用户名: 密码: 验证码:
生化处理系统无机固体分布特性及累积机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,城市污水处理厂普遍存在污泥有机质(MLVSS)含量低、混合液有机质和悬浮固体比值(MLVSS/MLSS)通常在0.25~0.5之间,远低于0.75的正常水平,生化池底部泥沙淤积严重,大多数污水厂尤其是氧化沟等取消初沉池的污水厂运行1~2年,其生化池底部就可能产生0.5~2m的淤泥,使生物处理系统难以正常运行。这种现象在三峡库区山地城镇污水厂表现得尤为突出。究其原因,这种现象可能和污水中外源性无机固体含量增加、取消初沉池后无机固体去除受阻、化学除磷导致无机物含量的增加、延长污泥龄导致无机固体颗粒及无机物在污水处理系统中长期停留等因素有关。但是,在查阅资料范围内发现,鲜有学者进行相关研究,更缺乏对污水处理系统无机固体分布特性以及污泥MLVSS/MLSS下降的机制的研究。在分析无机固体迁移机制时,作者认为粒径是影响颗粒物分布特性的重要因素。基于此,研究了细微泥沙对活性污泥性质的影响;研究了化学除磷对活性污泥无机组份的累积贡献;重点研究了不同粒径的细微泥沙在生化处理系统中的分布特性和归趋行为;最后研究了细微泥沙累积对污水处理厂运行的综合影响。主要结论如下:
     1)进水的泥沙浓度对活性污泥的无机固体累积及恢复能力有重要影响。研究发现,粒径为43um的进水细微泥沙含量(ISS/COD)≦0.6时,MLVSS/MLSS可以维持在0.6以上的较正常水平;ISS/COD≧1.2时,MLVSS/MLSS下降到0.44以下;ISS/COD≧2.4时,MLVSS/MLSS下降到0.25以下。研究进一步发现ISS/COD≧1.8时,会持续影响活性污泥系统的恢复能力,经过60d后MLVSS/MLSS和MLSS难以恢复到初始值。细微泥沙能提高活性污泥的沉降性能和脱水性能,但同时也增大了活性污泥的比重,使得污泥容易在生化池沉积。细微泥沙不会抑制微生物活性,但会降低单位质量活性污泥的比好氧呼吸速率。
     2)采用硫酸铁和硫酸铝作为化学除磷剂,根据《室外排水设计规范》(GB50014-2006)对除磷剂投加量和污水厂对投加方式的要求进行化学除磷。研究结果表明在运行50d以后,MLVSS/MLSS仍能维持在0.6以上的较正常水平。化学除磷产生的化学污泥与COD的比值仅为0.1,但对MLVSS/MLSS和污泥浓度的影响却大于细微泥沙含量为(ISS/COD)0.1的影响。化学除磷也能提高污泥的沉降性能和脱水性能,但会抑制好氧微生物活性,导致比好氧呼吸速率下降。
     3)进入生化处理系统的无机固体除极少数细微泥沙可能随着出水排出生化系统外,其余部分或悬浮在混合液中、或沉积在构筑物底部、或随剩余污泥排出。研究发现,粒径<73um的细微颗粒在混合液、剩余污泥和沉积污泥中的分布比分别为>21%、>31%、<47%,分布相对均匀;粒径>106um的颗粒在混合液、剩余污泥和沉积污泥中的分布比分别为<4%、<20%、>75%,主要沉积在构筑物底部。研究进一步发现,细微颗粒进入生化处理系统后,极易引起污泥MLVSS/MLSS比值下降,在粒径<73um颗粒的连续影响下,生化处理系统运行40d后,MLVSS/MLSS从0.84下降到0.26。结果表明,大颗粒固体更容易沉积在反应器底部,导致泥沙淤积,细微颗粒更容易悬浮在混合液中,引起污泥MLVSS/MLSS比值下降。
     4)通过对重庆市A污水厂连续一年的现场跟踪监测发现,污水厂进水的细微泥沙浓度年均值为809mg/L,ISS/COD的年均值为1.27,远远高于普通生活污水0.1的比值。降雨过程导致大量的泥沙进入生化处理系统,ISS高达1243mg/L,ISS/COD最大值达到1.98,比背景期增加113%,造成MLVSS/MLSS下降。经过多次降雨后,污水厂的MLVSS/MLSS从旱季的0.57下降到雨季的0.25,污水厂以提高污泥浓度的方式保证污水处理效果,导致MLSS从3000mg/L增加8000mg/L。这种调控方式阻碍了氧气传递,导致供气量上升,最终使污水厂的运行成本增加了44%以上。研究进一步发现进水中的泥沙浓度高和进水泥沙粒径小于73um是造成污水厂混合液MLVSS/MLSS降低的主要原因。
     通过对B污水厂的现场研究发现,氧化沟底部的泥沙沉积现象严重。细微泥沙主要沉积在缺氧段,其沉积厚度为0.36m~1.68m,沉积量为1061m3,使缺氧段的水力停留时间减少了57%,TN去除率降低了20%。细微泥沙在污水处理构筑物的累积定期为污水厂增加了4-5万的清淤费用,同时也使污水处理构筑物停止运行,影响污水厂的正常运作。
     5)基于细微泥沙在生化处理系统中的分布特性,建立无机固体的累积模型,其公式为化学污泥与混合液均匀混合,不存在沉积现象,其在混合液中的分布系数0为1。经验证,该模型能较准确预测细微泥沙含量、化学污泥和不同粒径的无机固体对混合液MLVSS/MLSS以及MLISS浓度的影响。
In recent years, there are some problems in urban wastewater treatmentplants(WWTP), such as low organic components in sewage sludge,mixtureMLVSS/MLSS is between0.25~0.5, much lower than the normal value0.75, anddeposited sludge height in oxidation ditch which cancelled primary settling tank is up to1~2m. These phenomenon have become a great problem for the normal operation ofWWTP. This phenomenon in the mountainous urban WWTP of the three gorgesreservoir area is especially prominent. This maybe have relations with the increase ofexogenous inorganic suspended solid(ISS), caused by the cancellation of primarysettling tank, chemical phosphorus removal and extension of sludge rententiontime.Based on existing research, few relative studies have been done, and there are alsolack of studies about the fate of ISS in wastewater treatment system and the mechanismof MLVSS/MLSS decline. Based on the analysis of ISS distribution characteristic,particle size is considered as an important factor affecting the fate of particles. Based onthis, the effect of fine sediment and chemical phosphorus removal on inorganic solidaccumulation in the activated sludge system was studied first; second, typical particlesize distribution characteristic of fine sediment in sewage treatment system was studied;finally, the comprehensive effect of fine sediment accumulation on WWTP’s operationwas also researched.The main conclusions are as follows:
     1) Influent fine sediment concentration had important influence on ISSaccumulation and recoverycapability of activated sludge.When influent fine sedimentcontent(ISS/COD) with particle size less than43um was not more than0.6,MLVSS/MLSS can remain above0.6;when ISS/COD was more than1.2,MLVSS/MLSS dropped to below0.44; when ISS/COD was more than2.4,MLVSS/MLSS dropped to below0.25. Further study found that if ISS/COD was morethan1.8, it would continue to affect therecoverycapability of activated sludge system,and MLVSS/MLSS and MLSS is difficult to return to the initial value after60d. Finesediment can improve the settleability of activated sludge and dewatering performance,but also increase the density of the activated sludge at the same time, making sludgeeasier to settling in the biochemical treatment tank, increasing the difficulty of agitationand aeration, even resulting in a decrease of working volume of biochemical treatmenttank. Fine sediment will not inhibit microbial activity, but will reduce the oxygen uptake rate of unit mass sludge.
     2)According to the dosage stipulated in theCode for design of outdoor wastewaterengineeringand operation manner in WWTP,use ferric sulfate and aluminum sulfate aschemical phosphorus removal agent. The results showed that MLVSS/MLSS can stillmaintain at0.6after operation for50d. The chemical sludge's contribution to the ISSwas equivalent to the ISS/COD of0.1, but the effect on MLSS and MLVSS/MLSS wasgreater than that of fine sediment. Chemical phosphorus removal can also improve thesludge settleability and dewatering performance, but will inhibit microbial activity,reducing the oxygen uptake rate.
     3)The influent fine sediment in an activated sludge system may be discharged fromthe reactors via effluent, or suspend in the activated sludge, or deposite at the bottom ofthe reactors, or discharged from the reactors via excess sludge. The results showed thefine sediment with particle size less than73um had a uniform proportion in mixture,excess sludge and deposited sludge, and the value was>21%、>31%、<47%respectively. The fine sediment with particle size more than106um mainly deposited inthe bottom of reactor, and the proportion was<4%、<20%、>75%respectively.Studies further found that the sludge MLVSS/MLSS ratio decreased easily. Under thecontinuous influence offine sediment with particle size less than73um, MLVSS/MLSSdecreased from0.84to0.26after40d. In a word, large solid particles were more likelyto deposit in the bottom of the reactor, causing sediment deposition, but fine particlessuspended in mixture more easily, causing sludge MLVSS/MLSS ratio decrease.
     4)Through1year on-site monitor of A WWTP in Chongqing, it found that theannual average concentration of fine sediment was809mg/L, and ISS/COD was1.27,much higher than the ordinary sewage of0.1. During rainfall process, fine sedimentcontent increased to1243mg/L, and the maximum of ISS/COD was1.98, increased by113%than the background period.After a rainfall, MLVSS/MLSS only decreased from0.37to0.32, but MLSS rised from5380to6700mg/L.Rainfall caused a lot of sedimentinto the activated sludge, resulting in MLVSS/MLSS decreased. In order to ensure thewastewater treatment efficiency, WWTP had to improve MLSS, leading to MLSSincreased from3000mg/L in the dry season to8000mg/L in the rainy season, andMLVSS decreased from0.57to0.25. This operation manner of WWTP will hinder theoxygen transfer, increase the oxygen supply, eventually make WWTP’s operating costsincrease more than44%. Study further found that high sediment concentration ininfluent and sediment particle size less than73um were the main reason for MLVSS/
     MLSS reducing.
     The study of B WWTP showed that the sediment deposition in the bottom of biochemical treatment tank was very serious. For oxidation ditch, fine sediment deposited mainly in the anoxic period. Its deposition height was from0.36m to1.68m, and deposition volume was1061m3, leading to hydraulic retention time of anoxic period decreased by57%, and TN removal rate reduced by20%. The accumulation of fine sediment increased40000~50000yuan cost for WWTP regularly, stopped WWTP running at the same time, affectting the normal operation of the WWTP.
     5) Based on the distribution characteristics of fine sediment in sewage treatment system, the accumulation model of ISS is established, the formula was Chemical sludge mixed with mixture evenly and did not deposited in the bottom, thus, its distribution coefficient was1. It verified that the model can predict the effect of fine sediment content, chemical sludge and fine sediment with different particle size to MLVSS/MLSS and MLISS concentration.
引文
[1]周德庆.微生物学教程[M].北京:高等教育出版社,2002.
    [2] Metcalf Eddy I. Wastewater Engineering: Treatment and Reuse[M]. McGraw Hill HigherEducation Press,2002.
    [3]Ekama G A, Wentzel M C. A predictive model for the reactor inorganic suspended solidsconcentration in activated sludge systems[J]. Water Res.2004,38(19):4093-4106.
    [4] Fukase T, Shibata M, Mijami X. Studies on the mechanism of biological phosphorus removal[J].Japan J. Water Pollut. Res.1982,5:309-317.
    [5] Arvin E, Kristensen G H. Exchange of organics, phosphate and cations between sludge and waterin biological phosphorus and nitrogen removal processes[J]. Water Sci. Technol.1985,17(11/12):147-162.
    [6]Wentzel M C, Dold P L, Ekama G A, et al. Enhanced polyphosphate organism cultures inactivated sludge systems Part III-Kinetic model[J]. Water SA.1989,15(2):89-102.
    [7]国际水协废水生物处理设计与运行数学模型课题组.活性污泥数学模型[M].上海:同济大学出版社,2002.
    [8]Gujer W. ASIM—Activated Sludge Simulation Program[M]. Dubendorf, Switzerland: EAWAG,1993.
    [9] Li L Q, Yin C Q. Transport and Sources of Runoff Pollution from Urban Area with CombinedSewer System[J]. Environ. sci.2009,30(2):368-375.
    [10] Li L Q, Shan B Q, Yin C Q. Stormwater runoff pollution loads from an urban catchment withrainy climate in China[J]. Frontiers Environ. Sci. Eng.2012,6(5):672-677.
    [11]徐志恒.重庆三峡库区城镇合流污水水质水量时空分布研究[D].重庆大学,2011.
    [12]小平,何晖,李国荣,等.超低进水有机物浓度、高SS污水厂运行控制[J].水处理技术.2008,34(4):77-79.
    [13]张秀华,赵宝康,谢仁杰,等.征润州污水处理厂工艺运行效能改进研究[J].中国给水排水.2008,23(19):70-72.
    [14]张晟.合肥市王小郢污水处理厂的工艺和运行[J].给水排水.2003,22(12):20-23.
    [15]焦斌权,叶秋,庞子山,等.三峡水库上游地区典型城市污水水质研究[J].河北农业科学.2009,13(9):67-69.
    [16]郭茜,刘军,王觉福.上海城市污水处理现状[J].中国给水排水.1999,15(2):25-26.
    [17]付忠志,邹利安.深圳罗芳污水厂一期工程试运行简评[J].给水排水.2000,26(11):6-10.
    [18]郑兴灿,孙永利,尚巍,等.城镇污水处理功能提升和技术设备发展的几点思考[J].给水排水.2011,37(9):1-5.
    [19]张亚勤.污水处理厂达到一级A排放标准中的化学除磷[J].中国市政工程.2009(5):40-41.
    [20]北京市市政工程设计研究总院.给水排水设计手册(第5期)-城镇排水[M].北京:中国建筑工业出版社,2004.
    [21]Wang X H, Qian J J, Li X F, et al. Influences of sludge retention time on the performance ofsubmerged membrane bioreactors with the addition of iron ion[J]. Desalination.2012(296):24-29.
    [22] Carolina D G, Alejandro H C, Noemí E Z. Application of biological indices and a mathematicalmodel for the detection of metal coagulant overload in a laboratory scale activated sludgereactor with phosphate simultaneous precipitation[J]. Chem. Eng. J.2011(172):52-60.
    [23]李久义,吴晓清,陈福泰,等. Fe(Ⅲ)对活性污泥絮体结构和生物絮凝作用的影响[J].环境科学学报.2003,23(5):582-587.
    [24]姚婧梅,张智,任丽平,等.化学除磷中Fe(Ⅲ)和Fe(Ⅱ)盐对活性污泥系统的影响[J].中国给水排水.2012,28(9):20-25.
    [25]周雹.活性污泥工艺简明原理及设计计算[M].北京:中国建筑工业出版社,2005.
    [26]吉方英.排除厌氧富磷污水ERP-SBR除磷脱氮工艺研究[D].重庆:重庆大学,2004.
    [27]刘娜. SRT对生化处理系统运行特性的影响[D].重庆:重庆大学,2013.
    [28]贺颖.污泥龄对侧流除磷反硝化除磷系统影响[D].重庆:重庆大学,2011.
    [29]Yan P, Ji F Y, Wang J, et al. Pilot-scale test of an advanced, integrated wastewater treatmentprocess with sludge reduction, inorganic solids separation, phosphorus recovery, andenhanced nutrient removal (SIPER)[J]. Bioresour. Technol.2013,142:483-489.
    [30]付小平,何晖,李国荣,等.超低进水有机物浓度、高SS污水厂运行控制[J].水处理技术.2008,34(4):77-79.
    [31]张秀华,赵宝康,谢仁杰,等.征润州污水处理厂工艺运行效能改进研究[J].中国给水排水.2008,23(19):70-72.
    [32]张晟.合肥市王小郢污水处理厂的工艺和运行[J].给水排水.2003,22(12):20-23.
    [33]李健,陈双星.大型SBR工艺启动特点及活性污泥培养驯化[J].给水排水.2001,27(5):30-32.
    [34]陈洪斌,唐贤春.市政污水处理厂工艺运行探讨[J].环境工程.2006,24(6):19-22.
    [35]邓仁健,张金松,杨靖波,等.高无机悬浮物进水对城市污水厂处理效果的冲击影响及机理研究[J].环境科学学报.2013,33(6).
    [36]李柏林,张智,刘少武,等. A/A/O氧化沟流态特性研究及积泥分析[J].土木建筑与环境工程.2011,33(1):118-123.
    [37]原建光,李成杰.改良型Carrousel氧化沟沉泥问题的解决办法[J].中国给水排水.2009,25(14):93-98.
    [38]马迎霞,张全森,许爱红.改良型Carrousel氧化沟的运行与改造[J].中国给水排水.2007,23(4):29-31.
    [39]徐晓路,申秀英.活性污泥活性参数的评选[J].环境科学.1993,14(2):58-62.
    [40] Chung Y C, Neethling J B. Microbial Activity Measurements for AnaerobicSludge-Digestion[J]. J WPC.1989,61(3):343-349.
    [41] Philips S, Rabaey K, Verstraete W. Impact of iron salts on activated sludge and interaction withnitrite or nitrate[J]. Bioresour. Technol.2003,88(3):229-239.
    [42]吴娅.曝气生物滤池化学除磷药剂的选择[D].哈尔滨:哈尔滨工业大学,2009.
    [43]陈亚松.化学除磷中混凝剂对活性污泥活性的影响[J].环境工程.2011,29(4):23-25,45.
    [44]侯艳玲,刘艳臣,邱勇,等.化学除磷药剂中三价铁铝对生物系统污泥活性影响的研究[J].给水排水.2010,36(6):38-41.
    [45]陈滢,彭永臻,刘敏,等.营养物质对污泥沉降性能的影响及污泥膨胀的控制[J].环境科学.2004,25(6):54-58.
    [46]李欣,彭永臻,王建华,等. A2O-BAF与A2O工艺处理较高C/N比生活污水时的污泥沉降性对比分析[J].中南大学学报(自然科学版).2012,43(3):1198-1203.
    [47]杨雄,霍明昕,王淑莹,等.碳源类型对污泥沉降性能及丝状菌生长的影响[J].化工学报.2011,62(12):3471-3477.
    [48]彭永臻,高春娣,王淑莹.运转条件及营养物质对污泥沉降性能的影响[J].环境科学学报.2001,21(增刊):137-142.
    [49]丁峰,彭永臻,于德爽. pH值对活性污泥沉降过程的影响[J].哈尔滨建筑大学学报.2000,33(4):39-42.
    [50]王文超.低碳源城市污水化学辅助除磷试验研究[D].山东建筑大学,2008.
    [51]周峰.生物脱氮除磷工艺中的化学辅助除磷试验研究[D].山东建筑大学,2010.
    [52] Vesilind P A, Hsu C C. Limits of sludge dewaterability[J]. Water Science and Technology.1997,36(11):87-91.
    [53] Smith J K, Vesilind P A. Dilatometric measurement of bound water in wastewater sludge[J].Water Res.1995,29(12):2621-2626.
    [54]周俊,周立祥,黄焕忠.污泥胞外聚合物的提取方法及其对污泥脱水性能的影响[J].环境科学.2013,34(7):2752-2757.
    [55]Urbrain, Block J C, Manem J. bioflocclation in activated sludge: an analytical approach[J].Water Res.1993,27(5):829-838.
    [56]刘轶,周健,刘杰,等.污泥脱水性能的关键影响因素研究[J].环境工程学报.2013,7(7):2589-2693.
    [57]滕希红.不同运行条件下EPS生成状况及其对膜污染的贡献研究[D].山东建筑大学,2010.
    [58]李莹. MBR中污泥EPS变化及其对反应器运行的影响[D].天津大学,2008.
    [59]刘欢,杨家宽,时亚飞,等.不同调理方案下污泥脱水性能评价指标的相关性研究[J].环境科学.2011,32(11):3394-3399.
    [60]裴海燕,胡文容,李晶,等.活性污泥与消化污泥的脱水特性及粒径分布[J].环境科学.2007,28(10):2236-2242.
    [61] Fan L, Xu N, Wang Z Q, et al. PDA experiments and CFD simulation of a lab-scale oxidationditch with surface aerators[J]. Chem. Eng. Res. a Des.2010,88:23-33.
    [62] Xie W M, Zhang R, Li W W, et al. Simulation and optimization of a full-scale Carrouseloxidation ditch plant for municipal wastewater treatment[J]. Biochem. Eng. J.2011,56:9-16.
    [63]李鹏峰,郑兴灿,孙永利,等. A2/O工艺污水处理厂的主要能耗点识别及节能途径[J].中国给水排水.2012,28(8):6-10.
    [64]李洋.合流制污水系统悬浮固体分离的试验研究[D].河北理工大学,2009.
    [65]池勇志,刘晓敏,李玉友,等.我国城市污水处理厂污泥厌氧消化产气问题及对策[C].天津:2012.
    [66]邵林广.城市污水处理中初沉池的设置[J].给水排水.2001,27(9):5-7.
    [67]张波,高廷耀.初沉池取消后活性污泥法工艺的功能强化与局限性问题[J].中国给水排水.1996,12(2):29-31.
    [68] Wrc. Theory, design and operation of nutrient removal activated sludge processes[M]. SouthAfrica: Water Research Commission, P.O. Box824, Pretoria0001,1984.
    [69] Dold P, Ekama G, Marais G. A general model for the activated sludge process [J]. Prog. Water.Technol.1980,12(6):47-77.
    [70] Henze M, Grady J C P L, Gujer W, et al. Activated sludge model No.1, IWA Scientific andTechnical Report No.1[M]. London:1987.
    [71] Henze M, Gujer W, Mino T, et al. Activated sludge model No.1IWA Scientific and TechnicalReport No.1[M]. London:1995.
    [72]Henze M, Gujer W, Mino T, et al. Activated sludge model No.2d[J]. Water Sci. Technol.1999,39(1):165-182.
    [73] Ekama G A, Wentzel M C. Modelling inorganic material in activated sludge systems[J]. WaterSA.2004,30(2):153-174.
    [74]吉芳英,晏鹏,范剑平,等.污泥淤砂分离器的分离效能及影响因素[J].同济大学学报(自然科学版).2013,41(3):428-432.
    [75]吴志超,黄友谊,陈和谦,等.沸石颗粒在污泥絮体中的形态及其对污泥泥水分离的影响[J].环境污染与防治.2005,27(3):177-180.
    [76] Chaignona V, Lartigesa B S, Samrani A E, et al. Evolution of size distribution and transfer ofmineral particles between flocs in activated sludges: an insight into floc exchangedynamics[J]. Water Res.2002,36(3):676-684.
    [77] Miklas S. Review of recent trends in capillary suction time (CST) dewaterability testingresearch[J]. Ind. Eng. Chem. Res.2005,44(22):8157-8163.
    [78] Vesilind P A. Capillary suction time as a fundamental measure of sludge dewaterability[J].Journal of Water Pollution Control Federation.1988,60(2):215-220.
    [79] Carolina D G, Alejandro H, Noemí E Z. Application of biological indices and a mathematicalmodel for the detection of metal coagulant overload in a laboratory scale activated sludgereactor with phosphate simultaneous precipitation[J]. Chem. Eng. J.2011,172:52-60.
    [80] He Q H, Leppard G G, Paige C R, et al. Transmission electronmicroscopy of a phosphorus onthe colloid structure of iron hydroxide[J]. water Res.1996,30:1345-1352.
    [81] Johir M A, Shanmuganathan S, Vigneswaran S, et al. Performance of submerged membranebioreactor (SMBR) with and without the addition of the different particle sizes of GAC assuspended medium[J]. Bioresour. Technol.2013,141:13-18.
    [82] Wentzel M C, Ubisi M F, Lakay M T, et al. Incorporation of inorganic material inanoxic/aerobicactivated sludge system mixed liquor[J]. Water Res.2002,36:5074-5082.
    [83]韩洪军,卫达.低温条件下SBR活性污泥沉降性能的影响因素[J].哈尔滨商业大学学报(自然科学版).2006,22(4):21-24.
    [84]冯治宇,朱刚,朴芬淑.影响活性污泥沉降因素及设计沉淀池应注意问题的探讨[J].环境保护科学.1997,23(6):45-47.
    [85]孙迎雪,马磊,吴光学,等.昆明市合流制排水区域污水处理厂进水水质特征分析[Z].2013:39,135-139.
    [86]王晓丹,龙腾锐,丁文川,等.重庆市典型小城镇污水处理厂进水水质特征分析[J].西南大学学报(自然科学版).2012,34(1):117-121.
    [87]张玲玲,陈立,郭兴芳,等.南北方污水处理厂进水水质特性分析[J].给水排水.2012,38(1):45-49.
    [88]宋丽丽,罗勇,高庆先,等.生活污水中BOD5与CODCr关系的区域性差异分析[J].环境科学研究.2011,24(10):1154-1160.
    [89]刘礼祥,张金松,施汉昌,等.城市污水处理厂全流程节能降耗优化运行策略[J].中国给水排水.2009,25(16):11-15.
    [90] Deleris S, Geaugey V, Camacho P, et al. Minimization of sludge production in biologicalprocesses: an alternative solution for the problem of sludge disposal[J]. Water Sci. Technol.2002,46:63-70.
    [91] Akana O. Uhtan Stomrwater Hydorlogy[M]. USA: Tehcnomie Publishing ComPnayn Ie,1993.
    [92]李立青,尹澄清,何庆慈,等.武汉汉阳地区城市集水区尺度降雨径流污染过程与排放特征[J].环境科学学报.2006,26(7):1057-1061.
    [93]张自杰.环境工程手册(水污染防治卷)[M].北京:高等教育出版社,1996.
    [94]顾国维.水污染治理技术研究(第1版)[M].上海:同济大学出版社,1997.
    [95] Rosso D, Stenstrom M K. Surfactant effects on α-factors in aeration systems[J]. Water Research.2006,40(7):1397-1404.
    [96]范海涛,王洪臣,齐鲁,等.污泥浓度对微孔曝气氧传质过程的影响[J].环境工程学报.2012,5(12):4305-4309.
    [97] Saida B A, Latifa H, Hayet C, et al. Aeration management in an oxidation ditch[J]. Desal.2010,252:172-178.
    [98]Zhou X, Guo X S, Han Y P, et al. Enhancing nitrogen removal in an Orbal oxidation ditch byoptimization of oxygen supply: practice in a full-scale municipal wastewater treatmentplant[J]. Bioprocess Biosyst. Eng.2012,35:1097-1105.
    [99] Liu Y C, Shi H C, Xia L, et al. Study of operational conditions of simultaneous nitrification anddenitrification in a Carrousel oxidation ditch for domestic wastewater treatment[J]. Bioresour.Technol.2010,101:901-906.
    [100]刘立.污水处理厂旋流沉砂池技术改造及处理效果研究[D].重庆:重庆大学,2013.
    [101]龙干,颜振邦,赵华.旋流沉砂池在上海白龙港污水处理厂的应用[J].中国市政工程.2001(增刊):26-30.
    [102]林杰.污水处理中沉砂池去除高浓度悬浮物效能与运行优化[D].哈尔滨:哈尔滨工业大学,2013.
    [103]邱峰.新型旋流沉砂池砂粒和有机物去除效率的研究[D].合肥:合肥工业大学,2007.
    [104]张金流,尹必霞.巢湖市污水处理厂的试运行[J].水处理技术.,31(7):78-79.
    [105]揭武,刘平珍.比氏旋流除砂系统除砂效果不佳的原因分析[J].湖北师范学院学报(自然科学版).2005,25(2):34一-36一.
    [106]张自杰,林荣忱,金儒霖.排水工程(下册)[M].北京:中国建筑工业出版社,1986.
    [107]张保银,陈凡阵,吴煜,等.污水处理厂平流沉砂池的改造[J].中国给水排水.2006,3(2):35-37.
    [108]马强,尹君贤,张立文,等.曝气沉砂池的设计改进[J].工业用水与废水.2005,36(3):60-61.
    [109]吉芳英,郭倩,金展,等.低碳源污水的强化反硝化除磷研究[J].中国给水排水.2012,28(13):1-4.
    [110]陈杰云,张智,李勇.处理低碳源污水的倒置A2/O工艺强化脱氮调控[J].中国给水排水.2010,26(19):32-36.
    [111]王佳伟,李伟,曹祥博,等.利用活性初沉池改善进水水质与强化生物脱氮研究[J].中国给水排水.2010,26(23):1-5.
    [112]邵林广.城市污水处理中初沉池的设置[J].给水排水.2001,27(9):5-7.
    [113]王社平,鞠兴华,彭党聪.城市污水处理厂初沉池对污染物去除效果的研究[J].中国给水排水.2006,22(5):96-98.
    [114] Johnson, Bruce R. Chemically enhanced primary sludge fermentation method[P]. US20050016920A1.[2005-01-25].
    [115]王淑梅,王宝贞,曹向,等.对我国城市排水体制的探讨[J].中国给水排水.2007,23(12):18-21.
    [116]潘国庆,车伍.国内外城镇排水体制的探讨[J].给水排水.2007,33(增刊):323-327.
    [117] Chen Z B, Hu D X, Ren N Q, et al. Biological COD reduction and inorganic suspended solidsaccumulation in a pilot-scale membrane bioreactor for traditional Chinese medicinewastewater treatment[J]. Chem. Eng. J.2009,155:115-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700