用户名: 密码: 验证码:
依普拉芬防治去卵巢大鼠骨质疏松的实验研究及其NO调控机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察不同剂量的人工合成的植物雌激素—依普拉芬对去卵巢大鼠骨质疏松的防治作用;体外培养大鼠成骨细胞,观察依普拉芬对成骨细胞增殖和成骨分化的影响;检测依普拉芬对体外培养的大鼠成骨细胞和去卵巢大鼠一氧化氮(NO)以及一氧化氮合酶(NOS)生成的影响;探讨依普拉芬防治绝经后骨质疏松的作用以及NO调控机制,为其更好的在临床应用提供理论依据。
     方法:(1) 60只SD雌性大鼠,随机分成六组:设一假手术组;腹腔手术切除大鼠双侧卵巢,分为阴性对照组、依普拉芬低、中、高剂量组和雌激素对照组,分别给予基础饲料和不同剂量受试物,12周后进行骨密度、骨组织形态计量、生物力学以及骨代谢指标测定,与雌激素对照,观察给与依普拉芬对绝经后骨质疏松的防治作用。(2)体外分离、培养、纯化新生大鼠颅盖骨成骨细胞,碱性磷酸酶染色及矿化结节染色鉴定,将不同浓度的依普拉芬加入培养液,测定细胞增殖情况、碱性磷酸酶(ALP)活性及钙化结节。与雌激素对照,了解依普拉芬对成骨细胞增殖和分化的影响。(3)体外分离培养新生SD大鼠颅盖骨成骨细胞,取第二代细胞,培养液中分别加入不同浓度的依普拉芬,72小时后,测定各组细胞培养基中的NO浓度,RT-PCR方法检测各组细胞中内皮型一氧化氮合酶(eNOS)mRNA的表达。(4)按第一部分方法建立绝经后骨质疏松模型及分组,给与受试物12周后测定大鼠血清一氧化氮(NO)以及一氧化氮合酶(NOS)含量。用免疫组织化学方法检测骨组织中eNOS以及iNOS的表达。
     结果:(1)大鼠去卵巢后骨密度显著下降,股骨的力学性能以及骨代谢指标有较大变化,弯曲强度和弯曲弹性模量明显降低。给予依普拉芬后,可使骨密度显著提高(P<0.01),存在一定的剂量-效应关系,同时弯曲强度和弯曲弹性模量明显增加,但均低于雌激素对照组。(2)与阴性对照组相比,各浓度组的依普拉芬均可增加成骨细胞数量(P<0.01),提高成骨细胞的ALP活性和促进钙化结节形成(P<0.01)。其中10-8~10-5mol/L作用更为显著。(3)与阴性对照组相比,各浓度组的依普拉芬均可增加成骨细胞培养液中的NO浓度并促进eNOS mRNA的表达(P<0.01)。其中10-8~10-5mol/L之间作用更为显著。(4)与假手术组相比,去卵巢大鼠阴性对照组血清NO、NOS浓度以及股骨eNOS表达均明显降低,依普拉芬各剂量组高于阴性对照组,与假手术组差异无显著意义。同时低于雌激素组。结论:依普拉芬对去卵巢大鼠具有显著的骨保护效应,同时可以促进大鼠成骨细胞的增殖和成骨分化,并存在一定的剂量效应关系,其作用弱与雌激素。依普拉芬防治绝经后骨质疏松作用可能是通过NO-NOS系统进行调控的。
Objective: To investigate the effect of Ipriflavone(7-isopropoxyisoflavone, IP), a synthetic phytoestrogen,on prevention and treatment of osteoporosis in ovariectomized rats;Isolation, expansion, and culture the new born rat calvarid osteoblastic cell in vitro,then evaluate the effect of Ipriflavone on the proliferation and osteogenic differentiation of cultured rat osteoblast in vitro;Investigate the effect of Ipriflavone on nitric oxide (NO ) synsthesis and expression of endothelium nitric oxide synathase (eNOS) mRNA in cultured rat osteoblast in vitro. Observe the effect of Ipriflavone on synthesis of nitric oxide (NO) and nitric oxide synathase (NOS) in
     ovariectomized rats. Thereby ascertain the effects of Ipriflavone on osteoporosis in ovariectomized rats and its possible mechanisms through NO pathway,provides the theory basis to clinical practice much better.
     Methods: (1) 60 six-month-old Sprague-Dawley female rats were randomly assigned to four groups: sham,ovx, ovx+IP(50 mg/kg/d),ovx+IP(100 mg/kg/d), ovx+IP(200 mg/kg/d),and ovx+17β-estradiol (E2) (10ug/kg/d). After 12 weeks, bone mineral density, bone histomorphometry, biomechanics of bone and the markers of bone metabolism were measured. Observe the prevention and treatment effect of Ipriflavone on postmenopausal osteoporosis. (2) Isolation, expansion, and culture the new born rat calvarid osteoblastic cell in vitro, identified by alkaline phosphatase staining and mineralized nodules. The osteoblasts were cultured with the medium containing Ipriflavone of different concentration.The proliferation,the activity of alkaline phosphatase(ALP) and calcium node were determined and compared with control.Observe the effect of Ipriflavone on the proliferation and differentiation of cultured rat osteoblast in vitro. (3) New born rat calvarid osteoblastic cell were isolated and cultured with the medium containing Ipriflavone of different concentration.After 72hours, the levels of NO in the media were detectetd and the mRNA expression of eNOS were examined by reverse-transcriptase polymerase chain reaction (RT-PCR). (4) The model of postmenopausal osteoporosis was established and divided into different groups use the same methodsof the first part. After 12 weeks, the the level of serum NO and NOS were detected in grouped rats. nitric oxide (NO) and nitric oxide synthase (NOS). expression of eNOS in the bone tissue was detected by immunohistochemical staining.
     Results: (1) The bone mineral density (BMD) of OVX in ovariectomized rats decreased significantly . The mechanical properties and biomechanics markers of femur changed obviously. Ipriflavone and estrogen can increase the BMD(P<0.01)and demonstrate a dose-dependent manner. Meanwhile flexural strengh and flexural elastic module of femur increase, but lower than the estrogen group. (2)Compared with the negative control, Ipriflavone could increase the quantity of osteoblast(p<0.01). Ipriflavone could elevate the activity of ALP and ability of calcification(p<0.01). 10-8~10-5mol/L ipriflavone had more significant effect than other concentration. (3) In comparison to the negative control, Ipriflavone could increase the concentration of NO in the media and the expression levels of eNOS mRNA (P<0.01)。10-8~10-5mol/L ipriflavone had more significant effect than other concentration . (4) In comparison to sham group ,The level of NO and NOS in ovariectomized(OVX) rats decreased significantly. Ipriflavone could significantly increase the level of NO and NOS comparison to OVX . There was no statistical significance of the difference between Ipriflavone and sham group. Estrogen groups obtained higher level of NO and NOS than other groups.
     Conclusions : Ipriflavone demonstrated significant protective effect on bone in ovariectomized rats,also can promote the proliferation and osteogenic differentiation of rat osteoblast, and there is a definite dose-response relationship. It’s effect was weaker than estrogen. The effect of Ipriflavone on prevention and treatment of postmenopausal osteoporosis(PMOP) probably regulated through NO-NOS system.
引文
1. Consensus Development Conference:Prophylaxis and Treatment of Osteoporosis: Am J Med 94 : 646-650, 1993.
    2. Osteoporosis prevention,diagnosis,and therapy. NHI Consensus Statement Online. 2000,17:1-36.
    3. GartonMJ,CooperC,ReidD.Perimenopausal bone density screening:Will it help prevent osteoporosis?Maturitas,1997,26:35-43.
    4.史轶蘩,主编.协和内分泌和代谢学.北京:科学出版社,1999.1506-1510.
    5. Staren ED, Omer S. Hormone replacement therapy in postmenopausal women. Am J Surg. 2004 Aug;188(2):136-149.
    6. Zava DT, DuweG. Estrogenic and antiproliferative properties and other flavonoids in human breast cancer cells in vivo. Nutr Cancer 1997;27:31– 40.
    7. Santell RJ, Cheng YC, Nair MG, Helferich WG. Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic /pituitary axis in rats. JNutr 1997;127:263–269.
    8. Milligan SR, Kalita JC, Heyerick A, Rong H, Cooman LD, Keukeleire DD. Identification of a potent phytoestrogen in hops (Humulus lupulus L.) and beer. J Clin Endocrinol Metab 1999;83:2249–2252.
    9. Garcia Jorda E. Environmental estrogens, imitators of a thousand faces.Clin Transl Oncol. 2006 Nov;8(11):773-775.
    10. Leung YK, Mak P, Hassan S, Ho SM. Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling. Proc Natl Acad Sci USA.2006 Aug 29;103 (35) :13162-13167.
    11. Kuiper G, Lemmen J, Carlsson B, Corton JC, Safe SH, van der Saag RT, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998;139(10):4252–4263.
    12.徐惠平,江汉湖,汤涛等.大豆及丹贝异黄酮对乳腺癌、子宫癌和卵巢癌细胞的抑制效应[J].食品科学,2001,22 (6):69—71.
    13.刘忠厚主编.骨质疏松学.北京:科学出版社, 1998: 271-280.
    14.韩学哲,许鹏,姚建锋,蔡乾坤,李新友.大鼠骨质疏松模型血清中一氧化氮和IL-6水平及意义[J].中国矫形外科杂志, 2001,8(4): 369-371.
    15. Vincent A, Fitzpatrick LA.Soy isoflavones: are they useful in menopause?Mayo Clin Proc. 2000 Nov;75(11):1174-118
    1. Picherit C, Chanteranne B, Bennetau-Pelissero C,et al.Dose-dependent bone-sparing effects of dietary isoflavones in the ovariectomized rat [J]. Br J Nutr, 2001, 85: 307–316.
    2. Arjmandi BH, Alekel L, Hollis BW, et al. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis [J]. J Nutr, 1996,126(1): 161–167.
    3. Leung YK, Mak P, Hassan S, Ho SM. Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling.Proc Natl Acad Sci U S A. 2006 Aug 29,103(35): 13162-13167.
    4. Kuiper G, Lemmen J, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology, 1998, 139(10): 4252–4263.
    5.徐惠平,江汉湖,汤涛等.大豆及丹贝异黄酮对乳腺癌、子宫癌和卵巢癌细胞的抑制效应[J].食品科学,2001,22 (6):69—71.
    6. Murano T, Izumi S.Impact of menopause on lipid and bone metabolism and effect of hormone replacement therapy. Tokai J Exp Clin Med, 2003 , 28(3): 109-19.
    7. Moore M, Bracker M, Sartoris D, Saltman P, Strause L.Long-term estrogen replacement therapy in postmenopausal women sustains vertebral bone mineral density. J Bone Miner Res, 1990, 5(6): 659-64.
    8. Staren ED, Omer S. Hormone replacement therapy in postmenopausal women. Am J Surg, 2004, 188(2): 136-149.
    9. AlexandersenP, Toussaint A, Christiansen C, et al. Ipriflavone in the treatment of postmenopausal osteoporosie: a randomized controlled trial [J]. JAMA, 2001, 285(11): 1482-1488.
    10. Arjmandi BH, Birnbaum RS, Juma S, et al. The synthetic phytoestrogen, ipriflavone, and estrogen prevent bone loss by different mechanisms [J]. Calcif Tissue Int, 2000, 66(1): 61-65.
    11. Adami S, Bufalino L, Cervetti R, et al. Ipriflavone prevents radial bone loss in postmenopausal women with low bone mass over 2 years [J]. Osteoporos Int, 1997, 7(2): 119-125.
    12. Gallo D, Zannoni GF, Apollonio P, et al. Characterization of the pharmacologic profile of a standardized soy extract in the ovariectomized rat model of menopause: effects on bone, uterus, and lipidprofile. Menopause, 2005, 12 (5): 589-600.
    13. Deyhim F, Smith BJ, Soung do Y, et al. Ipriflavone modulates IGF-I but is unable to restore bone in rats [J]. Phytother Res. 2005 , 19(2): 116-120.
    1.韦永中,陶松年,杨国平等.依普拉芬和雌激素对实验性骨质疏松作用的初步观察中国骨质疏松杂志.2001,7(1):76
    2. AnJ,Tzagarakis C, Scharschmidt TC. Estrogen receptor base-seletive trans-criptional activity and recruitment of coregulators by phytoestrogens [J]. Biol chem, 2001, 276 (21): 17808-17814.
    3.薛延.骨质疏松症诊断与治疗指南.北京:科学出版社, 1999:390~391.
    4. Staren ED, Omer S. Hormone replacement therapy in postmenopausal women. Am J Surg. 2004 Aug;188(2):136-149.
    5. Nasu M, Sugimoto T, Kaji H, Chihara K.Estrogen modulates osteoblast proliferation and function regulated by parathyroid hormone in osteoblastic SaOS-2 cells: role of insulin-like growth factor (IGF)-I and IGF-binding protein -5 .J Endocrinol. 2000 Nov;167(2):305-313.
    6. Shi S, Kirk M, Kahn AJ. The role of type I collagen in the regulation of the osteoblast phenotype. J Bone Miner Res. 1996 ,11(8):1139-1145.
    7. Kanno S, Hirano S, Kayama F. Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells[J ].Toxicology, 2004 , 196(1-2):137
    8. Pan W, Quarles LD, Song LH et al. Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture[J ]. Cell Biochem, 2005 , 94 (2): 307
    9.张皎,候加法.依普拉芬对鸡胚成骨细胞的增殖和分化的影响.中国骨质疏松杂志,2004,10(2):236
    10. Chang H, Jin TY, Jin WF, Gu SZ, Zhou YF.Modulation of isoflavones on bone-nodule formation in rat calvaria osteoblasts in vitro. Biomed Environ Sci. 2003 ,16(1):83-89.
    1. Van’t Hof RJ,Ralston SH.Nitric oxide and bone.Immunology,2001,103 (3), 255-261.
    2.李昂,卿茂盛,薛延.骨质疏松发生一氧化氮机制及雌激素调控作用研究[J].中国骨质疏松杂志2003,Vol 9, No.1: 19-22.
    3. MacPherson H, Noble BS, Ralston SH, et al. Expressionand functional role of nitric oxide synthase isoforms in human osteoblast-like cells[J]. Bone, 1999, 24(3): 179-185.
    4. MANCINI L, MORADI-BIDHENDI-N, BECHERINI L, et al. The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent [J]. Biochem Biophys Res Commun, 2000, 274 (2): 477-481.
    5. TORRICELLI P, FINI M, GIAVARESI G, et al. L-arginine and L-lysine stimulation on cultured human osteoblasts[J].Biomed Pharmacother, 2002, 56(10): 492-497.
    6.韩学哲,许鹏,姚建锋,蔡乾坤,李新友.大鼠骨质疏松模型血清中一氧化氮和IL-6水平及意义[J].,中国矫形外科杂志, 2001, 8(4): 369-371.
    7. WIMALAWANSASJ. Restoration of ovariectomy-induced osteopenia by nitroglycerin [J]. Calcif Tissue Int, 2000, 66 (1): 56-60.
    8. Wimalawansa SJ , De Marco G, Gangula P , et al. Nitric oxide donor alleviates ovariectomy - induced bone loss [ J ] .Bone , 1996 , 18(4) : 301 - 304.
    9. Wima SJ , Chapa MT, Yalla C ,et al. Prevention of corticosteroid - induced bone loss with nitric oxide donor nitroglycerin in male rats[J ] . Bone , 1997 , 21(3) : 275 - 279.
    10. PAN W, QUARLES LD, SONG LH, et al. Genistein stimulates the osteoblastic differentiation via NO/cGMP in bone marrow culture [J]. Cell Biochem, 2005, 94 (2): 307-316.
    1.刘忠厚主编.骨质疏松学.北京:科学出版社,1998.142~162.
    2. Miep H , Helfrich , Deborah , et al. Expression of nitric oxide synthase isoforms in bone and bone cell cultures [J ] . J Bone Miner Res , 1997 ,12(7) :1108 - 1112.
    3. Mancini L ,MoradiN,Brandi ML ,et al. Nitric oxide super-oxide and peroxynitrite modulate osteoclast activity J.Biochem Biophys ResCommun ,1998 , 243(3) : 785 - 790.
    4. Robert J , De Marco G, Gangula P , et al. Cytokine indu ced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity[J ] . Bone Miner Res , 1997 ,12(11) : 1797 - 1801.
    5. Mancini L,Moradi-Bidhendi N,Brandi ML,et al.Nitric oxide superoxide and peroxynitrite modulate osteoclast activity[J]. Biochem Biophys Res Commun. 1998, 243: 785~790.
    6. Chole RA,Tinling SP,Leverentz E,et al.Inhibition of nitricoxide synthase blocks osteoclastic bone resorption in adaptive bone modeling [J]. Acta Otolaryngol (Stockh), 1998,118:705~711.
    7. Berthezene F.Hormone replacement theraphy at menopause in the diabetic woman [J].Diabetes Metab,2001,27(4):S83-S86.
    8.李昂,萧劲夫,薛延。骨质疏松的一氧化氮机制研究[J].国外医学.老年医学分册,2001,22(1):33-37.
    9. Amour KE,Ralston SH.Estrogen upregulates endothelial constitutive nitric oxide synthase expression in human osteoblast-like cells [J].Endocrinology,1998,139(2): 799-80.
    10. Wimalawansa SJ , De Marco G, Gangula P , et al. Nitric oxide donor alleviates ovariectomy - induced bone loss [ J ] .Bone , 1996 , 18(4) : 301 - 304.
    11. Wima SJ , Chapa MT, Yalla C ,et al. Prevention of corticosteroid - induced bone loss with nitric oxide donor nitroglycerin in male rats[J ] . Bone , 1997 , 21(3) : 275 - 279.
    12. Fox SW, Chambers TJ , Chow JW. Nitric oxide is an earlymediator of the increase in bone formation by mechanical stimulation[J].Am J Physiol ,1996 270(6):955 - 960.
    13. Gray TK, Flynn TC , Gray KM, et al. 17β- estradiol acts directly on the clonal osteoblastic cell line UMR 106 [J ] .Proc Natl Acad Sci U S A , 1987 , 84(17) : 6267 - 6271.
    14. Hughes FJ , Buttery LD , Hukkanen MV , et al. Cytokine induced prostaglandin E2 synthesis and cyclooxy - genase– 2 activity are regulated both by a nitric oxidedependent and independent mechanism in rat osteoblasts in vitro J Bio Chem , 1999, 274(3) : 1776 - 1781.
    15. WimalawansaSJ.Restoration of ovariectomy-induced osteopenia by nitro-glycerin [J ] . Calcif Tissue Int , 2000 , 66 (1) : 56 - 60.
    16. Bakker AD, et al. Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E(2) production by bone cells from osteoporotic donors. Osteoporos. Int. 2004,16:983–989.
    17. Wang FS, et al. Nitric oxide donor increases osteoprotegerin production and osteoclastogenesis inhibitory activity in bone marrow stromal cells from ovariectomized rats. Endocrinology. 2004,145:2148–2156.
    18. Jamal SA, Cummings SR, Hawker GA. Isosorbide mononitrate increases bone formation and decreases bone resorption in postmenopausal women: a randomized trial. J. Bone Miner. Res. 2004,19:1512–1517.
    1. Writing Group for the Women’s Health Initiative Investigators. Risks and benefits of estrogen plus progestin in healthy postmenopasual women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002;288:321–33.
    2. Lacey JV Jr, Mink PJ, Lubin JH, et al. Menopausal hormone replacement therapy and the risk of ovarian cancer. JAMA 2002;288:334–41.
    3. Belcher SM , Zsarnovszky A. Estrogenic actions in the brain: estrogen, phytoestrogen, and rapid intracellular signaling mechanisms [ J ]. J Pharmac Experi Thera,2001, 299 (2) : 408-414.
    4. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling: emerging insights into the pathophysiology of osteoporosis. N Engl J Med 1995;332:305–11.
    5. Bodine PVN, Henderson RA, Green J, et al. Estrogen receptor- is developmentally regulated during osteoblast differentiation and contributes to selective responsiveness of gene expression. Endocrinology 1998;139:2048–57.
    6. Kuiper GG, Lemmen JG, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998;139: 4252–63
    7. Morito K, Hirose T, Kinjo J, et al. Interaction of phytoestrogens with estrogen receptorsand ?. Biol Pharm Bull 2001;24:351–6.
    8. Tsutsumi N. Effect of coumestrol on bone metabolism in organ culture. Biol Pharm Bull 1995;18:1012–5.
    9. Miksicek RJ. Interaction of naturally occurring non-steroidal estrogens with expressed recombinant human estrogen receptor. J Steroid Biochem Mol Biol 1994;49:153–60.
    10. Yamaguchi M, Gao YH. Inhibitory effect of genistein on bone resorption in tissue culture. Biochem Pharmacol 1998;55:71–6.
    11. Tamir S, Eizenberg M, Somjen D, et al. Estrogenic and antiproliferative properties from licorice in human breast cancer cells. Cancer Res 2000;60:5704–9.
    12. Anderson JB, Chen XW, Garner SC. Effects of genistein on MT3T3-E1, an osteoblast-like cell in relation to expression of estrogen receptors and during cell differentiation. J Nutr 2000;130: 666S–7S.
    13. Rassi CM, Lieberherr M, Chaumaz G, Pointillart A, Cournot G. Daidzein inhibits osteoclast differentiation and activity in vitro. Ann Nutr Metab 2001;45:230.
    14. Okamoto F, Okabe K, Kajiya H. Genistein, a soybean isoflavone, inhibits inward rectifier K+ channels in rat osteoclasts. Jpn J Physiol 2001;51:501–9.
    15. Cusack S, Jewell C, Cashman KD. The effect of estrogen and selected phytoestrogens on cell viability and molecular markers of SaOS2 osteoblast-like activity. Ann Nutr Metab 2001;45:228.
    16. De Wilde A, Colin C, Lacroix H, et al. In vivo and ex vivo effects of an isoflavone-rich diet on bone formation in growing pigs. Ann Nutr Metab 2001;45:227.
    17. Prouillet C, Wattel A, Mentaverri R, et al. Biochemical effects of flavonols on osteoblastic activity. Ann Nutr Metab 2001;45:230.
    18. Wattel A, Mentaverri R, Prouillet C, et al. Effects of two flavonoids, quercetin and kaempferol, on in vitro bone resorption and osteoclast apoptosis. Ann Nutr Metab 2001;45:229 (abstr).
    19. Viereck V, Grundker C, Blaschke S, Siggelkow S, Emons G, Hofbauer L.Phytoestrogen genistein stimulates the production of osteoprotegerin by human trabecular osteoblasts. J Cell Biochem 2002;84:725–35.
    20. Chen X, Anderson JJB. Effects of isoflavones on osteoblast proliferation and differentiation. J Nutr 2002;132: 616S.
    21. Dang ZC, Papapoulos S, L?wik C. Phytoestrogens enhance osteogenesis and concurrently inhibit adipogenesis. J Nutr 2002;132:617S.
    22. Cho Y, Chung S, Cho K, et al. Black bean (Rhynchosia molubilis, Yak-Kong) exerts a prominent estrogenic effect on the proliferation of human MG-63 osteoblastic cells. J Nutr 2002;132:614S.
    23. Sugimoto E, Yamaguchi M. Anabolic effect of genistein in osteoblastic MC3T3-E1 cells. Int J Mol Med 2000;5:515–20.
    24. Sugimoto E, Yamaguchi M. Stimulatory effect of daidzein in osteoblastic MC3T3-E1 cells. Biochem Pharmacol 2000;59:471–5.
    25. Yamaguchi M, Sugimoto E. Stimulatory effect of genistein and daidzein on protein synthesis in osteoblastic MC3T3-E1 cells: activation of aminoacyl-t-RNA synthetase. Mol Cell Biochem 2000;214:97–102.
    26. Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–19.
    27. Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165–76.
    28. Williams JP, Jordan SE, Barnes S, Blair HC. Tyrosine kinase inhibitor effects on avian osteoclastic acid transport. Am J Clin Nutr 1998;68(suppl):1369S–74S.
    29. Blair HC, Jordan SE, Peterson TG, Barnes S. Variable effects of tyrosine kinase inhibitors on avian osteoclastic activity and reduction of bone loss in ovariectomized rats. J Cell Biochem 1996;61: 629–37.
    30. Gao YH, Yamaguchi M. Suppressive effect of genistein on rat bone osteoclasts: involvement of protein kinase inhibition and protein tyrosine phosphatase activation.Int J Mol Med 2000;5:261–7.
    31. Gao YH, Yamaguchi M. Suppressive effects of genistein on rat bone osteoclasts: apoptosis is induced through Ca2+ signaling. Biol Pharm Bull 1999;22: 805–9.
    32. Setchell KDR, Brown NB, Zimmer-Nechemias L, et al. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 2002;76:447–53.
    33. Register, T. C., Jayo, M. J. & Anthony, M. S. Soy phytoestrogens do not prevent bone loss in postmenopausal monkeys. J. Clin. Endocrinol. Metab. 2003, 88: 4362-4370.
    34. Horcajada MN, Chanteranne B, Davicco MJ, et al. Lignans and bone metabolism in ovariectomized rats. Ann Nutr Metab 2001;45: 227
    35. Arjmandi BH, Alekel L, Hollis BW, et al. Dietary soybean protein prevents bone loss in an ovariectomized rat model of osteoporosis. J Nutr 1996;126:161–7.
    36. Gallo D, Zannoni GF, Apollonio P, Martinelli E, Ferlini C, Passetti G, Riva A, Morazzoni P, Bombardelli E, Scambia G.Characterization of the pharmacologic profile of a standardized soy extract in the ovariectomized rat model of menopause: effects on bone, uterus, and lipid profile.Menopause. 2005 Sep-Oct;12 (5):589-600.
    37. Harrison E, Adjei A, Ameho C, Yamamoto S, Kono S. The effect of soybean protein on bone loss in a rat model of postmenopausal osteoporosis. J Nutr Sci Vitaminol (Tokyo) 1998; 44: 257–68.
    38. Hertrampf T,Degen GH,Kaid AA, Laudenbach-Leschowsky U , Seibel J, Di Virgilio AL, Diel P.Combined effects of physical activity, dietary isoflavones and 17beta-estradiol on movement drive, body weight and bone mineral density in ovariectomized female rats.Planta Med. 2006 May;72 (6):484-7.
    39. Clifton-Bligh PB, Baber RJ, Fulcher GR, Nery M-L, Moreton T. The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolism.Menopause.2001;8: 259–65.
    40. Munger RG, Cerhan JR, Chiu BC-H. Prospective study of dietary protein intake andrisk of hip fracture in postmenopausal women. Am J Clin Nutr 1999; 69:147–52.
    41. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR. A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am J Clin Nutr 2001;73: 118–22.
    42. Heaney RP. Protein intake and bone health: the influence of belief systems on the conduct of nutritional science. Am J Clin Nutr 2001; 73: 5–6.
    43. Heaney RP, Dowell MS, Rafferty K, Bierman J. Bioavailability of the calcium in fortified soy imitation milk, with some observations on method. Am J Clin Nutr 2000;71: 1166–1169.
    44. Spence LA, Lipscomb ER, Cadogan J, Martin BR, Peacock M, Weaver CM. Effects of soy isoflavones on calcium metabolism in postmenopausal women. J Nutr 2002;132:581S
    45. Blair HC, Jordan SE, Peterson TG, Barnes S. Variable effects of tyrosine kinase inhibitors on avian osteoclastic activity and reduction of bone loss in ovariectomized rats. J Cell Biochem 1996;61: 629–37.
    46. Ishimi Y, Miyaura C, Ohmura M, et al. Selective effects of genistein, a soybean isoflavone, on B-lymphopoiesis and bone loss caused by estrogen deficiency. Endocrinology 1999; 140: 1893–900.
    47. Anderson JJ, Ambrose WW, Garner SC. Biphasic effects of genistein on bone tissue in the ovariectomized, lactating rat model. Proc Soc Exp Biol Med 1998; 217: 345–50.
    48. Arjmandi BH, Birnbaum R, Goyal NV, et al. Bone-sparing effect of soy protein in ovarian hormone-deficient rats is related to its isoflavone content. Am J Clin Nutr 1998;68 (suppl): 1364S–8S.
    49. Kaardinal AF, Morton MS, Bruggemann-Rotgans IE, van Berjesteijn EC. Phyto-oestrogen excretion and rate of bone loss in postmenopausal women. Eur J Clin Nutr 1998; 52: 850–855
    50. Fukui Y, Miura A, Nara Y, Uesugi T, Yamori H, Yamori Y. Relationship between urinary isoflavones and bone metabolism in postmenopausal Japanese women. J Nutr 2000;130: 686S.
    51. Horiuchi T, Onouchi T, Takahashi M, Ito H, Orimo H. Effect of soy protein on bone metabolism in postmenopausal women. Osteoporosis 2000;11: 721–4.
    52. Sung CJ, Choi SH, Ko B-S. Urinary isoflavone levels and several factors that influence bone metabolism in postmenopausal women. J Nutr 2000;130: 685S.
    53. Rice MM, LaCroix AZ, Lampe JW, et al. Soy consumption and bone mineral density in older Japanese American women in King County, Washington. J Nutr 2000;130: 685S.
    54. Somekawa Y, Chiguchi M, Ishibashi T, Aso T. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet Gynecol 2001;97: 109–15.
    55. Mei J, Yeung SSC, Kung AWC. High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 2001; 86: 5217–21.
    56. Kritz-Silverstein D, Goodman-Gruen D. Association of usual dietary isoflavone intake with bone mineral density and bone metabolism in postmenopausal women. J Womens Health (in press).
    57. Kim MK, Chung BC, Yu VY, et al. Relationships of urinary phyto-oestrogen excretion to BMD in postmenopausal women. Clin Endocrinol (Oxf) 2002; 56: 321–8.
    58. Wangen KE, Duncan AM, Merz-Demlow BE, et al. Effects of soy isoflavones on markers of bone turnover in premenopausal and postmenopausal women. J Clin Endocrinol Metab 2000; 85: 3043–9.
    59. Wong WW. Effects of soy isoflavones on blood lipids, blood pressure and biochemical markers of bone metabolism in postmenopausal women. J Nutr 2000;130: 686S.
    60. Scheiber M, Liu J, Subbiah M, Rebar R, Setchell KDR. Dietary soy supplementation reduces LDL oxidation and bone turnover in healthy post-menopausal women.Menopause 2001;8: 384–92.
    61. Teramoto T, Sakamoto A, Toda T, Okuhira T, Koketsu I. Effects of ingesting a beverage containing soy isoflavones on urinary bone resorption markers. J Nutr 2002;132: 614S.
    62. Lu L-JW, Anderson KE, Grady JJ, Nagamani M. Chronic soy consumption influences serum levels of steroid and peptide hormones without uterine effects in postmenopausal women. J Nutr 2002;132 615S.
    63. Cook A, Pennington G. Phytoestrogen and multiple vitamin/mineral effects on bone mineral density in early postmenopausal women: a pilot study. J Womens Health 2002; 11:53–60.
    64. Nagata C, Takatsuka N, Kurisu Y, Shimizu H. Decreased serum total cholesterol concentration is associated with high intake of soy products in Japanese men and women .J Nutr 1998; 128: 209–213.
    65. Chen Z, Zheng W, Custer LJ, et al. Usual dietary consumption of soy foods and its correlation with the excretion rate of isoflavonoids in overnight urine samples among Chinese women in Shanghai. Nutr Cancer 1999;33: 82–7.
    66. Wakai K, Egami I, Kato K, et al. Dietary intake and sources of isoflavones among Japanese. Nutr Cancer 1999;33:139–45.
    67. Chen, Y. M., Ho, S. C., Lam, S. S., Ho, S. S. & Woo, J. L. Soy isoflavones have a favorable effect on bone loss in Chinese postmenopausal women with lower bone mass: a double-blind, randomized, controlled trial. J. Clin. Endocrinol. Metab. 2003 88: 4740-4747.
    68. Arjmandi BH, Khalil DA, Lucas EA, et al. Soy protein with its isoflavones improves bone markers in middle-aged and elderly women. FASEB J 2001;15:A728.
    69. Khalil DA, Lucas EA, Juma S, et al. Soy protein supplementation may exert beneficial effects on bone in men. FASEB J, 2001; 15: A727
    70. Brandi ML. New treatment strategies: ipriflavone, strontium, vitamin D metabolites and analogs. Am J Med 1993; 95: 69S–74S.
    71. Reginster J-YL. Ipriflavone: pharmacological properties and usefulness in postmenopausal osteoporosis. Bone Miner 1993;23: 223–32.
    72. Alexanderson P, Toussaint A, Christiansen C, et al. Ipriflavone in the treatment of postmenopausal osteoporosis: a randomized controlled trial. JAMA 2001;285: 1482–8.
    73. Shu ZO, Jin F, Dai Q, et al. Soyfood intake during adolescence and subsequent risk of breast cancer among Chinese women. Cancer Epidemiol Biomarkers Prev 2001; 10: 483–8.
    74. Guthrie JR, Ball M, Murkies A, Dennerstein L. Dietary phytoestrogen intake in mid-life Australian-born women. Climacteric 2000;3: 254–61.
    75. Erdman JW Jr, Stillman RJ, Boileau RA. Provocative relation between soy and bone maintenance. Am J Clin Nutr 2000;72: 679–80.
    76. Potter SM, Baum JA, Teng H, et al. Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 1998; 68(suppl):1375S–9S.
    77. Atkinson, C., Compston, J. E., Day, N. E., et al. The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2004: 79:326-333.
    78. Alekel DL, Germain AS, Peterson CT, Hanson KB, Stewart JW, Toda T. Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 2000;72: 844–52.
    79. Dalais FS, Rice GE, Wahlqvist ML, et al. Effects of dietary phytoestrogens in postmenopausal women. Climacteric 1998;1: 124–9.
    80. Gallagher JC, Rafferty K, Haynatzka V, Wilson M. The effect of soy protein on bone metabolism. J Nutr 2000;130:667S (abstr).
    81. Vitolins M, Anthony M, Lenschik L, Bland DR, Burke GL. Does soy protein and its isoflavones prevent bone loss in peri- and postmenopausal women? Results of a two year randomized clinical trial. J Nutr 2002;132:582S (abstr).
    82. Lydeking-Olsen E, Jensen J-BE, Setchell KDR, Damhus M, Jensen TH. Isoflavone-rich soymilk prevents bone-loss in the lumbar spine of postmenopausal women: a 2 year study. J Nutr 2002;132: 582S (abstr).
    83. Setchell KDR, Brown NB, Lydeking-Olsen E. The clinical significance of the metabolite equol: a clue to the effectiveness of soy and its isoflavones. J Nutr 2002;132: 3577–84.
    84. Axelson M, Kirk DN, Farrant RD, Cooley G, Lawson AM, Setchell KDR. The identification of the weak oestrogen equol [7-hydroxy-3-(4'-hydroxyphenyl) chroman] in human urine. Biochem J 1982; 201:353–7.
    85. Frankenfeld CL, McTiernan A, Thomas WK, LaCroix K, McVarish L, Holt VL, Schwartz SM, Lampe JW. Postmenopausal bone mineral density in relation to soy isoflavone-metabolizing phenotypes.Maturitas. 2006 Feb 20;53(3):315-24. Epub 2005 Jul 12.
    86. Krall EA, Parry P, Lickter JB, Dawson-Hughes B. Vitamin D receptor alleles and rates of bone loss: influences of years since menopause and calcium intake. J Bone Miner Res 1995;10: 978–84.
    87. Wood RJ, Fleet JC. The genetics of osteoporosis: vitamin D receptor polymorphisms. Annu Rev Nutr 1998;18: 233–8.
    88. Hegarty VM, May HM, Khaw KT. Tea drinking and bone mineral density in older women. Am J Clin Nutr 2000;71:1003–7.
    89. Wu C-H, Yang Y-C, Yao W-J, Lu F-H, Wu J-S, Chang C-J. Epidemiological evidence of increased bone mineral density in habitual tea drinkers. Arch Intern Med 2000;162:1001–6.
    90. Kanis J, Johnell O, Gullberg B, et al. Risk of hip fractures in men from Southern Europe: the MEDOS study. Osteoporos Int 1999;9:45–54.
    91. Johnell O, Gullberg B, Kanis J, et al. Risk for hip fracture in European women: the MEDOS study. Mediterranean Osteoporosis Study. J Bone Miner Res 1995;10:1802–15.
    92. Rapuri PB, Gallagher C, Kinyamu HK, et al. Caffeine intake increases the rate of bone loss in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 2001;74: 694–700.
    1. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327: 524–6.
    2. Moncada S & Higgs A. The L-arginine nitric oxide pathway. N Engl J Med 1993; 329: 2002–12.
    3. Miep H, Helfrich, Deborah, et al. Expression of nitric oxide synthase isoforms in bone and bone cell cultures[J]. J Bone Miner Res, 1997,12(7):1108-1112.
    4. Mancini L, Moradi N, Brandi ML, et al. Nitric oxide super-oxide and peroxynitrite modulate osteoclast activity [J]. Biochem Biophys Res Commun, 1998, 243(3): 785-790.
    5. Robert J, De Marco G, Gangula P, et al. Cytokine induced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity[J]. J Bone Miner Res, 1997, 12(11): 1797-1801.
    6. Evans DM, Ralston SH . Nitric oxide and bone [J]. J Bone Miner Res, 1996, 11(3): 300-305.
    7. Turner CH, Owan I, Jacob DS, et al. Effects of nitric oxide synthase inhibitors on bone formation in rats[J]. Bone, 1997,21(6): 487-490.
    8. Kioldrung MB. Skeletal tissue response to cytokines[J]. Clin Orthop, 1990, 258(3): 245-278.
    9. Ralston SH. The michael mason prize essay 1997, nitric oxide and bone: what a gas[J]. Br J Rheumatol, 1997, 36(8):831-838.
    10. Roodman CD. Application of bone marrow cultures to the study of osteoclastformation and osteoclast precursors in man[J]. Calcif Tissue Int, 1995,56 (1):22-23.
    11. Mancini L, Becherini L, Benvenuti S, et al. Bioeffects of a nitric oxide donor in a human preosteoclastic cell line[J]. Int J Clin Pharmacol Res, 1997, 17(1): 2-7.
    12. Kikkawa I, Saito S, Tominaga K, et al. Lipopolysaccharide (LPS) stimulates the production of tumor necrosis factor(TNF)-alpha and expression of inducible nitric oxide syn-thase (iNOS) by osteoclasts in murine bone marrow cell cul-ture[J]. Microbiol Immunol, 1998, 42(9): 591-598.
    13. Ueno M, Fukuda K, Oh M, et al. Protein kinase C modu-lates the synthesis of nitric oxide by osteoblasts[J]. Calcif Tissue Int, 1998, 63(1): 22-26.
    14. Ralston SH, Ho LP, Helfrich MH, et al. Nitric oxide: Acytokine-induced regulator of bone resorption[J]. J Bone Miner Res, 1995,10(7):1040-1044.
    15. RJ van’t Hof, Ralston SH, Johnston PW, et al. Nitric oxide’s function in bone cells[J]. Curr Opin Orthop, 1997, 8(1):19-24.
    16. Brandi ML, Hukkanen M, Umeda T, et al. Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms[J]. Proc Natl Acad Sci,1995, 92(7): 2954-2958.
    17. MacPherson H, Noble BS, Ralston SH, et al. Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells[J]. Bone, 1999, 24(3): 179-185.
    18. Ralston SH, Todd D, Helfrich MH, et al. Human osteoblast like cells produce nitric oxide and express indu- cible nitric oxide synthase[J]. Endocrinology, 1994, 135(1):330-336.
    19. Lowik CW, Nibbering PH, van de Ruit M, et al. Inducible production of nitric oxide in osteoblast like cells and infetal bone explants is associated with supression of osteoclastic bone resorption [J]. J Clin Invest, 1994, 93(4): 1465-1472.
    20. Damoulis PD, Hauschka PV. Nitric oxide acts in conjunction with proinflammatory cytokines to promote cell death in osteoblasts [J]. J Bone Miner Res, 1997, 12(3): 412-422.formation and osteoclast precursors in man[J]. Calcif Tissue Int, 1995,56 (1):22-23.
    11. Mancini L, Becherini L, Benvenuti S, et al. Bioeffects of a nitric oxide donor in a human preosteoclastic cell line[J]. Int J Clin Pharmacol Res, 1997, 17(1): 2-7.
    12. Kikkawa I, Saito S, Tominaga K, et al. Lipopolysaccharide (LPS) stimulates the production of tumor necrosis factor(TNF)-alpha and expression of inducible nitric oxide syn-thase (iNOS) by osteoclasts in murine bone marrow cell cul-ture[J]. Microbiol Immunol, 1998, 42(9): 591-598.
    13. Ueno M, Fukuda K, Oh M, et al. Protein kinase C modu-lates the synthesis of nitric oxide by osteoblasts[J]. Calcif Tissue Int, 1998, 63(1): 22-26.
    14. Ralston SH, Ho LP, Helfrich MH, et al. Nitric oxide: Acytokine-induced regulator of bone resorption[J]. J Bone Miner Res, 1995,10(7):1040-1044.
    15. RJ van’t Hof, Ralston SH, Johnston PW, et al. Nitric oxide’s function in bone cells[J]. Curr Opin Orthop, 1997, 8(1):19-24.
    16. Brandi ML, Hukkanen M, Umeda T, et al. Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms[J]. Proc Natl Acad Sci,1995, 92(7): 2954-2958.
    17. MacPherson H, Noble BS, Ralston SH, et al. Expression and functional role of nitric oxide synthase isoforms in human osteoblast-like cells[J]. Bone, 1999, 24(3): 179-185.
    18. Ralston SH, Todd D, Helfrich MH, et al. Human osteoblast like cells produce nitric oxide and express indu- cible nitric oxide synthase[J]. Endocrinology, 1994, 135(1):330-336.
    19. Lowik CW, Nibbering PH, van de Ruit M, et al. Inducible production of nitric oxide in osteoblast like cells and infetal bone explants is associated with supression of osteoclastic bone resorption [J]. J Clin Invest, 1994, 93(4): 1465-1472.
    20. Damoulis PD, Hauschka PV. Nitric oxide acts in conjunction with proinflammatory cytokines to promote cell death in osteoblasts [J]. J Bone Miner Res, 1997, 12(3): 412-422.to physical stress :the mechanisms and mechanics of bone adaptation. J Orthop Sci , 1998 , 3: 346- 355.
    33. McAllister TN, Du T, Franges JA, et al. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow2derived pre-osteoclast-like cells. Biochem Biophys Res Comm, 2000, 270: 643-648.
    34. Zaman G,Pitsillides AA ,Rawlinson SC. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res ,1999 ,14 :1123-1131.
    35. Boo YC , Hwang J ,Sykes M ,et al. Shear stress stimulates phosphory lation of eNOS at Ser (635) by a protein kinase A2dependent mechanism. Am J Physiol Heart Circ Physiol , 2002 , 283 :1819-1828.
    36. Rubin J ,Murphy TC ,Zhu L ,et al. Mechanical strain differentially regulates eNOS and RANKL expression via ERK1/ 2 MAP kinase. J BiolChem , 2003 ,25 :24.
    37. Burgaud JL , Riffaud J P , Del Soldato P. Nitric oxide releasing molecules :a new class of drugs with several major indications. Curr Pharm Des ,2002 ,8 :201-213.
    38. Feelisch M & Stamler JS. Methods in Nitric Oxide Research. Chichester: J. Wiley & Sons. 1996.
    39. Rogers NE & Ignarro LJ. Constitutive nitric oxide synthase from cerebellum is reversibly inhibited by nitric oxide formed from arginine. Biochem Biophys Res Comm 1992; 189:242–9.
    40. Lander HM, Ogiste JS, Pearce SF, Levi R, Novogrodsky A. Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J Biol Chem 1995; 270: 7017–20.
    41. Lander HM, Jacovina AT, Davis RJ, Tauras JM. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem 1996; 271:19705–9.
    42. Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA. A molecular redox switch on p21 (ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 1997; 272:4323–6.
    43. Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-SV, Sucher NJ, Loscalzo J, Singel NJ, Stamler JS. A redox based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso compounds. Nature 1993; 364:626–32.
    44. Ralston SH & Grabowski PS. Mechanisms of cytokine induced bone resorption: role of nitric oxide, cyclic guanosine monophosphate and prostaglandins. Bone 1996; 19:29–33.10.1016/8756-3282 (96)00101-9
    45. MacIntyre I, Zaidi M, Towhidul Alam ASM, Datta HK, Moonga BS, Lidbury PS, Hecker M, Vane JM. Osteoclast inhibition: an action of nitric oxide not mediated by cyclic GMP. Proc Natl Acad Sci USA 1991; 88:2936–40.
    46. Mancini L, Moradi-Bidhendi N, Becherini L, Martineti V, MacIntyre I. The biphasic effects of nitric oxide in primary rat osteoblasts are cGMP dependent. Biochem Biophys Res Comm 2000; 274:477–81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700