用户名: 密码: 验证码:
钻孔水力开采中气力提升系统的特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的飞速发展,各国对能源的需求量日益剧增。然而各种矿源的数量却越来越少,可供开采的矿物储量也日益减少。寻求开采新的矿源已成为当前国民经济发展必须解决的问题之一。海底蕴藏丰富的矿产资源和陆地也还有某些具有复杂的水文地质条件的矿藏,却由于开采难度而迟迟得不到开发。如何在海底和水文地质条件复杂的矿中进行开采和提升矿石成了一个需要紧迫解决的问题和难题。气力提升以其具有举升深度深、操作管理方便、加工简单、维护费用低等优点而被广泛应用于深海采矿和钻孔水力开采中,因此对气力提升系统特性研究已成为了一个热点,本文针对于此进行了以下几个方面的研究。
     ①.利用系统模块化方法,对气力提升系统中影响其提升效率的综合因素进行了深入的研究,确立了系统各子模块与系统提升效率间的相互联系。
     ②.基于压力能量消耗最小原理和多相流流型以及从建模方法出发,得出了在环状流态时具有相对稳定的流动状态。针对在此流动状态下,通过对修正后的气-液和气-固两相流压降数学模型的叠加,得到了适合于对小颗粒、均匀粒径矿砂开采时工作状态下,气力提升器内气-液-固三相流压降数学模型。
     ③.综合应用多相流、剪切层、流体网络等理论和多相流建模思想,结合实验对气力提升系统特性进行了较为深入、系统的研究。
     ④.通过对剪切层理论的深入研究,建立了双腔室自激振荡脉冲射流的有效激励条件,分析了产生调制射流的机理。
     ⑤.利用流体网络理论建立了双腔室自激振荡脉冲射流频域相似网络模型,得到了双腔室自激振荡脉冲射流破碎器固有频率的计算表达式,确定了破碎器的结构参数、流体参数(压力、流量)及泵源的脉动对射流振荡特性的影响规律,系统提出了双腔室自激振荡脉冲射流破碎器装置的设计准则。
     通过理论和实验研究,得到了以下重要结果:
     ①.气力提升系统由空压机组、输气管网、集输管线、气力提升器装置和破碎器串联而成,故气力提升效率应为这五大模块效率乘积。配气管和集输管效率,主要由管线长度和局部阻力系数、沿程阻力系数决定;气力提升器效率除受摩擦阻力损失、局部阻力损失外还受固体颗粒的滑移损失、热量损失及浸入率大小等因素的影响;破碎器效率受其结构参数和流体参数影响。
     ②.通过对气力提升特性影响因素的实验表明:浸入率的大小对气力提升特性有重要影响,浸入率越大气力提升的扬水量、扬砂量和提升效率越大;气力提升过程中,气体喷嘴的个数存在最佳值,本实验中气体喷嘴最优个数为3;气体喷嘴的安装角度对气力提升特性影响较大,当气体流量Qg小于30m3/h时,气体喷嘴安装角度与管壁相切时,气力提升的扬水量、扬砂量最大,气体流量大于37.5m3/h时,气体喷嘴不偏转时,气力提升的扬水量、扬砂量最大,当30m3/h      ③.双腔室自激振荡脉冲射流破碎器结构参数设计中应综合考虑装置系统、流体参数的影响,使来流脉动频率与破碎器固有频率相近;
     ④.大量实验证明:在相同工况下,双腔室自激振荡脉冲射流破碎器较单腔室自激振荡脉冲射流破碎器所产生的脉冲射流具有更强的冲蚀效果,最佳冲蚀深度和冲蚀体积前者较后者分别提高了65.43%和47.53%;
     ⑤.双腔室自激振荡脉冲射流频率主要集中在低频带,且脉冲射流的峰值压力频率随振荡腔长、腔径的增大而减小,压力和波速的增大而增大,存在最佳腔长比和腔径比,双腔室自激振荡脉冲射流峰值压力较常规水射流可以提高(25-46)%,单腔室自激振荡脉冲射流较其只能提高射流的峰值压力(15-35)%;
     以上的研究结果,为气力提升的应用奠定了理论和实验基础,为深海采矿和钻孔水力开采工程实践中打下了良好的应用基础。
The rapid development of the world economy accelerates the growing demand for sourse of energy. However, high quality mineral resources are becoming less and less. Seeking new mineral resources has become one of the problems which must be solved currently. Right now, the potential mineral resources are located in deep sea and some spots with complex hydrogeological conditions. Those resources are well-known to be difficult to mine, and after mining, the ores are also very difficult to be lift up. This paper focuses on mineral ore lifting process, and tries to use air lifting method, a widely applied method in deep-sea mining and hydraulic-drilling, whose advantages include high lifting depth, simplicity, easy-to-maintenance, etc. To satisfy the purpose, several aspects have been studied as shown in following:
     ①. Using the method of modularization system, affecting factors of lifting efficiency of air lifting system has been discussed.
     ②. Based on the theory of minimum energy consumption and the multiphase flow pattern, it can be known that the annular flow pattern is in a relatively stable flow state. For annular flow, gas-liquid and gas-solid mathematical model of pressure drop has been used to derive gas-liquid-solid model of pressure drop.
     ③. The feature of air lift system has been researched based on experiments and theoretical analysis which involves the theory of multiphase and shear layer;
     ④. Based on the self-excited oscillation theory, the effective incentive conditions of double series self-excited oscillation chamber has been established, and the formation mechanism of jet has been analyzed;
     ⑤. The network model of double series self-excited oscillation chamber has been established by using the theory of fluid network, and the computational expressions of the natural frequencies of nozzle has been obtained, and the effect of several factors, such as the structural parameters of nozzle, fluid parameters (pressure, flow) and the pump pressure oscillation, has been studied, and the design criteria of double self-excited oscillation chamber has been put forward.
     The theory and experimental study has led to the following important fruitful results, as listed in following, have been reached.
     ①. Air lifting system is comprised of an air compressor, a gas pipeline network, a pipe system and an air lifting device. Therefore, the efficiency of the air lifting system is the arithmetic product of each sub-device. The efficiency of gas pipeline network and pipe system is mainly influenced by pipe length and local resistance losses. The efficiency of air raiser is decided by friction loss, local resistance losses, heat loss, slipping loss and immersion rate. For the knapper, its efficiency is influenced by its structure parameters and fluid parameters.
     ②. The immersion rate has a significant effect on the characteristics of air lift. The higher the immersion rate, the higher the lift water quantity is, lift sand quantity and lift efficiency are. Except that, an optimum nozzle number exists. In this experiment, 3 nozzles have been used simultaneously. Air nozzle installation angle is also an important factor which affects the lift characteristics of air lift. When gas flow is less than 30m3 / h and air nozzle is tangent to the pipe wall, lift water quantity and lift sand quantity reach the maximum value. As gas flow is more than 37.5 m3 / h and air nozzle is not deflection, the maximum number has been gotten for lift water quantity and lift sand quantity. When gas flow is between 30m3 / h and 37.5 m3 / h, air nozzle angle has less influence on lift water quantity and lift sand quantity. Sometimes, whether installing knapper nozzle or not is a key factor affecting lift process. Though the installation of Knapper nozzle decreases the amount of lifting water, it increases the quantity of lift sand.
     ③. Device structure and fluid parameters have to be considered during the structure parameter design process of double series self-excited oscillation chamber. Thus, the frequency of flow can be close to the natural frequency of the oscillation chamber.
     ④. Experimental results have shown that, under the same conditions, double series self-excited oscillation chamber has stronger erosion effects than single chamber. The erosion depth impacted by double series self-excited oscillation chamber increased 47.53% and the eroding volume increased 65.43% comparing to single chamber.
     ⑤. The frequency of double self-excited oscillation chamber is relatively low. The frequency of self-excited oscillation peak pressure decreases with the increasing of cavity length and the lumen diameter, and it increases with the increasing of pressure and velocity. There is an optimum cavity length ratio and lumen diameter ratio. Comparing with regular jet, the peak pressure of double series self-excited oscillation chamber increased about (25- 46)%, and the peak pressure of single self-excited oscillation chamber increased (15-35)%.
     The above results have prepared the theory and practice for air lifting application, and this paper has led to farther study for deep-sea mining and borehole hydraulic mining.
引文
[1] http://www.china-region.com/News/HTML/20050819000000_432.htm国务院政策研究室专家:未来20年矿产资源不足.
    [2] http://wenku.baidu.com/view/b1f11d2ded630b1c59eeb51f.html中国海洋矿产资源概况.
    [3] http://www.xian.cgs.gov.cn/kuangchanziyuan/2009/0828/content_2238.html我国海洋矿产资源开发现状及其发展趋势.
    [4]王绍周.管道运输工程[M].机械工业出版社,2004.
    [5]肖林京,方湄,张文明.大洋多金属结核开采研究进展与现状[J].金属矿山,2000,25(8):11-14.
    [6]曾细平,沙亚南.钻孔水力采煤技术研究[J].能源技术与管理,2007(3):10-12.
    [7] Nai-Kuang Lianga, Hai-Kuen Pengb. A study of air-lift artificial upwelling[J]. Ocean Engineering 32 (2005):731–745.
    [8] Liang, N.K., Peng, H.K., 2003. A preliminary study on air-lift artificial upwelling induced by air-bubble screen, Proceedings of The Fifth (2003) Ocean Mining Symposium, Tsukuba, Japan, September 15–19,2003: 31–36.
    [9] Liang, N.K., Huang, P.A., Li, D.J., Chu, L.L.,Wu, C.L., Liang, N.T., 1978. Artificial upwelling induced by ocean currents—theory and experiment. Ocean Engineering 5, 83–94.
    [10]夏建新,倪晋仁,黄家桢.锰结核在垂直管路输送过程中的压力损失[J].泥沙研究,2002(2):23-27.
    [11]唐川林,张凤华,杨林.气举用振荡脉冲射流破碎器的研究[J].振动与冲击,2002,21(3): 15-17.
    [12]杨林,唐川林,张凤华.水下开采气举提升机电装置的特性及应用[J].矿冶工程,2005,25(2):13-16.
    [13]窦宏恩,新的气力提升举升技术[J].石油机械,2004,32(3):52-53.
    [14]钟海全,李颖川,马辉运,等.气体加速泵排水采气力提升升效率研究[J],石油钻采工艺,2005,27(1):46-48.
    [15]张俊杰;吴洪波;李开鸿,等.深井气举排水采气工艺在蜀南地区的新发展[J].钻采工艺,2007,30(4):78-80.
    [16]卓文彬;彭云康;李颖川,等.气举试验井两相流动特性分析[J]:重庆大学学报,2006,29(3):51-54.
    [17]邹伟生,黄家桢.大洋锰结核深海开采扬矿技术[J].矿冶工程,2006,26(3):1-5.
    [18]赵国景,夏建新,黄家桢.锰结核动态管道水力提升[J].矿冶工程,2000,20(3):18-20.
    [19]张荣军,孙卫.垂直管流中的气液两相流压力计算[J].西北大学学报,2007,37(1):123-126.
    [20]王卫阳,陈听宽,罗毓珊.垂直井筒气液段塞流压力梯度的简便算法[J].中国石油大学学报,2006,30(4):75-77.
    [21]李炜.大洋采矿气力提升特性的实验研究[J].有色矿山,1997,10(3):11-15.
    [22]肖林京,方湄,张文明.大洋多金属结核开采研究进展与现状[J].金属矿山,2000,290(8):11-13.
    [23]夏柏如,曾细平,毛志新.一种钻孔水力采煤系统的研究[J].地学前缘,2008,15(4):222-226.
    [24]汤勃,徐立伟,饶润生.基于分相流模型的三相流管道压降计算[J].武汉理工大学学报,2002,26(2):199-201.
    [25]夏建新,倪晋仁,黄家桢.锰结核在垂直管路输送过程中的压力损失[J].泥沙研究,2002,12(4):23-28.
    [26] Natsuo Hatta,Hitoshi Fujimoto,Makoto Isobe,etc.Theoretical analysis of flow characteristics of multiphase mixtures in a vertical pipe[J].Int.J.Multiphase Flow,1998,24(4):539-561.
    [27] Hitoshi Fujimoto,Shio Murakami,Ayumu Omura,etc.Effect of local pipe bends on pump performance of a small air-lift system in transporting solid particles[J].
    [28] Pougatch K,Salcudean M.Numerical modelling of deep sea air-lift[J].Journal of Ocean Engineering,2008,35(11-12):1173-1182.
    [29] Zun, I., Kljenak, I., Moze, S., 1993. Space-time evolution of the nonhomogeneous bubble distribution in upward ?ow[J]. Int. J. Multiphase Flow 19 (1): 151–172.
    [30] S.Z. Kassab, H.A. Kandil, H.A. Warda, etc.Experimental and analytical investigations of airlift pumps operating in three-phase ?ow[J]. Chemical Engineering Journal 131 , 2007:273–281.
    [31] Bo Jin,Pinghe Yin,Paul Lant.Hydrodynamics and mass transfer coefficient in three-phase air-lift reactors containing activated sludge[J].Chemical Engineering and Processing, 2006:1-9.
    [32]陈晨,张祖培.钻孔水力开采技术[J].中国矿业,1998,7(6):40-43.
    [33]宋敬埔,吴红梅.几种起爆技术在水下爆破中的应用[J].爆破器材,2004,33(4):29-33.
    [34]何有明,展玉山,田桂英.水下岩石开挖爆破技术[J].水利水电技术,1998,29(12):36-38.
    [35]刘宁.电液压脉冲水射流发生器及破岩研究[D].中国优秀硕士学位论文全文数据库,2008,(06).
    [36]廖振方,潘志敏,汪朝晖,等.电液压脉冲有效作用范围的确定[J].重庆大学学报,2009,32(10):1122-1125.
    [37] JIANGH,ADAMSC.Treat ability of chloro-s-triazines by conventional drinking water treatment technologies[J].Water Research,2006,40(8):1657-1667.
    [38]李根生,廖华林,黄中伟,等.超高压水射流作用下岩石损伤破碎机理[J].机械工程学报2009,45(10):284-293.
    [39] THOMAS J K. An overview of waterjet fundamentals and applications[M]. St. Louis Waterjet Technology Association, 2005.
    [40]高传昌,陈豪,雷霆.自激振荡脉冲射流的研究与进展[J].华北水利水电学院学报2009,30(3):41-44.
    [41] Tsukasa Irie,Tsuyoshi Yasunobu,Hideo Kashimura.Characteristics of Spherical Shock Wave and Circular Pulse Jet Generated by Discharge of Propagating Shock Wave at Open End of Tube[J].Journal of Thermal Sicence,2003,12(3):245-249.
    [42] Xiong Jiyou.The Mechanism of Clearing Away Cuttings and Breaking Rocks Using Pulse Jet Nozzle[J].Natural Gas Industry,1995,15(4):103-105.
    [43]倪红坚,王瑞和.脉冲射流破岩规律的数值试验[J].石油钻探技术,2002,30(6):15-17.
    [44]杨军.应力波衰减基础上的岩石爆破损伤模型[J].爆炸与冲击,2000,18(3):241-246.
    [45]白志华,曹林卫.脉冲水射流破岩的数值模拟与分析[J].重庆工学院学报(自然科学), 2009,23(2):31-35.
    [46] AqueletN, SouliM,OlovssonL. EulerLagrange coupling with damping effects: Application to slamming problem[J].Computer Methods in Applied Mechanics and Engineering, 2006,195:110-132.
    [47]张德智,徐显广.新型钻头振荡脉冲喷嘴的推广应用[J].西部探矿工程,1992,4(3:)42-47
    [48]唐川林,张凤华,杨林.高速振荡脉冲射流振荡腔内涡旋-碰撞壁相互作用的模拟分析与实验[J].振动与冲击,2001,20(4):25-28.
    [49]王乐勤,王循明,徐如良.自激振荡脉冲喷嘴结构参数配比试验研究[J].工程热物理学报,2004,25(6):956-958.
    [50]雷向阳,李晓红,卢义玉.自激振荡频率对磨料在脉冲磨料射流中分布的影响[J].矿山机械,2003,31(2):8-10.
    [51]王嘉松.自激振荡脉冲射流理论与实验研究及其信号分析软件的研制[D].南充:西南石油学院, 1992.
    [52] King J L,Doyle P,Ogle J B. Instability in slotted wall tunnels[J].FluidMech, 1958, 14: 283-305.
    [53] Grow S C,Champagne FH. Orderly structure in jet turbulence[J].FluidMech, 1971, 48: 547-591.
    [54]王训明.自激振荡脉冲射流装置性能影响因素数值分析及喷嘴结构优化设计[D].杭州:浙江大学, 2005.
    [55] M Gevec,i P Oshka,i D Rockwel,l et a.l Pollack imaging of the self-excited oscillation of flow past a cavity during generation of a flow tone[J]. Journal ofFluids and Structures,2003, 18: 665-694.
    [56]唐川林,廖振方.自激振荡脉冲射流装置理论分析和实验研究[J].煤炭学报, 1989, 3(1): 90-100.
    [57]廖振方,唐川林.自激振荡脉冲射流喷嘴的理论分析[J].重庆大学学报:自然科学版, 2002, 25(2): 24-27.
    [58]李晓红,杨林,王建生,等.自激振荡脉冲射流装置的固有频率特性[J].煤炭学报, 2000, 25(6): 641-644.
    [59]杨林,唐川林,李晓红,等.自激振荡脉冲射流装置的频率特性[J].西南石油学院学报,2001,23(1):43-45.
    [60]沈忠厚,李根生,周长山.牙轮钻头的自激振荡脉冲喷嘴的实验研究[J].石油大学学报,1991,15(3):36-42.
    [61]王嘉松,蒋世全,廖荣庆.石油钻井中自激脉冲喷嘴的应用研究[J].中国海上油气(工程), 1999, 11(4): 51-55.
    [62]曲延鹏,陈颂英,李春峰,等.低压大流量自激脉冲清洗喷嘴内部气液两相流数值模拟[J].山东大学学报, 2006, 36(4): 16-25.
    [63] Zuber,N.Flow excursion and oscillations in boiling two-phase flow systems with heat addition[J].Proceedings of EURATOM Symposium on Two-phase Flow Dynamics 1,1967,1070-1089.
    [64] Ishii,M.One-dimentional drift-flux model and constitutive equations for relative motion between phase in various two-phase flow regimes[J].Proc 8th U.S National Congress of Applied Mechanics,Ithaca,New York,1978:73-80.
    [65] Yoshinaga T,Sato Y,Sadatomi M.Characteristics of air-lift pump for conveying solid particles[J].Multiphase Flow,1990,12(4):174-191.
    [66] Natsuo Hatta,Hitoshi Fujimoto,Makoto Isobe,et al.Theoretical analysis of flow characteristics of multiphase mixtures in a vertical pipe[J].International journal of Multiphase Flow,1998,24(4):539-561.
    [67] Fadel F. Erian , Leonard F. PeaseⅢ. Three-phase upward flow in a vertical pipe[J].International Journal of Multiphase Flow,2007,33(1):498-503.
    [68] Barnea.D,Taitel.Y.Structural and interfacial stability of multiple solutions of stratified flow[J].International Journal of Multiphase Flow,1992,18(2):821-831.
    [69] Liljegren.L.M,Bamberger.J.A.Pneumatic conveying of wet and dry solids through avertical pipe[J].ASME Fluids Eng,1995,228(1):401-408.
    [70] W.S.Jua.Hydraulic borehole mining(HBM) technology[A] .19th world mining congress[C] .New Delhi,INDIA:India Mining Association,2003:905-91.
    [71] Chi Ho Yoon,Yong Chan Park,Dong Kil Lee.Numerical Analysis of solid-liquid-air three-fluid transient flow for air lift system[A].14th international offshore and polar engineering conference[C].Toulon,France:The International Society of Offshore and Polar Engineers,2004:66-70.
    [72]邹伟生.锰结核开采的气力提升参数研究[J].矿冶工程,1999,14(3):24-28.
    [73]窦宏恩.气体射流泵效率的影响[J].石油机械,1998,7(1):32-36.
    [74] Fujimoto, Hitoshi. Ogawa, Satoshi. Takuda, Hirohiko; Hatta, Natsuo. Operation performance of a small air-lift pump for conveying solid particles[J]. Journal of Energy Resources Technology, Transactions of the ASME, v 125, n 1, March, 2003: 17-25.
    [75]刘光辉.气举系统效率评价方法研究[D].西南石油学院,2002年硕士论文集.
    [76]杨林,唐川林,张凤华.地下矿产钻孔水力开采技术及其应用[J].地下空间与工程学报,2006,12(4):662-665.
    [77] XIA BAI-RU, ZHENG XI-PING, MAO ZHI-XIN. Research on one borehole hydraulic coal mining system[J]. Earth Science Frontiers, 2008,8(4):36-40.
    [78] FADE F,LEONARD F.Three-phase upward flow in a vertical pipe[J].International Journal of Multiphase Flow,2007,33(10):498-509.
    [79]邹伟生,黄家桢.大洋锰结核深海开采扬矿技术[J].矿冶工程,2006,20(3):320-325.
    [80]唐川林,胡东,杨林.气举工作特性的实验与应用[J].煤炭学报,2008,33(3):347-352.
    [81] HORST-MICHAEL PRASSER,ECKHARD KREPPER,DIRK LUCAS.Evolution of the two-phase ?ow in a vertical tube—decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors[J].International Journal of Thermal Sciences,2002,41(1):17–28.
    [82] S.Z. KASSAB,H.A. KANDIL,H.A. WARDA.Experimental and analytical investigations of airlift pumps operating in three-phase ?ow[J].Chemical Engineering Journal,2007,131(5):273–281.
    [83] LILJEGREN.L.M,BAMBERGER.J.A.Pneumatic conveying of wet and dry solids through a vertical pipe[J].American Society of Mechanical Engineers Fluids Engineering,1995,228(1):401-408.
    [84] BERIT ROB¢LEA,HARALD KNUT KVANDAL,REIDAR BARFOD SCH¨ULLER.A high pressure ?ow loop for real three-phase hydrocarbon systems[J].Flow Measurement and Instrumentation,2006,17(4):163–170.
    [85]王常斌,林建忠,石兴,等.射流泵湍流场的数值模拟与实验研究[J].高校化学工程学报,2006,20(2):170-179.
    [86]袁丹青,王冠军,乌骏,等.多喷嘴射流泵数值模拟及试验研究[J].农业工程学报, 2008,24(10):95-99.
    [87] LIANG NAI-KUANG,PEN HAI-KUENG.A study of air-lift artificial upwelling[J].Ocean Engineer,2005,32(2):731-745.
    [88] SADEK Z. KASSAB,HAMDY A. KANDIL,HASSAN A. WARDA, et al.Air-lift pumps characteristics under two-phase flow conditions [J].International Journal of Heat and Fluid Flow,2009,30(1):88-98.
    [89] MICHIO SADATOMI,AKIMARO KAWAHARA,FUMINORI MATSUYAMA,et al.An advanced microbubble generator and its application to a newly developed bubble-jet-type air lift pump[J].Multiphase Science and Technology,2007,19(4):323-342.
    [90] KONSTANTIN POUGATCH,MARTHA SALCUDEAM.Application of cfd methods to the analysis of the flow in air-lift pump[C].Proceedings of the 26th International Conference on Offshore Mechanics And Artic Engineering, San Diego, California, USA.June 10-15, 2007[OMAE2007-29099].
    [91]陆宏圻.射流泵技术的理论及应用[].北京,水利电力出版社,1989.6.
    [92]林宗虎.变幻流动的科学-多相流体力学[].清华大学出版社,2000.12.
    [93]王乐勤,王循明,徐如良.自激振荡脉冲喷嘴结构参数配比试验研究[J].工程热物理学学报,2004,25(6):956-958 .
    [94]唐川林,胡东,裴江红.自激振荡脉冲射流喷嘴频率特性实验研究[J].石油学报,2007,28(4):122-125.
    [95]唐川林,胡东,裴江红.自激振荡脉冲射流动态特性的实验研究[J].水利水电技术,2006,37(12):71-74.
    [96] Shen Zhonghou,Wang Zhiming.Theoretical analysis of a jet-driven Helmholtz resonator and effect of its configuration on the water jet cutting property [C].Proceeding of the 9th International Symposium on Jet Cutting Technology, BHRA,Cranfield,Bedford,England, 1988:189-201.
    [97]裴江红,唐川林,张凤华,等.非淹没射流条件下自激振荡脉冲射流喷嘴试验研究[J].矿山机械,2006,35(10):96-98.
    [98]杨林,李晓红,王建生.结构参数对自激振荡脉冲射流固有频率特性的影响[J].流体机械,2001,29(2):26-28.
    [99]李江云,王乐勤,徐如良等.低压大直径喷嘴自激脉冲射流空化模型[J].工程热物理学报,2005,26(3):438-440.
    [100]罗志昌.流体网络理论[M].北京:机械工业出版社,1988 LUO Zhichang. Fluid network theory[M]. Mechanical Industry Press, 1988.
    [101] Morel T.Experimental study of jet driven helmholtz oscillator[J]. Fluid Engineering, 1971, 101(9):23-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700