钾肥(N0),1次性施氮180kg N ha~(-1)(N180y)。15N微区试验选取小区试验中的施氮处理并分底肥和追肥分别进行示踪。主要结论概括如下:
     (1)探明了不同水肥条件下冬小麦/夏玉米农田氮肥去向:15N标记肥料氮为冬小麦(第1季)吸收量、土壤残留量及其他损失量分别为63.2~126.2、54.9~74.5、20.3~81.3kg N ha~(-1),均随施氮量增加而显著增加。减施氮肥22%(N210)显著降低氮肥残留17.0%和其他损失37.8%,I2处理与I3处理氮肥残留量无显著差异。第2季夏玉米和第3季冬小麦吸收第1季冬小麦残留氮量分别为8.4~22.1、3.8~7.2kg N ha~(-1)。15N标记氮肥为夏玉米(第1季)吸收量、土壤残留量及其他损失量分别为43.4~104.8、44.0~137.3、2.6~27.9kg N ha~(-1),均随施氮量增加而显著增加。减施氮肥33%(N180)显著降低氮肥残留35.0%和其他损失41.6%。第2季冬小麦和第3季夏玉米吸收残留氮量分别为6.7~18.7、2.0~5.7kg N ha~(-1)。
     (2)探明了不同水肥条件下冬小麦/夏玉米氮素利用特征:冬小麦拔节期、灌浆期和成熟期氮肥回收利用率分别为4.8%~32.5%、20.5%~59.9%和21.8%~44.2%。3个生育期氮肥回收利用率均随灌水次数增加而显著增加,I2处理成熟期平均氮肥回收利用率为32.0%,较I3处理(36.4%)显著降低12.1%,其他时期I2处理与I3处理无显著差异。氮肥仅对成熟期氮肥回收利用率影响显著,N210(34.8%)较N270(28.1%)显著提高23.8%。夏玉米大喇叭口期、吐丝期及成熟期氮肥回收利用率分别为3.9%~40.5%,5.1%~40.6%,3.8~48.0%。2次灌水条件下,相比传统施氮(N270),减量施氮33%(N180)对氮肥回收利用率无显著影响。施氮180kg N ha~(-1),分2次施肥(I2N180)较1次施肥(I2N180y)显著提高大喇叭口期氮肥回收利用率,对其他时期无显著影响。灌水对3个时期氮肥回收利用率无显著影响。
     (3)探明了不同水肥条件下冬小麦/夏玉米水分利用效率:不同生育期冬小麦水分利用效率大小为:拔节期-灌浆期>灌浆期-成熟期>播种-拔节期。施氮量在210kg N ha~(-1)以下时,冬小麦籽粒水分利用效率及总生物量水分利用效率随着施氮量增加而显著增加,在210kg N ha~(-1)以上增加氮肥,则无显著变化。相比传统灌水I3,I2处理显著提高籽粒水分利用效率及总生物量水分利用效率。不同生育阶段夏玉米生物量水分利用效率大小为:吐丝期-成熟期>大喇叭口期-吐丝期>苗期-大喇叭口期>播种-苗期。施氮量显著影响夏玉米籽粒水分利用效率,I2N180与I2N270处理间差异不显著。
     (4)明确了不同水肥条件下冬小麦/夏玉米经济产量:不同水肥条件下冬小麦籽粒产量为3267~8789kg ha~(-1),相对传统施氮270kg N ha~(-1),减氮22%(N210)冬小麦产量提高约0.4%,平均达7847kg ha~(-1)。相对传统灌水I3,I2处理对产量影响不显著。不同水肥处理夏玉米籽粒产量为5122~9787kg ha~(-1),减施氮肥33%处理(I2N180)夏玉米籽粒产量平均可达9201kg ha~(-1),较传统水肥管理(I2N270)降低2.4%,无显著差异。
     (5)初步明确了冬小麦/夏玉米轮作条件下冬小麦和夏玉米优化管理方式及其经济效益:冬小麦和夏玉米优化管理方式分别为I2N210和I2N180,优化水氮条件下冬小麦和夏玉米净收入分别为7887、13113元ha~(-1)year-1,分别较传统水氮处理提高14.7%、0.03%。总净收入为21000元ha~(-1)year-1,较传统管理提高5.1%。
     综上所述,本文探明了不同水氮管理条件下冬小麦/夏玉米轮作模式中冬小麦和夏玉米产量和水氮利用特征,得到冬小麦和夏玉米优化管理方式分别为I2N210和I2N180,这种管理组合不仅提高水氮利用率,增产增收,同时较传统管理节水20%,节省氮肥28%,为华北平原冬小麦/夏玉米轮作农田水肥管理优化提供参考。
The North China Plain (NCP) produces over20%of the national food-grain,with a dominant croppingsystem of winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) grown in rotation.However, in the pursuit of high yield, the overuse of nitrogen and water in winter wheat and summermaize rotation system (WW-SM) was very common, which had already led to low nitrogen and wateruse efficiency, meanwhile, exacerbated the water scarcity and environment pollution. It is imperative forfood security and sustainable agriculture to search on water and N use as well as the relevant grain yieldin WW-SM and then find an optimal water and nitrogen measures (OWNM), under which water and Nuse efficiency were increased, while high crop yields obtained and the harm to environment byfertilization was diminished.
     In order to elucidate water and N use efficiency and crop yields under OWNM measures in WW-SM inNCP, field plot trials combined with micro-plot experiment with15N tracing from2007to2010werecarried out in Mazhuang Experimental Station in Xinji of Hebei province. The experiment design was asfollow: for winter wheat,3irrigation treatments were included: irrigation3times as conventional (I3),2times irrigation with33%of water saved (I2), and irrigation once with67%of water saved (I1). Undereach irrigation condition,5fertilization levels were designed as: no fertilization (CK),0(N0),150(N150),210(N210),270(N270, the conventional level) kg N ha~(-1)with same amount of phosphorus (P)and potassium (K), respectively. For summer maize, under the condition of irrigation twice(I2),6fertilization treatments were included: no fertilization(CK),0(N0),90(N90),180(N180), and270(N270)kg N ha~(-1)with the same amount of P and K, and one treatment of180kg N ha~(-1)applied once (N180y),N fertilizer of other treatments applied twice. And under the condition of irrigation once (I1), there were3fertilization treatments such as: no fertilization (CK), only P and K fertilizer (N0) and180kg N ha~(-1)fertilizer applied once (N180y). Micro-plot experiment design was the same as the nitrogen fertilizationtreatments in the field plot, which was divided into2treatments of basal15N-urea labeled, with15N-ureatopdressed and labeled. Research mainly on the N absorption regularity, N residual in soil profile, grainyield, water and N use efficiency under OWNM measures in winter wheat and summer maize rotationsystem in NCP. The main results are as follows:
     (1) The fates of15N labeled urea in winter wheat and summer maize under different N rates andirrigations have been made clear. The urea-15N fates including N uptake by wheat plant (63.2~126.2kgN ha~(-1)), soil residual N (54.9~74.5kg N ha~(-1)) and the unaccounted N losses (20.3~81.3kg N ha~(-1))significantly increased as the fertilizer N rose. While the residual N and unaccounted N losses werenotably decreased by17.0%and37.8%, respectively, under N210(reducing22%of N), compared tothat of N270. And there were no significant differences between treatment I2and I3. In addition, thelabeled residual-15N absorbed by the second and the third successive crops were8.4~22.1、3.8~7.2kg Nha~(-1), respectively. The urea-15N fates including N uptake by maize plant (43.4~104.8kg N ha~(-1)), soilresidual N (44.0~137.3kg N ha~(-1)) and the unaccounted N losses (2.6~27.9kg N ha~(-1)) significantly increased as the fertilizer N rose. In addition to the N recovered in the first maize crop, a further of6.7~18.7kg N ha~(-1)was absorbed by the following wheat. An additional of2.0~5.7kg N ha~(-1)wasabsorbed by the second maize crop grown after the wheat.
     (2) The nitrogen use efficiency in winter wheat and summer maize under different N rates andirrigations has been verified. The nitrogen recovery efficiency (RE) were ranged from4.8%to32.5%,from20.5%to59.9%and from21.8%to44.2%for elongation stage, grain filling stage and maturitystage of wheat season, respectively, all of which were enhanced as irrigation times added. And the REunder I2(33%of water saved) was32.0%in maturity stage, significantly down by12.1%, incomparison with that of conventional irrigation treatment (I3). However, nitrogen only had a significanteffect on RE in maturity stage, and RE in maturity stage of N210(34.8%) were23.8%higher than thatof N270(28.1%). The RE of maize were3.9%~40.5%,5.1%~40.6%,3.8~48.0%for spike formulationstage, silk stage and maturity stage, respectively. Under the condition of I2, reducing33%of N (I2N210)had no significant affect on RE in the3growing stages, when compared to those under conventional Nrate (I2N270). Meanwhile, at the N rate of180kg N ha~(-1), spilt applications of fertilizer N (I2N180)significantly increased RE in spike formulation stage, compared with applied fertilizer N once beforeseeding (I2N180y). However, irrigations did not significant affect RE in the3growing stages.
     (3) Gotten a further clarification of water use efficiency (WUE) based on biomass and grain yield(WUEgrain) in winter wheat and summer maize under different N rates and irrigation. The water useefficiency based on wheat biomass in different growing stages ranked as: elongation to grain fillingstage>grain filling to maturity>seeding to elongation. And the WUE based on whole biomass andWUEgrain were significantly increased as the fertilizer N increased as the fertilizer N less than210kgN ha~(-1), while there were no significant increase when the fertilizer N over210kg N ha~(-1). The WUEgrainand WUE based on whole biomass of I2were significantly increased, when compared to those of I3.For maize, the WUE based on biomass in4growing periods ranked as: silk stage to maturity>spikeformulation stage to silk stage>seedling stage to spike formulation stage>sowing to seedling stage. Nrates had a significant effect on WUEgrain, however, there were no significant differences betweenI2N180and I2N270.
     (4) The grain yields of winter wheat and summer maize under different N rates and irrigations weredefinite. The wheat grain yields across treatments ranged from3267to8789kg ha~(-1), with the meanreaching7847kg ha~(-1)under the condition of reducing22%of fertilizer N (N210),0.4%higher (P>0.05)compared to that of N270(7816kg ha~(-1)). Meanwhile, the grain yield was not significantly decreasedunder condition of I2, in comparison with that under I3. For maize, the grain yield across treatmentsranged from5122to9787kg ha~(-1). By reducing33%of fertilizer N (I2N180), the mean grain yieldreached to9201kg ha~(-1),2.4%less (P<0.05) than that of I2N270(P>0.05).(5) Gained a preliminary idea of the optimal water and nitrogen measures (OWNM) and their economicbenefits. The optimal measures were I2N210and I2N180for winter wheat and summer maize, underwhich the net benefits were7887and13113yuan ha~(-1)year-1,14.7%and0.03%higher than those underconventional measures, respectively. The total income was increased by5.1%under the OWNM (21000 yuan ha~(-1)year-1) as compare to conventional measures.
     In conclusion, the water and nitrogen use of winter wheat and summer maize were made clear inWW-SM cropping system under different N rates and irrigations, suggesting that the combination ofI2N210for wheat and I2N180for maize was the optimal measure for WW-SM cropping system, underwhich higher grain yields and higher net income kept, as well as enhanced water and nitrogen useefficiency gained, moreover,20%of water and28%of nitrogen were saved. Therefore, it provided apowerful reference for the soil water and N management in winter wheat and summer maize rotationsystem in NCP.
引文
1.毕理智,张锐,王海景等.不同作物滴灌施肥效果分析.山西农业科学,2008,36(10):50~
    52.
    2.柴强,杨彩红,黄高宝.交替灌溉对西北绿洲区小麦间作玉米水分利用的影响.作物学报,2011,37(9):1623~1630.
    3.晁赢,李絮花,赵秉强等.有机无机肥料长期配施对作物产量及氮素吸收利用的影响.山东农业科学,2009,3:71~75.
    4.陈百明.中国土地利用与生态特征区划.北京:气象出版社,2003.
    5.陈静静,张富仓,周罕觅等.不同生育期灌水和施氮对夏玉米生长、产量和水分利用效率的影响.西北农林科技大学学报(自然科学版),2011,39(1):89~95.
    6.陈淑峰,吴文良,胡克林等.华北平原高产粮区不同水氮管理下农田氮素的淋失特征.农业工程学报,2011,27(2):65~73.
    7.陈祥,同延安,亢欢虎等.氮肥后移对冬小麦产量、氮肥利用率及氮素吸收的影响.植物营养与肥料学报,2008,14(3):450~455.
    8.陈新平,周金池,王兴仁等.小麦一玉米轮作制中氮肥效应模型的选择—经济和环境效益分析.土壤学报,2000,37(3):346~354.
    9.崔福柱,冯瑞云,郭秀卿等.不同灌溉方式对玉米产量及水分利用效率的影响.灌溉排水学报,2008,28(1):118~120.
    10.崔振岭.华北平原冬小麦/夏玉米轮作体系优化氮肥管理-从田块到区域尺度.[博士学位论文].北京:中国农业大学,2005.
    11.代快,蔡典雄,张晓明等.不同耕作模式下旱作玉米氮磷肥产量效应及水分利用效率.农业工程学报,2011,27(2):74~82.
    12.邓长贺,王孟雪,王宁.不同水肥组合对玉米水分利用效率及经济效益的影响.黑龙江农业科学,2008,(3):63~65.
    13.东先旺,刘光亮,张海燕等.灌水量与夏玉米光合性能及产量的关系.玉米科学,2000,8(4):53~56.
    14.东先旺,刘树堂,殷玉楼等.夏玉米肥水用量与水分利用率的关系.莱阳农学院学报,1999,16(2):92~95.
    15.杜春先,聂俊华,王介勇.不同水肥条件下硝态氮在土壤剖面中垂直分布规律研究.土壤通报,2006,37(2):278~281.
    16.段爱旺.水分利用效率的内涵及使用中需要注意的问题.灌溉排水学报,2005,24(1):8~
    11.
    17.段敏,同延安,魏样.不同施肥条件下冬小麦氮素吸收、转运及累积的研究.麦类作物学报,2010,30(3):464~468.
    18.范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响.植物营养与肥料学报,1998,4(1):16~21.
    19.范亚宁,李世清,李生秀.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化.应用生态学报,2008,19(4):799~806.
    20.费宇红,张兆吉,张凤娥等.气候变化和人类活动对华北平原水资源影响分析.地球学报,2007,28(6):567~571.
    21.高如泰,陈焕伟,李保国等.夏玉米生长期黄淮海平原土壤水氮利用效率模拟分析.农业工程学报,2006,22(6):33~38.
    22.高旺盛,黄进勇,吴大付等.黄淮海平原典型集约农区地下水硝酸盐污染初探.生态农业研究,1999,7(4):41~43.
    23.高亚军,李云,李生秀等.旱地小麦不同栽培条件对土壤硝态氮残留的影响.生态学报,2005,25(11):2901~2910.
    24.葛鑫,戴其根,霍中洋等.农田氮素流失对环境的污染现状及防治对策.环境科学技术,2003,26(6):53~57.
    25.谷洁,高华,李鸣雷等.施用有机无机复混肥对夏玉米生长和水分利用的影响.西北植物学报,2004,24(4):638~642.
    26.郭建华,赵春江,孟志军等.北方旱作条件下玉米施用氮肥对氮吸收和淋溶的影响.土壤通报,2008,39(3):562~565.
    27.郭天财,宋晓,马冬云等.施氮水平对2种穗型冬小麦品种产量及氮素吸收利用的影响.西北植物学报,2008,28(3):554~558.
    28.韩艳丽,康绍忠.根系分区交替灌水对玉米吸收养分影响的初步研究.农业工程学报,2002,18(1):57~60.
    29.何华,康绍忠.灌溉施肥深度对玉米同化物分配和水分利用效率的影响.植物生态学报,2002,26(4):454~458.
    30.何晓雁,郝明德,李慧成等.黄土高原旱地小麦施肥对产量及水肥利用效率的影响.植物营养与肥料学报,2010,16(6):1333~1340.
    31.淮贺举,张海林,蔡万涛等.不同施氮水平对春玉米氮素利用及土壤硝态氮残留的影响.农业环境科学学报,2009,28(12):2651~2656.
    32.黄绍敏,张鸿程,宝德俊等.施肥对土壤硝态氮含量及分布的影响及合理施肥研究.土壤与环境,2000,9(3):201~203.
    33.贾树龙,孟春香,唐玉霞等.麦田生态系统中的水肥时空关系与调控途径.生态农业研究,1995a,3(3):62~66.
    34.贾树龙,孟春香,唐玉霞等.水分胁迫条件下小麦的产量反应及对养分的吸收特征.土壤通报,1995b,26(1):6~8.
    35.贾树龙,孟春香,杨云马等.华北平原区农业立体污染现状与特征.河北农业科学,2010,14(6):64~68.
    36.姜丽娜,李春喜,代西梅等.超高产小麦氮素吸收、积累及分配规律的研究.麦类作物学报,2000,20(2):53~59.
    37.解婷婷,苏培玺.灌溉与施氮量对黑河中游边缘绿洲沙地青贮玉米产量及水氮利用效率的影响.干旱地区农业研究,2011,29(2):72~76.
    38.金继运,何萍,刘海龙等.氮肥用量对高淀粉玉米和普通玉米吸氮特性及产量和品质的影响.植物营养与肥料学报,2004,10(6):568~573.
    39.金欣欣,张喜英,陈素英等.不同灌溉次数和灌溉量对冬小麦氮素吸收转移的影响.华北农学报,2009,24(4):112~118.
    40.巨晓棠,刘学军,张福锁.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究.中国农业科学,2002b,35(11):1361~1368.
    41.巨晓棠,刘学军,邹国元等.冬小麦/夏玉米轮作体系中的氮素损失途径分析.中国农业科学,2002a,35(12):1493~1499.
    42.寇长林,巨晓棠,张福锁.三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响.应用生态学报,2005,16(4):660~667.
    43.李博.现代生态学讲座.北京:科学出版社,1995:161~188.
    44.李彩霞,陈晓飞,王铁良等.控制性交替灌溉对玉米根系层水分再分布与产量的影响.农业工程学报,2007,23(11):59~64.
    45.李久生,李蓓,宿梅双等.冬小麦氮素吸收及产量对喷灌施肥均匀性的响应.中国农业科学,2005,38(8):1600~1607.
    46.李升东,王法宏,司纪升等.节水灌溉对小麦旗叶主要光合参数和水分利用效率的影响.干旱地区农业研究,2011,29(4):19~22.
    47.李生秀,常青,何琳.植物氮素的挥发损失I.植物收获期地上部分氮素减少与土壤、作物和肥料供应的关系.西北农业大学学报,1992,20(增刊):7~11.
    48.李生秀,李宗让,田霄鸿等.植物地上部分氮素的挥发损失.植物营养与肥料学报,1995,1(2):18~25.
    49.李淑文,于淼,杜建云等.不同灌水处理下土壤水分动态及玉米水分利用效率研究.河北农业大学学报,2010,33(4):17~21.
    50.李铁男,李美娟,王大伟.不同灌溉方式对玉米生物学效应影响研究.节水灌溉,2011,10:24~28.
    51.李晓欣,胡春胜,陈素英.控制灌水对华北高产区土壤硝态氮累积的影响.河北农业科学,2005,9(3):6~10.
    52.李亚贞.不同种植与灌溉方式对夏玉米生育及水分利用效率的影响.[硕士论文].河南:河南科技大学,2010.
    53.李延亮,谢英荷,任苗苗等.施肥和覆膜垄沟种植对旱地小麦产量及水氮利用的影响.生态学报,2011,31(1):212~220.
    54.栗丽,洪坚平,王宏庭等.施氮与灌水对夏玉米土壤硝态氮积累、氮素平衡及其利用率的影响.植物营养与肥料学报,2010,16(6):1358~1365.
    55.梁宗锁,康绍忠,张建华等.控制性分根交替灌水对作物水分利用率的影响及节水效应.中国农业科学,1998,31(5):88~90.
    56.刘昌明,陈志恺.中国水资源现状评价和供需发展趋势分析[M].北京:中国水利水电出版社,2001:109~120.
    57.刘红梅,赵建宁,王志勇等.供氮水平和有机无机配施对夏玉米氮利用效率的影响.中国农学通报,2011,27(12):77~81.
    58.刘宏斌,李志宏,张维理等.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究.植物营养与肥料学报,2004,10(3):286~291.
    59.刘宏斌,李志宏,张云贵等.北京平原农区地下水硝态氮污染状况及其影响因素研究.土壤学报,2006,43(3):405~413.
    60.刘敏超,曾长立,王兴仁等.氮肥施用量对冬小麦氮肥利用率及土壤剖面硝态氮含量动态分布的影响.农业现代化研究,2000,21(5):309~312.
    61.刘文兆.作物生产、水分消耗与水分利用效率间的动态联系.自然资源学报,1998,13(1):23~27.
    62.刘小刚,张富仓,田育丰等.水氮处理对玉米根区水氮迁移和利用的影响.农业工程学报,2008,24(11):19~24.
    63.刘新宇,张丽娟,袁丽金等.耕层水氮调控对小麦利用土壤深层累积硝态氮的影响。中国农业科学,2010,43(17):3564~3571.
    64.刘玉涛,王宇先,郑丽华等.旱地玉米节水灌溉方式的研究.黑龙江农业科学,2011(10):16~17.
    65.卢树昌,臧凤燕,刘惠芬等.不同施氮方式对夏玉米生长性状及氮肥利用率的影响.天津农学院学报,2002,9(1):18~21.
    66.罗亚勇,赵学勇,黄迎新,等.植物水分利用效率及其测定方法研究进展.中国沙漠,2009,29(4):648~655.
    67.罗照霞,柴强.不同灌溉方式及间作对小麦产量及边际效应的影响.甘肃农业大学学报,2009,44(1):69~73.
    68.马红梅,谢英荷.水氮耦合对山西旱地冬小麦籽粒产量和氮吸收影响研究.灌溉排水学报,2011,30(2).
    69.马俊永,李科江,曹彩云等.小麦隔畦灌溉种植的节水效应研究.河北农业科学,2005,9(4):18~21.
    70.马强,宇万太,沈善敏等.下辽河平原水肥交互作用及对玉米产量的影响.农业工程学报,2007,23(4):29~33.
    71.马文奇,毛达如,张福所.山东粮食作物施肥状况的评价.土壤通报,1999,30(5):217~
    220.
    72.马兴华,王东,于振文等.不同施氮量下灌水量对小麦耗水特性和氮素分配的影响.生态学报,2010,30(8):1955~1965.
    73.孟建,李雁鸣,党红凯.施氮量对冬小麦氮素吸收利用、土壤中硝态氮积累和籽粒产量的影响.河北农业大学学报,2007,30(2):1~5.
    74.孟兆江,荆建军,孙笑梅.冬小麦-夏玉米节水高效吨粮水肥耦合及其配套技术.河南农业科学,1997,6:4~7.
    75.苗文芳,陈素英,邵立威等.不同灌溉处理对夏玉米氮素吸收及转移的影响.中国生态农业学报,2011,19(2):293~299.
    76.莫兴国.华北平原1981~2001年作物蒸散量的时空分异特征.自然资源学报,2005,20(2):181~187.
    77.穆兴民.水肥耦合效应与协同管理.北京:中国林业出版社,1999.
    78.牛斌,刘社平,王激清.氮肥用量和追肥方式对玉米中玉15产量和氮肥利用效率的影响.湖北农业科学,2009,48(8):1844~1847.
    79.潘家荣,巨晓棠,刘学军等.水氮优化条件下在华北平原冬小麦/夏玉米轮作中化肥氮的去向.核农学报,2009,23(2):334~340.
    80.潘家荣,邹国元,魏丽等.群体密度和追氮方法对不同熟相冬小麦产量效应的差异及对化肥氮去向的影响.核农学报,2003,17(6):466~471.
    81.祁有玲,张富仓,李开峰.水分亏缺和施氮对冬小麦生长及氮素吸收的影响.应用生态学报,2009,20(10):2399~2405.
    82.齐永青,孙宏勇,沈彦俊.太行山山前平原近50年气候变暖特征及其对冬小麦夏玉米作物系统的影响.中国生态农业学报,2011,19(5):1048~1053.
    83.全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施.生态学报,2002,22(3):291~299.
    84.邵国庆,李增嘉,宁堂原等.灌溉和尿素类型对玉米水分利用效率的影响.农业工程学报,2010,26(3):58~63.
    85.邵国庆,李增嘉,苏诗杰等.氮水耦合对玉米产量和品质及氮肥利用率的影响.山东农业科学,2008,9:29~32.
    86.沈荣开,王康,张瑜芳等.水肥耦合条件下作物产量、水分利用和根系吸氮的试验研究.农业工程学报,2001,17(5):35~38.
    87.石玉,于振文,王东等.施氮量和底追比例对小麦氮素吸收转运及产量的影响.作物学报,2006,32(12):1860~1866.
    88.石玉,张永丽,于振文等.施氮量对不同品质类型小麦子粒蛋白质组分含量及加工品质的影响.植物营养与肥料学报,2010,16(1):33~40.
    89.宋尚有,王勇,樊廷录等.氮素营养对黄土高原旱地玉米产量、品质及水分利用效率的影响.植物营养与肥料学报,2007,13(3):387~392.
    90.孙宏勇,刘昌明,张永强等.不同时期干旱对冬小麦产量效应和耗水特性研究.灌溉排水学报.2003,22(2):13~16.
    91.孙克刚,李锦辉,姚健等.不同施肥处理对作物产量及土体NO3--N累积的长期定位试验.土壤肥料,1999(6):18~20.
    92.孙志梅,薛世川,彭正萍等.影响土壤硝态氮淋失的因素及预防措施.河北农业大学学报,2001,24(3):95~99.
    93.谭方颖,王建林,宋迎波.华北平原近45年气候变化特征分析.气象,2010,36(5):40~
    45.
    94.同延安,赵营,赵护兵等.施氮量对冬小麦氮素吸收、转运及产量的影响.植物营养与肥料学报,2007,13(1):64~69.
    95.汪德水.旱地农田肥水关系原理与调控技术研究.北京:中国农业科学技术出版杜,1995.
    96.王百群,张卫,余存祖.用15N示踪法研究不同土壤水分条件下小麦对氮的吸收利用.核农学报,1999,13(6):362~367.
    97.王朝辉,李生秀,王西娜等.旱地土壤硝态氮残留淋溶及影响因素研究.土壤,2006,38(6):676~681.
    98.王朝辉,李生秀.不同生育期缺水和补充灌水对冬小麦氮磷钾吸收及分配影响.植物营养与肥料学报,2002,8(3):265~270.
    99.王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响.应用生态学报,2004,15(8):1339~1343.
    100.王会肖.华北平原水资源供需与作物水分利用效率指征分析.生态农业研究,1999,7(3):11~15.
    101.王丽梅,李世清,邵明安.水、氮供应对玉米冠层营养器官干物质和氮素累积、分配的影响.中国农业科学,2010,43(13):2697~2705.
    102.王敏,张胜全,方保停等.氮肥运筹对限水灌溉冬小麦产量及氮素利用的影响.中国农学通报,2007,23(7):349~353.
    103.王明东,王志强.灌水对不同追氮水平下夏玉米氮代谢及产量的影响.中国农学通报,2011,27(18):197~199.
    104.王琦,李锋瑞.灌溉与施氮对黑河中游新垦农田土壤硝态氮积累及氮素利用率的影响.生态学报,2008,28(5):2148~2159.
    105.王西娜,王朝辉,李生秀.施氮量对夏季玉米产量及土壤水氮动态的影响.生态学报,2007,27(1):197~204.
    106.王喜庆,李生秀,高亚军.土壤水分在提高氮肥肥效中的作用机制.西北农业大学学报,1997,25(1):16~19.
    107.王小彬,代快,赵全胜等.农田水氮关系及其协同管理.生态学报,2010,30(24):7001~
    7015.
    108.王小彬,高绪科.关于旱地土壤中的水肥问题.山西农业科学,1991,8:33~36.
    109.王小彬,高绪科.旱地农田水肥相互作用的研究.干旱地区农业研究,1993,3:6~12.
    110.王小彬,高绪科.土壤水分胁迫与施肥效果.土壤肥料,1988,4:22~26.
    111.王小燕,褚鹏飞,于振文.水氮互作对小麦土壤硝态氮运移及水、氮利用效率的影响.植物营养与肥料学报,2009b,15(5):992~1002.
    112.王小燕,王东,于振文.水氮互作对小麦旗叶光合特性、籽粒产量及氮素和水分利用率的影响.干旱地区农业研究,2009a,27(6):17~22.
    113.王小燕,于振文.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响.中国农业科学,2008,41(10):3015~3024.
    114.王晓娟,贾志宽卜,梁连友等.旱地有机培肥对玉米产量和水分利用效率的影响.西北农业学报,2009,18(2):93~97.
    115.王晓英,贺明荣,刘永环等.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响.生态学报,2008,28(2):685~694.
    116.王新生,牛永华.不同灌水量对玉米不同品种产量的影响.山西水利科技,2006,1(159):77~79.
    117.王秀斌,周卫,梁国庆等.优化施肥条件下华北冬小麦/夏玉米轮作体系的土壤氨挥发.植物营养与肥料学报,2009,15(2):344~351.
    118.王岩,蔡大同,史瑞和.肥料残留氮的有效性及其与形态分布的关系.土壤学报,1993,30(1):19~25.
    119.王志勇,李红梅,杨殿林等.供氮水平和有机无机配施对夏玉米产量及土壤硝态氮的影响.中国土壤与肥料,2008,6:11~14.
    120.魏凤珍,李金才,王成雨等.氮肥运筹模式对冬小麦氮素吸收利用的影响.麦类作物学报,2010,30(1):123~128.
    121.巫东堂,李红梅,焦晓燕等.旱地麦田水肥关系及对产量的影响试验研究.农业工程学报,2001,17(5):39~42.
    122.吴永成,周顺利,王志敏.氮肥运筹对华北平原限水灌溉冬小麦产量和水氮利用效率的影响.麦类作物学报,2008,28(6):1016~1020.
    123.吴永成,周顺利,王志敏.华北地区夏玉米土壤硝态氮的时空动态与残留.生态学报,2005,25(7):1620~1625.
    124.武际,郭熙盛,王允青等.氮肥基追比例对烟农19小麦氮素吸收利用及产量和品质的影响.麦类作物学报,2008,28(6):1021~1027.
    125.武继承,朱洪勋,杨占平.不同水肥条件下旱地小麦水肥利用率研究.华北农学报,2003,18(4):95~98.
    126.习金根,汤海军,周建斌.不同灌溉施氮方式夏玉米生长效应.干旱地区农业研究,2004,22(4):68~74.
    127.肖俊夫,刘战东,段爱旺等.不同灌水处理对冬小麦产量及水分利用效率的影响研究.灌溉排水学报,2006,25(2):20~23.
    128.肖俊夫,刘战东,刘祖贵等.不同灌水次数对夏玉米生长发育及水分利用效率的影响.河南农业科学,2011,40(2):36~40.
    129.邢素丽,刘孟朝,徐明岗.有机无机配施对太行山山前平原小麦产量和土壤培肥的影响.华北农学报,2010,25(增刊):212~216.
    130.邢维芹,王林权,骆永明等.半干旱地区玉米的水肥空间耦合效应研究.农业工程学报,2002,18(6):46~49.
    131.熊伟,王彦辉,于澎涛.树木水分利用效率研究综述.生态学杂志,2005,24(4):417~421.
    132.徐洪敏,朱琳,刘毅等.黄土旱塬几种农田水分管理模式下春玉米氮素吸收及分配的差异.中国农业科学,2010,43(14):2905~2912.
    133.徐杰,陶洪斌,宋庆芳等.水氮配置对华北冬小麦-夏玉米种植体系氮素利用及土壤硝态氮残留的影响.华北农学报,2011,26(4):153~158.
    134.许迪,龚时宏.中国节水农业技术与产品需求分析.灌溉排水学报,2005,24(1):1~7.
    135.许越先,刘昌明,沙和伟.农业用水有效性研究.北京:科学出版社,1992:29~34.
    136.许振柱,于振文,王东等.灌溉量对小麦氮素吸收和运转的影响.作物学报,2004,30(10):1002~1007.
    137.严昌荣.北京山区落叶阔叶林优势种水分生理生态研究[博士论文].北京:中国科学院植物研究所,1997.
    138.杨启良,张富仓,刘小刚等.沟灌方式和水氮对玉米产量和水分传导的影响.农业工程学报,2011,27(1):15~21.
    139.杨声澉,陈涛,吴晓伟等.应用15N示踪技术测定作物氮素的利用率及分配研究进展.广西农业科学,2007,38(3):291~295.
    140.鲁如坤等.土壤-植物营养学原理和施肥.北京:化学工业出版社,1998,112~146.
    141.杨世丽,贾秀领,张凤路等.水氮耦合对小麦叶片硝酸还原酶活性、植株吸氮量及产量的影响.华北农学报,2008,23(4):124~129.
    142.杨晓亚,于振文,许振柱.灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响.生态学报,2009,29(2):846~853.
    143.易秀.硝态氮的淋溶污染.农业环境保护,1991,10(5):223~226.
    144.易镇邪,王璞,屠乃美.氮肥类型对夏玉米及后作冬小麦产量与水、氮利用的影响.干旱地区农业研究,2008,26(2):11~17.
    145.袁新民,同延安,杨学云等.有机肥对土壤NO-3-N累积的影响.土壤与环境,2000a,9(3):197~200.
    146.袁新民,同延安,杨学云等.灌溉与降水对土壤NO-3-N累积的影响.水土保持学报,2000b,14(3):71~74.
    147.袁新民,杨学云,同延安等.不同施氮量对土壤硝态氮累积的影响.干旱地区农业研究,2001,19(1):7~13.
    148.翟丙年,李生秀.不同水份状况下施氮对夏玉米水分利用效率的影响.植物营养与肥料学报,2005,11(4):473~480.
    149.詹其厚,陈杰.水肥配合对玉米产量及其利用效率的影响.土壤肥料,2005,4:14~18.
    150.张福锁,王激清,张卫峰等.中国主要粮食作物肥料利用率现状与提高途径.土壤学报,2008,45(5):915~924.
    151.张福珠,熊先哲,戴同顺等.应用15N研究土壤-植物系统中氮素淋失动态.环境科学,1984,5(1):21~24.
    152.张光辉,费宇红,刘克岩.华北平原农田区地下水开采量对降水变化响应.水科学进展.2006,17(1):43~48.
    153.张宏,周建斌,王春阳等.栽培模式及施氮对冬小麦-夏玉米体系产量与水分利用效率的影响.植物营养与肥料学报,2010,16,(5):1078~1085.
    154.张铭,蒋达,缪瑞林等.不同土壤肥力条件下施氮量对稻茬小麦氮素吸收利用及产量的影响.麦类作物学报,2010,30(1):135~140.
    155.张庆利.包膜控释和常用氮肥氮素淋溶特征及其对土水质量的影响[J].土壤与环境,2001,10(2):98~103.
    156.张庆忠,陈欣,沈善敏.农田土壤硝酸盐累积与淋失研究进展.应用生态学报,2002,13(2):233~238.
    157.张秋英,李发东,张依章等.水分对小麦产量及水分利用效率的影响.西南农业大学学报(自然科学版),2005,27(6):809~812.
    158.张树兰,同延安,梁东丽等.氮肥用量及施用时间对土体中硝态氮移动的影响.土壤学报,2004,41(2):270~277.
    159.张岁岐,山仑.植物水分利用效率及其研究进展.干旱地区农业研究,2002,20(4):1~5.
    160.张岁岐,周小平,慕自新等.不同灌溉制度对玉米根系生长及水分利用效率的影响.农业工程学报,2009,25(10):1~6.
    161.张维理,田哲旭,张宁等.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80~87.
    162.张益望,刘文兆,王俊等.轮作及不同施肥措施对春玉米生长、产量及水分利用的影响.水土保持通报,2010,30(2):124~128.
    163.张永丽,于振文.灌水量对小麦氮素吸收、分配、利用及产量与品质的影响.作物学报,2008,34(5):870~878.
    164.张月霞,杨君林,刘炜等.秸秆覆盖条件下不同施氮水平冬小麦氮素吸收及土壤硝态氮残留.干旱地区农业研究,2009,27(2):189~193.
    165.张岳.中国水资源与可持续发展.中国农村水利水电,1998(5):3~6.
    166.张云贵,刘宏斌,李志宏等.长期施肥条件下华北平原农田硝态氮淋失风险的研究.植物营养与肥料学报,2005,11(6):711~716.
    167.张忠学,温金祥,吴文良.华北平原冬小麦夏玉米不同培肥措施的节水增产效应研究.应用生态学报,2000,11(2):219~222.
    168.章力建,蔡典雄,王小彬等.农业立体污染及其防治研究的探讨.中国农业科学,2005,38(2):350~357.
    169.赵炳梓,徐富安,周刘宗等.水肥(N)双因素下的小麦产量及水分利用率.土壤,2003,(2):122~125.
    170.赵炳梓,徐富安.水肥条件对小麦、玉米N、P、K吸收的影响.植物营养与肥料学报,2000,6(3):260~266.
    171.赵久然,郭强,郭景伦等.北京郊区粮田化肥投入和产量现状的调查分析.北京农业科学,1997,15(2):36~38.
    172.赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响.作物学报,2006,32(4):484~490.
    173.赵立群,李井云,李薇等.不同生育期灌水量及培肥措施对玉米产量和水分利用率的影响.吉林农业科学,2009,34(6):20~22.
    174.赵萍萍,王宏庭,郭军玲等.氮肥用量对夏玉米产量、收益、农学效率及氮肥利用率的影响.山西农业科学,2010,38(11):43~46.
    175.赵荣芳,陈新平,张福锁.华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡.土壤学报,2009,46(4):684~697.
    176.赵淑章,季书勤.水氮运筹与强筋小麦产量和品质关系研究.土壤肥料,2005,6:23~26.
    177.赵同科,张成军,杜连凤等.环渤海七省(市)地下水硝酸盐含量调查.农业环境科学学报,2007,26(2):779~783.
    178.赵营,同延安,赵护兵.不同供氮水平对夏玉米养分累积、转运及产量的影响.植物营养与肥料学报.2006,12(5):622~627.
    179.郑成岩,于振文,张永丽等.不同施氮水平下灌水量对小麦水分利用特征和产量的影响.应用生态学报,2010,21(11):2799~2805.
    180.郑捷,李光永,韩振中.中美主要农作物灌溉水分生产率分析.农业工程学报,2008,24(11):46~50.
    181.中国科学院和中国工程院院士专家组.我国化肥面临的突出问题及建议.北京:中国科学院文件,科发学部字(1997)0228号,1997.
    182.周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏研究Ⅰ.冬小麦.生态学报,2001,21(11):1782~1789.
    183.周顺利,张福锁,王兴仁.土壤硝态氮时空变异与土壤氮素表观盈亏II.夏玉米.生态学报,2002,22(1):48~53.
    184.朱希刚.华北平原水资源农业利用问题.调研世界,1998(4):9~12.
    185.朱新开,郭文善,周权正.氮肥对中筋小麦扬麦10号氮素吸收、产量和品质的调节效应.中国农业科学,2004,37(12):1831~1837.
    186.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1~6.
    187. Abril A., Baleani D., Casado-Murillo N., et al. Effect of wheat crop fertilization on nitrogendynamics and balance in the Humid Pampas, Argentina. Agriculture, Ecosystems and Environment,2007,119:171~176.
    188. Albrizio R., Todorovic M., Matic T., et al. Comparing the interactive effects of water and nitrogenon durum wheat and barley grown in a Mediterranean environment. Field Crops Research,2010,115:179~190.
    189. Banedjschafie S., Bastani S., Widmoser P., et al. Improvement of water use and N fertilizerefficiency by subsoil irrigation of winter wheat. European Journal of Agronomy,2008,28:1~7.
    190. Bennnet J. M., MuttiL S. M., RaoP S. C., et al. Interactive effects of nitrogen and water stresses onbiomass accumulation, nitrogen uptake, and seed yield of maize. Field Crops Research,1989,19:297~311.
    191. Bergstrom L., Brink N. Effects of differentiated application of fertilizer N leaching losses anddistribution of inorganic N in soil. Plant and Soil,1986,93(3):333~345.
    192. Brown P. L. Water use and soil water depletion by dry land wheat as affected by nitrogenfertilization. Agronomy Journal,1971,63:43~46.
    193. Caldwell D. S., Spurgeon W. E., Manges H. L. Frequency of irrigation for subsurface drip-irrigatedcorn. Trans ASAE,1994,37(4):1099~1103.
    194. Camp C. R., Sadler E. J., Busscher W. J. Subsurface and alternate middle micro irrigation for theSoutheastern Coastal Plain. Trans ASAE.1989,32(2):451~456.
    195. Cartagena M. C., VallejoA., Diez J.A., et al. Effect of the type of fertilizer and source of irrigationwater on N use in a maize crop. Field Crops Research,1995,44:33~39.
    196. Caviglia O. P., Sadras V. O. Effect of nitrogen supply on crop conductance, water-and radiation-useefficiency of wheat. Field Crops Research,2001,69:259~266.
    197. Chaney K. Effect of nitrogen fertilizer rate on soil nitrate nitrogen content after harvesting winterwheat. The Journal of Agricultural Science,1990,114:171~176.
    198. Chen X. P. Optimization of the N fertilizer management of a winter wheat/summer maize rotationsystem in the North China Plain. PhD Thesis,2003,University of Hohenheim, Stuttgart, Germany.
    199. Ciampitti I. A.., Vyn T. J. Physiological perspectives of changes over time in maize yielddependency on nitrogen uptake and associated nitrogen efficiencies: A review Review Article.Field Crops Research,2012,133:48~67.
    200. Cooper J. L. The effect of nitrogen fertilizer and irrigation frequency on a semi-dwarf wheat inSouth-east Australia.1. Growth and yield. Australian Journal of Experimental Agriculture andAnimal Husbandry,1980a,20(104):359~364.
    201. Cooper J. L. The effect of nitrogen fertilizer and irrigation frequency on a semi-dwarf wheat inSouth-east Australia.2. Water use. Australian Journal of Experimental Agriculture and AnimalHusbandry,1980b,20(104):365~369.
    202. Cooper P. J. M., Gregory, P. J. Soil water management in the rain-fed farming systems of theMediterranean region. Soil Use Manage.1987,3(2):57~62.
    203. Cooper P. J. M., Gregory, P. J., Tully, D., et al. Improving water use efficiency of annual crops inthe rain-fed farming systems of west Asia and north Africa. Experimental Agriculture,1987,23:113~158.
    204. Cossani C. M., Slafer G.A., Savin R. Nitrogen and water use efficiencies of wheat and barleyunder a Mediterranean environment in Catalonia. Field Crops Research,2012,128:109~118.
    205. Cossani C.M., Slafer G.A., Savin R. Do barley and wheat (bread and durum) differ in grain weightstability through seasons and water–nitrogen treatments in a Mediterranean location? Field CropsResearch,2011a,121,240~247.
    206. Cossani C.M., Thabet C., Mellouli H.J., et al. Improving wheat yields through N fertilization inMediterranean Tunisia. Experimental Agriculture,2011b,47,459~475.
    207. Cui Z. L., Chen X. P., Zhang F. S., et al. On-farm evaluation of the improved soil Nmin-basednitrogen management for summer wheat in North China Plain. Agronomy Journal,2008a,100:517~525.
    208. Cui Z. L., Chen X. P., Zhang F. S., et al. Soil nitrate N levels required for high yield maizeproduction in the North China Plain. Nutrient Cycling in Agroecosystems,2008b,82:187~196.
    209. Cui Z. L., Zhang F. S., Chen X. P., et al. In-season nitrogen management strategy for winter wheat:Maximizing yields, minimizing environmental impact in an over-fertilization context. Field CropsResearch,2010,116,(1-2):140~146.
    210. Daigger L. A., Sander DH, Peterson G A. Nitrogen content of winter wheat during growth andmaturation. Agronomy Journal,1976,68:815~818.
    211. De C. D., Ahuja L., Hanson J., et al. Root Zone Water Quality Model version1.0: technicaldocumentation. USDA-ARS, GPSR Technical Report No.2. Great Plains Systems Research Unit,Ft. Collins, Colorado,1992.
    212. Diez J. A., Caballero R., Roman R., et al. Intergrated fertilizer and irrigation management to reducenitrate leaching in central Spain. Journal of Environment Quality,2000,29:1539~1547.
    213. Doltra J., Muňoz P. Simulation of nitrogen leaching from a fertigated crop rotation in aMediterranean climate using the EU-Rotate_N and Hydrus-2D models. Agricultural WaterManagement,2010,97:277~285.
    214. Dong B. D., Shi L., Shi C. H., et al. Grain yield and water use efficiency of two types of winterwheat cultivars under different water regimes. Agricultural Water Management,2010,97:528~535.
    215. Elmi A. A., Madramootoo C., Mohamud E. H. C. Water and fertilizer nitrogen management tominimize nitrate pollution from a cropped soil in Southwestern Quebec, Canada. Water, Air,&SoilPollution,2004,151:117~134.
    216. Fang Q. X., Chen Y. H., Yu Q., et al. Much Improved Irrigation Use Efficiency in an IntensiveWheat-Maize Double Cropping System in the North China Plain. Journal of Integrative PlantBiology,2007,49(10):1517~1526.
    217. FAO (Food and Agriculture Organization), FAOSTAT database collections,2012. Retrieved fromwww. apps.fao.org.
    218. Farquhar G. D., Wetaelaar R., Firth P. M. Ammonia volatilization from senescing leaves of maize.Science,1979,203:1257~1258.
    219. Freddie R. L., Todd P. T. Subsurface drip irrigation for corn production: a review of10years ofresearch in Kansas. Irrigation Sciences,2003,22:195~200.
    220. Garabet S., Ryan J., Wood M. Nitrogen and water effects on wheat yield in a Mediterranean-typeclimate.Ⅱ. Fertilizer-use efficiency with labeled nitrogen. Field Crops Research,1998b,58:213~221.
    221. Garabet S., Wood M., Ryan J. Nitrogen and water effects on wheat yield in aMediterranean-typeclimate. I. Growth, water-use and nitrogen accumulation. Field Crops Research,1998a,57:309~318.
    222. Harold V. E. Effects of water deficits on yield, yield components, and water use efficiency ofirrigated corn. Agronomy Journal,1986,78(6):1035~1040.
    223. Huang M., Zhong L., Gallichand J. Irrigation treatments for corn with limited water supply in theLoess Plateau, China. Canadian biosystems engineering,2002,44(1):29~34.
    224. Hutchinson G. L., Mosier A. R. Nitrous oxide emissions from an irrigated corn field. Science,1979,205:1125~1127.
    225. Imsande J., Touraine B. N demand and the regulation of nitrate uptake. Plant Physiol.1994,105:3~7.
    226. Jaume F., Josefina Bota, Jeroni G., et al. Keeping a positive carbon balance under adverse condition:responses of photosynthesis and respiration to water stress. Physiologia Plantarum,2006,127:343~352.
    227. Jayasundara S., Wagner-Riddle C., Parkin G., et al. Minimizing nitrogen losses from acorn-soybean-winter wheat rotation with best management practices. Nutrient Cycling inAgroecosystems,2007,79(2):141~159.
    228. Jia S. L., Wang X. B., Yang Y. M., et al.Fate of labeled urea-15N as basal and topdressingapplications in an irrigated wheat–maize rotation systemin North China Plain: I winterwheat.Nutrient Cycling Agroecosystem,2011,90(30):331~346.
    229. Jin L.B., Cui H.Y., Li B., Zhang J.W., et al. Effects of integrated agronomic management practiceson yield and nitrogen efficiency of summer maize in North China. Field Crops Research,2012,134:30~35.
    230. Johnson R. C., Li Y. Y. Water relations, forage production, and photo synthesis in tall Fescuedivergently selected for carbon isotope discrimination. Crop Science,1999,39:1663~1670.
    231. Jones J. W., Hoogenboom G., Porter C. H., et al. The DSSAT cropping system mode. l EuropeanJournal of Agronomy,2003,18:235~265.
    232. Kang S Z., Liang Z. S., Hu W., et al. Water use efficiency of controlled alternate irrigation onroot-divided maize plants. Agricultural Water Management,1998,38:69~76.
    233. Kang S Z., Zhang L., Liang Y. L., et al. Effects of limited irrigation on yield and water useefficiency of winter wheat in the Loess Plateau of China, Agricultural Water Management,2002,55:203~216.
    234. Kanwar R. S., Baker J. L., Laflen. Nitrate movement through the soil profile in relation to tillagesystem and fertilizer application method. Transactions of the ASAE,1985,28:1802~1807.
    235. Kibe A. M., Singh S., Kalra N. Water-nitrogen relationships for wheat growth and productivity inlate sown conditions. Agricultural Water Management,2006,84:221~228.
    236. Kim K., Clay D. E., Carlson C. G., et al. Trooien T. Do synergistic relationships between nitrogenand water influence the ability of corn to use nitrogen derived from fertilizer and soil. AgronomyJournal,2008,100:551~556.
    237. Kirda C., Topcu S., Kaman H., et al. Grain yield response and N-fertiliser recovery of maize underdeficit irrigation. Field Crops Research,2005,93:132~141.
    238. Kramer P. J. Water Relations of Plants. New York: Academic Press,1983:405~409.
    239. Kramer P. J., Kozlowski T.T. Physiology of Woody Plants. London: Academic Press,1979:443~444.
    240. Krentos, V. D., Orphanos, P. J. Nitrogen and phosphorus fertilizers for wheat and barley in asemi-arid region. The Journal of Agricultural Science,1979,93:711~717.
    241. Ladha, J. K., Pathak H., Krupnik T. J., et al. Efficiency of fertilizer nitrogen in cereal production:Retrospects and prospects. Advances in Agronomy,2005,87:86~156.
    242. Li W. L., Li W. D., Li Z. Z. Irrigation and fertilizer effects on water use and yield of spring wheatin semi-arid regions. Agricultural Water Management,2004,67:35~46.
    243. Li X. X., Hu C. S., Delgado J. A., et al. Increased nitrogen use efficiencies as a key mitigationalternative to reduce nitrate leaching in north china plain. Agricultural Water Management,2007,89(1/2):137~147.
    244. Li Y., White R., Chen D. L., et al. A spatially referenced water and nitrogen management model(WNMM) for (irrigated) intensive cropping systems in the North China Plain. EcologicalModeling,2007,203:395~423.
    245. Liang B. C., MacKenzie A. F. Changes of soil nitrate nitrogen and denitrification as affected bynitrogen fertilizer on two Quebec soils. Journal of Environmental Quality,1994,23(3):521~525.
    246. Liu X.J., Ju, X.T. Nitrogen dynamics and budgets in a winter wheat–maize cropping system in theNorth China Plain. Field Crops Research,2003,83:111~124.
    247. Liu Y. T., Li Y. E., Wan Y. F., et al. Nitrous Oxide Emission from Irrigated and Fertilized SpringMaize in Semi-Arid Northern China. Agriculture Ecosystems&Environmental,2011,doi:10.1016/j.agee.2011.03.002
    248. Lopez-Bellido R. J., Lopez-Bellido L. Efficiency of nitrogen in wheat under Mediterraneanconditions: effect of tillage, crop rotation and N fertilization, Field Crops Research,2001,71:31~46.
    249. Martin B., Thorstenson Y. R. Stable carbon isotope composition (δ13C), water-use efficiency, andbiomass productivity of Lycoperscon esculentum, Lycoperscon pennellii, and the F1hybrid. PlantPhysiology,1988,88:213~217.
    250. McCown R. L., Hammer G. L., Hargreaves J. N. G., et al. APSIM: a novel software system formodel development, model testing and simulation in agricultural systems research. AgriculturalSystems,1996,50(3):255~271.
    251. Mo X. G., Liu S. X., Lin Z. H., et al. Regional crop yield, water consumption and water useefficiency and their responses to climate change in the North China Plain. Agriculture, Ecosystemsand Environment,2009,134:67~78.
    252. Moeller C., Asseng S., Berger J., et al. Plant available soil water at sowing in Mediterraneanenvironments-Is it a useful criterion to aid nitrogen fertilizer and sowing decisions? Field CropsResearch,2009,114:127~136.
    253. Moreno F., Cayuela J. A., Fermández-Boy J. E., et al. Water balance and nitrate leaching in anirrigation maize crop in SW Spain. Agricultural Water Management,1996,32:71~83.
    254. Mossedaq F., Smith D.H. Timing nitrogen application to enhance spring wheat yield in aMediterranean climate. Agronomy Journal,1994,86:221~226.
    255. Nangia V., Turral H, Molden D. Increasing water productivity with improved N fertilizermanagement. Irrigation and Drainage Systems,2008,22:193~207.
    256. Norwood C. A. Water use and yield of limited-irrigated and dryland corn. Soil Science Society ofAmerica Journal,2000,64:365~370.
    257. Oweis T., Pala M., Ryan J. Stabilizing rain-fed wheat yields with supplemental irrigation in aMediterranean-type climate. Agronomy Journal,1998:672~681.
    258. Pala M., Matar A., Mazid A. Assessment of the effects of environmental factors on the response ofwheat to fertilizer in on-farm trials in Northern Syria. Experiment Agriculture,1996,32(3):339~349.
    259. Palta J. A., Fillery I. R. P. N application enhances remobilization and reduces losses of pre-anthesisN in wheat grown on a duplex soil. Australian Journal of agricultural Research,1995,46:519~531.
    260. Palta J. A., Fillery I. R. P. Nitrogen accumulation and remobilization in wheat of15N-urea appliedto a duplex soil at seeding. Australian Journal of Experimental Agriculture,1993,33:233~238.
    261. Paolo E. D., Rinaldi M. Yield response of corn to irrigation and nitrogen fertilization in aMediterranean environment. Field Crops Research,2008,105:202~210.
    262. Payero J.O., Tarkalson D.D., Irmak S., et al. Effect of timing of a deficit-irrigation allocation oncorn evapotranspiration yield, water use efficiency and dry mass. Agricultural Water Management,2009,96:1387~1397.
    263. Penuelas J., Filella I., Llusia J., et al. Comparative field study of spring and summer leaf gasexchange and photobiology of the Mediterranean trees Quercusilex and Phillyrea latifolia. Journalof Experiment Botany,1998,49(319):229~238.
    264. Perrier E. R., Salkini A. B. Supplemental irrigation in the Near East and North Africa.1991,Kluwer Academic, Dordrecht, The Netherlands.
    265. Ramig R. E., Rhoades H. F. Interrelationships of soil moisture level at planting and nitrogenfertilization on winter wheat production. Agronomy Journal,1963,54:123~127.
    266. Rasmussen P. E., Rohde C. R. Tillage, soil depth, and precipitation effects on wheat response tonitrogen. Soil Science Society of America Journal,1991,55:121~124.
    267. Riley W. J. Ortiz-Monasterio I., Matson P. A. Nitrogen leaching and soil nitrate, nitrite, andammonium levels under irrigated wheat in Northern Mexico. Nutrient Cycling in Agroecosystems,2001,61(3):223~236.
    268. Ritchie J. T., Basso B. Water use efficiency is not constant when crop water supply is adequate orfixed: The role of agronomic management. European Journal of Agronomy,2008,28:273~281.
    269. Rossella A., Mladen T., Tatjana M., et al. Comparing the interactive effects of water and nitrogenon durum wheat and barley grown in a Mediterranean environment. Field Crops Research,2010,115:179~190.
    270. Sadras V. Interaction between rain fall and nitrogen fertilization of wheat in environments prone toterminal drought: economic and environmental risk analysis. Field Crops Research,2002,77:201~215.
    271. Sadras V. O. Yield and water-use efficiency of water-and nitrogen-stressed wheat crops increasewith degree of co-limitation. European Journal of Agronomy,2004,21:455~464.
    272. Sarkar R., Kar S. Sequence analysis of DSSAT to select optimum strategy of crop residue andnitrogen for sustainable rice-wheat rotation. Agronomy Journal,2008,100:87~97.
    273. Spalding R. F., Exner M. E. Occurrence of nitrate in groundwater-A review. Journal ofEnvironmental Quality,1993,22(3):392~402.
    274. Tayebeh A., Abbas A., Seyed A. K. Wheat yield and grain protein response to nitrogen amount andtiming. Australian Journal of Crop Science,2011,5(3):330~336.
    275. Thompson R. B., Martinez-Gaitan C., Gallardo M., et al. Identification of irrigation and Nmanagement practices that contribute to nitrate leaching loss from an intensive vegetableproduction system by use of a comprehensive survey. Agricultural Water Management,2007,89:261~274.
    276. Thornton P. K., Wilkens P. W., Hoogenboom G., et al. Sequence analysis∥Tsuji G. Y., Uehara G.,Balas S., et al. DSSAT v3. Vo.l3~2.University of Hawaii, Honolulu,1994.
    277. Timsina J., Singh U., Badaruddin M., et al. Cultivar, nitrogen, and water effects on productivity,and nitrogen-use efficiency and balance for rice-wheat sequences of Bangladesh. Field CropsResearch,2001,72:143~161.
    278. Varshney P., Kanwar R. S., Baker J. L., et al. Tillage and nitrogen management effects onnitrate-nitrogen in the soil profile. Transactions of the ASAE,1993,36(3):783~789.
    279. V′ctor S. Interaction between rainfall and nitrogen fertilisation of wheat in environments prone toterminal drought: economic and environmental risk analysis. Field Crops Research,2002,77:201~215.
    280. Viets F. G. Fertilizers and the efficient use of water. Advances in Agronomy.1962,14:223~264.
    281. Wang X. B., Dai K., Wang Y., et al. Nutrient management adaptation for dryland maize yields andwater use efficiency to long-term rainfall variability in China. Agricultural Water Management,2010,97(9):1344~1350.
    282. Wang X. B., Dai K., Zhang D. C., et al. Dryland maize yields and water use efficiency in responseto tillage/crop stubble and nutrient management practices in China. Field Crops Research,2011,120(1):47~57.
    283. Wang X. B., Hoogmoed W. B., Cai D. X., et al. Crop residue, manure and fertilizer in drylandmaize under reduced tillage in northern China: I Grain yields and nutrient use efficiencies. NutrientCycling in Agroecosystems,2007,79:1~16.
    284. Xia J., Liu M.Y., Jia S.F. Water security problem in North China: Research and perspective.Pedosphere,2005,15(5):563~575.
    285. Xue L. H., Luo W. H., Cao W. X., et al. Research Progress on the Water and Nitrogen DetectionUsing Spectral Reflectance. Journal of Remote Sensing,2003,7(1):73~80.
    286. Yang Y. M., Wang X. B., Dai K., et al. Fate of labeled urea-15N as basal and topdressingapplications in an irrigated wheat-maize rotation system in North China plain: II summermaize.Nutrient Cycling Agroecosystem,2011,90(3):379~389.
    287. Zhang K. F. Evaluation of a generic agro-hydrological model for water and nitrogen dynamics(SMCR_N) in the soil-wheat system. Agriculture, Ecosystems and Environment,2010a,137:202~212.
    288. Zhang K. F., Greenwood D. J., Spracklen W. P., et al. A universal agro-hydrological model forwater and nitrogen cycles in the soil-crop system SMCR N: Critical update and further validation.Agricultural Water Management,2010b,97(10):1411~1422.
    289. Zhang X. Y., Chen S. Y., Sun H. Y., et al. Dry matter, harvest index, grain yield and water useefficiency as affected by water supply in winter wheat. Irrigation Science,2008,27(1):1~10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700