用户名: 密码: 验证码:
水下爆炸气泡的边界积分法及气—液—固相互作用问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,水下爆炸气泡对舰船和海上结构物的破坏受到广泛关注。本文侧重讨论水下爆炸气泡动力学数值计算问题。水下爆炸气泡具有体积变化大、收缩阶段呈非球形、溃灭时产生高速射流等特点。气泡运动过程中涉及到大变形、动边界和多相介质流动问题,给数值计算提出了巨大的挑战。水下爆炸气泡尺度较大、雷诺数较高,因此粘性、可压缩性和表面张力可以忽略,流体运动满足三维不可压缩势流理论。
     在不可压缩理论假定下,本文发展了三维可动边界的边界积分法,以模拟气泡非球形生长、溃灭和反弹的动力学过程。气泡初始运动近似满足Rayleigh-Plesset方程。气泡表面采用三角形单元划分,物理空间与参数空间之间的单元满足线性映射关系。气泡表面积分函数采用二维高斯积分求解,大大地提高了计算精度和效率。影响系数阵的奇异性分别通过极坐标变换、去奇异边界积分以及直接求解法等多种方式进行处理,较好地解决了三维边界积分计算中这一难题。在三维数值计算中,射流发展阶段可能出现严重的数值不稳定性,本文采用基于双二次插值多项式的光顺算法使得气泡从单连通到双连通区域的过渡更加光滑稳定。在射流发展过程中单元和节点会过分聚集到射流部分,其他部分的网格和单元变得十分稀疏。采用基于能量最小法则的弹性网格算法,网格演变采用最优速度推进,大大改善了计算中的网格畸变问题。本文通过边界积分算法和涡环模型相结合的方式,成功地模拟了三维模型中射流撞击、穿透以及气泡的反弹过程。计算结果同理论解、实验结果和其他数值结果吻合良好。数值计算的范围包含:气泡在无限流场中的运动、气泡和自由液面的大变形运动、气泡在固定结构周围的演化、气泡与运动刚体、变形薄壳结构的非线性耦合运动。
     在气泡与液面大变形运动计算中,基于球面三角形理论,采用直接计算法处理非封闭区域中系数矩阵对角元素的奇异性问题。系统地研究了不同初始位置、浮力参量、初始大小以及底部边界等因素对气泡形状、射流速度和特征参量的影响,分析了液面水冢和气泡内部射流的运动特征。对于多个气泡的研究,详细讨论了气泡之间、气泡与液面间的相互作用、Kelvin冲量以及流场压力的变化特征。
     在气泡与固定结构的耦合计算中,详细推导了气泡与结构间的流固耦合算法。基于边界积分基本解的积分恒等式,结合三维内域和外域问题中积分方程的特征关系,采用去奇异积分算法有效地消除了系数矩阵对角线上的弱奇异性问题。本文详细计算了气泡在平板上方、狭长平板间以及柱体附近的演变特征。分析了初始位置、浮力参量、流场压力变化等因素对气泡演化、迁移和射流发展的影响,并详细考察了柱体周围气泡动态变化引起的结构冲击效应。
     在气泡与运动刚体研究中,采用浸没球体和圆柱体作为计算模型,通过联立求解边界积分方程和六个自由度的刚体动力学方程,计算了气泡与运动刚体间的三维非线性耦合运动问题。比较了运动刚体和固定刚体对气泡演化和特征参量的影响。在气泡与弹性结构的流固耦合计算中,本文采用细长椭球形壳体模型,将边界积分程序与结构有限元代码结合,详细研究了水面下方近场气泡和弹性壳体的运动特点,为实际的工程应用提供了一定的参考。
In recent years, the dynamics of underwater explosion bubble has attracted extensive attentions among researchers due to its seriously damaging effects on warships and marine structures. In the present study, more focus is cast on the investigation into dynamical characteristics of underwater explosion bubbles near complex boundaries such as free surfaces, moving or deformable boundaries. The underwater explosion bubble is characterized by the large volume variation, non-spherical collapse and the formation of high-speed liquid jet. The bubble evolution is accompanied by complex physical properties such as large deformations, moving boundaries and multi-phase flows, which pose great challenges to many numerical methodologies. Due to large dimensions and high Reynolds number of underwater explosion bubble, the fluid can be assumed to be inviscid, incompressible, and the flow irrotational.
     Based upon this simplification, a potential-flow boundary integral method is developed to simulate the growth and collapse of non-spherical bubbles undergoing large contortions and deformations near complex boundaries. The bubble motion in the initial phase can be approximately described by the Rayleigh-Plesset equation. The bubble surface is divided into many triangular elements, and the mapping of elements in physical space onto parametric space is assumed to be linear. Surface integral functions are calculated by two-dimensional Gaussian quadrature formulae for triangle. The singularities of the influence coefficients are eliminated via several different methods such as the polar coordinate transformation, desingularizing formulation and direct calculation approach. The formation of liquid jet and the ensuing jet impact during collapse may lead to strong numerical instabilities. A new smoothing scheme based on least squares is adopted to dampen the strong instabilities of the jetting process, enabling a smooth transition from a singly connected bubble to a doubly connected one. For asymmetric bubble deformation, the elements and nodes are attracted to the jet tip vicinity, which has the consequence of thinning out the element distribution in other regions. The elastic mesh technique based on the principle of minimum elastic potential energy is adopted. The mesh nodes is advected by the optimum shift velocity to make the element distribution as reasonably uniform as possible and enable the computation more stable and robust. The combination of the boundary integral method and a vortex ring model is used to simulate the process of jet impact, penetration and the toroidal bubble rebound. Our calculation results are in satisfactory agreements with the theoretical solution, experimental results as well as other numerical results. Numerical simulations in the paper include:the bubble growth and collapse in an infinite fluid, the large deformation between the bubbles and free surface, and the nonlinear fluid-structure interaction between bubble and fixed structure as well as the nonlinear coupled response of moving or deformable structures to bubble dynamics.
     For large deformations of between the free surface and bubbles, the singularities of influence coefficients for the open surface are cancelled by using a direct calculation of spatial angles. The influences of the initial positions, buoyancy parameters, initial sizes and bottom boundary on the evolution of bubble shapes near a free surface are investigated. The dynamical characteristics of the free surface spike and bubble jetting are analyzed. For interactions of multiple bubbles, the evolution of shapes, the variation of Kelvin impulse and the pressure distributions in the flow field between bubbles and the free surface are examined comprehensively.
     For the problems of bubble motions near fixed structures, the fluid-structure interaction algorithm between bubble and fixed structures is deduced in detailed and the desingularized boundary element formulation for eliminating the weakly-singular terms of influence coefficient matrices are presented. The evolution of bubbles in proximity to a square plate, two parallelled plates and curved walls are investigated. The bubble shapes, jetting patterns and bubble migrations under different initial positions, buoyancy parameters and pressure distributions are obtained. The characteristics of dynamic loading induced by bubble evolution on the cylinder are discussed in detail.
     The growth and collapse of gaseous bubbles near a movable or deformable body are presented numerically using the boundary integral method and fluid-structure interaction technique. Using a submerged sphere and cylinder as calculation models, the six-degrees-of-freedom equations of motion for the rigid body are solved interactively in conjunction with the boundary integral equation. The characteristics of nonlinear motions between bubble and movable structure are analyzed. The motion of bubbles near a deformable structure is also simulated using the combination of boundary integral method (BIM) and finite element method (FEM). The growth and collapse of bubbles near a deformable ellipsoid shell in the presence of the free surface are investigated, and the dynamical characteristics during the bubble motions have been summarized.
引文
[1]Keil A H. The response of ships to underwater explosions[J]. Trans. Soc. Nav. Archit. Mar. Eng.,1961, 69:366-410.
    [2]Snay H G. Hydrodynamics of underwater explosions[C]. Symposium on Naval Hydrodynamics, National Academy of Sciences, Washington, D.C.,1956:325-352.
    [3]Keller J B, Kolodner I I. Damping of underwater explosion bubble oscillations[J]. J. Acoust. Soc. Am. 1956,27:1152-1161.
    [4]Benjamin T B, Ellis A T. The collapse of cavitation bubbles and the pressure thereby produced against solid boundaries[J]. Phil. Trans. R. Soc. Lond. A,1966,260:221-240.
    [5]Bjerknes V F K. Fields of force[M]. New York:Columbia University Press,1906.
    [6]Takahira H, Fujikawa S, Akamatsu T. Numerical investigation of nonlinear oscillations of two spherical gas bubbles in a compressible liquid[J]. JSME Int. J., Ser.Ⅱ,1989,32(2):163-172.
    [7]Wang C, Khoo B C. An indirect boundary element method for three-dimensional explosion bubbles[J]. J. Comput. Phys.,2004,194:451-480.
    [8]Chahine G L, Perdue T O, Tucker C B. Interaction between an underwater explosion bubble and a solid submerged body[R]. Traycor Hydronautics. Inc. Tech. Report 86029-1,1988.
    [9]Ohl C D, Iknk R. Shock-wave-induced jetting of micron sized bubbles[J]. Phys. Rev. lett.,2003,90: 214502.
    [10]Sankin G N, Zhong P. Iteraction between shock wave and single inertial bubbles near an elastic boundary[J]. Phys. Rev. E,2006,74:046304.
    [11]Klaseboer E, Fong S W, Turangan C, Khoo B C, Szeri A J, Calvisi M L, Sankin G N, Zhong P. Interaction of lithotripter shockwaves with single inertial cavitation bubbles[J].J. Fluid Mech.,2007, 593:33-56.
    [12]Blake J R, Cerone P. A note on the impulse due to a vapour bubble near a boundary[J]. J. Aust. Math. Soc. B,1982,23:383-393.
    [13]Knapp R T, Daily J W, Hammitt F G. Cavitation[M]. New York:McGraw-Hill,1970.
    [14]Brennen C E. Cavitation and Bubble Dynamics[M]. New York:Oxford University Press,1995.
    [15]Hammitt F G. Cavitation and Multiphase Flow Phenomena[M]. New York:McGraw-Hill,1980.
    [16]Leighton T G. The Acoustic Bubble[M]. London:Academic Press,1994.
    [17]Franc J P, Michel J M. Fundamentals of Cavitation[M]. London:Kluwer Academic Publishers,2004.
    [18]Acosta A J. Cavitation and cavitation types[M]//Li S C. Cavitation of Hydraulic Machinery, London: Imperial College Press,2000.
    [19]Lamb H. The early stages of a submarine explosion[J]. Philos. Mag.,1923,45(6):257-265.
    [20]Herring C. Theory of the pulsations of the gas bubble produced by an underwater explosion[M]//Office of Naval Research, Underwater Explosion Research. Washington, D.C.,1950,2:35-131.
    [21]Kirkwood J G, Bethe H. The pressure wave produced by an underwater explosion I.(OSRD no.588) [M]//Wood W W. Shock and Detonation Waves. New York:Gordon and Breach,1967:1-34.
    [22]Penney W G, PriceA T. On the changing form of a nearly spherical submarine bubble[M]//Office of Naval Research, Underwater Explosion Research. Washington, D.C.,1950,2:145-161.
    [23]Taylor G 1. Vertical motion of a spherical bubble and the pressure surrounding it[M]//Office of Naval Research, Underwater Explosion Research. Washington, D.C.,1950,2:131-144.
    [24]Cole R H. Underwater explosion[M]. Princeton:Princeton University Press,1948.
    [25]Atkatsh R S, Bieniek M P, Baron M L. Dynamic elastoplastic response of shells in an acoustic medium-EPSA code[J].Int. J. Numer. Meth. Eng.,1983,19(6):811-824.
    [26]DeRuntz J A. The underwater shock analysis code and its applications[C]. Proceedings 60th Shock and Vib. Symposium. SAVIAC:1989:89-107.
    [27]Schittke H J, Mohr W, Lutje H, Pfrang W. The program DYSMAS/ELC and its application to underwater shock loading of vessels[C]. Proceedings 60th Shock and Vibration Symposium. SAVIAC: 1989:55-78
    [28]Geers T L, Hunter K S. An integrated wave-effects model for an underwater explosion bubble[J]. J. Acoust. Soc. Am.,2002,111(4):1584-1601
    [29]Rayleigh L. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. Phil. Mag., 1917,34:94-98
    [30]Plesset M S. The dynamics of cavitation bubbles[J]. Trans. ASME:J. Appl. Mech.,1949,16:277-282.
    [31]Gilmore F R. The growth and collapse of a spherical bubble in a viscous compressible liquid[R]. Tech. Rep. Rep.26-4. Calif. Inst. Technol. Eng. Div.,1952.
    [32]Plesset M S, Zwick S A. A nonsteady heat diffusion problem with spherical symmetry[J]. J.Appl. Phys., 1954,23:95-98.
    [33]Hickling R. Effects of thermal conduction in sonoluminescence[J].J.Acoust. Soc. Am.,1963,35: 967-974.
    [34]Plesset M S, Prosperetti A. Bubble dynamics and cavitation[J].Annu. Rev. Fluid Mech.,1977,9: 145-185.
    [35]Prosperetti A. Thermal effects and damping mechanics in the forced radial oscillations of gas bubbles in liquids[J]. J. Acoust. Soc. Am.,1977,61(1):17-27.
    [36]Hao Y, Prosperetti A. The effect of viscosity on the spherical stability of oscillating gas bubbles[J]. Phys. Fluids,1999,11(6):1309-1317.
    [37]Nagrath S, Jansen K E, Lahey R T. Computation of incompressible bubble dynamcis with a stabilized finite element level set method[J]. Comput. Methods Appl. Mech. Eng.,2005,194:4565-4587.
    [38]Tan K L, Khoo B C, White J K. Bubble simulation using level set boundary element method[J]. SIAM J. Sci. Comput.,2008,30(2):549-571.
    [39]Takada N, Misawa M, Tomiyama A, Hosokawa S. Simulation of bubble motion under gravity by lattice Boltzmann method[J]. J. Nucl. Sci. Technol.,2001,38:330-341.
    [40]Liu M B, Liu G R. Lam K Y, Zong Z. Mesh free particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations[J]. Shock Waves,2003,12(6a):509-520.
    [41]Kornfeld M, Suvorov L. On the destructive action of cavitation[J]. J. Appl. Phys.,1944,15:495-506.
    [42]Naude C F, Ellis A T. On the mechanism of cavitation damage bynonhemisperical cavities in contact with a solid boundary[J]. Trans. ASME D:J. Basic Eng.,1961,83:648-656.
    [43]Best J P. The rebound of toroidal bubbles[M]//J. R. Blake, J. M. Boulton-Stone and N. H. Thomas. Bubble dynamics and interface phenomena. London:Springer-Verlag,1994,405-412.
    [44]Blake J R. The Kelvin impulse:application to cavitation bubble dynamics[J]. J. Austral. Math. Soc. Ser. B,1988,30:127-146.
    [45]Blake J R, Hooton M C, Robinson P B, Tong R P. Collapsing cavities, toroidal bubbles and jet impact[J]. Philos. Trans. R. Soc. London Ser. A,1997,355:537-550.
    [46]Blake J R, Taib B B, Doherty G. Transient cavities near boundaries part 1. rigid boundary[J]. J. Fluid Mech.,1986,170:479-497.
    [47]Blake J R, Taib B B, Doherty G. Transient cavities near boundaries part 2. free surface[J]. J. Fluid Mech.,1987,181:197-212.
    [48]Blake J R, Gibson D C. Cavitation bubbles near boundaries[J]. Annu. Rev. Fluid Mech.,1987,19: 99-123.
    [49]Brujan E A, Keen G S, Vogel A, Blake J R. The final stage of the collapse of a cavitation bubble close to a rigid boundary[J]. Phys. Fluids,2002,14(1):85-92.
    [50]Lindau O, Lauterborn W. Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall[J]. J. Fluid Mech.,2003,479:327-348.
    [51]Plesset M S, Chapman R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary [J].J. Fluid Mech.,1971,47:283-290.
    [52]Gibson D C, Blake J R. Growth and collapse of a vapour cavity near a free surface[J]. J. Fluid Mech., 1981,111:123-140.
    [53]Chahine G L, Bovis A. Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface[M]//Lauterborn W. Cavitation and inhomogeneities in underwater acoustics, Berlin: Springer-Verlag,1980,4:23-29.
    [54]Kling C L, Hammitt F G. A photographic study of spark-induced cavitation bubble collapse[J].Trans. ASME D:J. Basic Eng.,1972,94:825-833.
    [55]Tomita Y, Shima A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse[J]. J. Fluid Mech.,1986,169:535-564.
    [56]Shima A, Takayama K, Tomita Y. Mechanism of the bubble collapse near a solid wall and the induced impact pressure generation[J]. Rep. Inst. High Speed Mech.,1984,48:77-97.
    [57]Shima A, Tomita Y, Gibson D C, Blake J R. The growth and collapse of cavitation bubbles near composite surfaces[J]. J. Fluid Mech.,1989,203:199-214.
    [58]Tomita Y, Shima A, Takahashi H. The behavior of a laser-produced bubble near a rigid wall with various configurations[C]//Proc. Cavitation 91 Sympos., The Joint ASME-JSME Fluids Eng. Conf., Portland, USA, June 23-27,1991, ed. by. Furuya O, Kato H,1991:19-25.
    [59]Tipton R E, Steinberg D J, Tomita Y. Bubble explosion and collapse near a rigid wall[J]. JSME Intl. J. Series Ⅱ,1992,35:67-75.
    [60]Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J].J. Fluid Mech.,1989,206:299-338.
    [61]Philipp A, Lauterborn W. Cavitation erosion by single laser-produced bubbles. J. Fluid Mech.1998,361: 75-116.
    [62]Tomita Y, Shima A, Tsubota M, Kano I. An experimental investigation on bubble motion in liquid nitrogen[C]. The 2nd Intl Symp. on Cavitation, Tokyo, Japan,1994:311-316.
    [63]Tomita Y, Shima A. Interactive problems in bubble dynamics[J]. Current Topics Acoust. Res.,1994,1: 231-246.
    [64]Chahine G L, Frederick G S, Lambrecht C J, Harris G S, Mair H U. Spark-generated bubbles as laboratory scale models of underwater explosions and their use for validation of simulation tools[C]. Proc.66th Shock and Vibration Symposium, Biloxi, MS,1995:265-277.
    [65]Brett J M, Yiannakopoalos G, Schaaf P J. Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion[J]. Intl. J. Impact Engng,2000,24:875-890.
    [66]Snay G, Goertner J F, Price R S. Small scale experiments to determine migration of explosion gas globes towards submarines[R]. U S. Naval Ordnance Laboratory, White Oak, MD, NAVORD Report 2280,1952.
    [67]Boyce P, Debono S. Report of underwater explosion tests[R]. Centre technique des systeme navals, France,2003.
    [68]Hung C F, Lin B J, Hwang-Fuu J J, Hsu P Y. Dynamic response of cylindrical shell structures subjected to underwater explosion[J]. Ocean Engineering,2009,36:564-577.
    [69]Foote G B. The water drop rebound problem:dynamics of collision[J]. J. Atmos. Sci.,1975,32: 390-402.
    [70]Fukai J, Zhao Z, Poulikakos D, Megaridis C M, Miyatake O. Modeling of the deformation of a liquid droplet impinging upon a flat surface[J]. Phys. Fluids A.1993,5(11):2589-2599.
    [71]Nobari M R H. Numerical simulations of three-dimensional drop collisions[J]. Phys. Fluids,1996,8(1): 29-42.
    [72]Ryskin G, Leal L G. Orthogonal mapping[J]. J. Comput. Phys.,1983,50:71-100.
    [73]Ryskin G, Leal L G. Numerical solution of free-boundary problems in fluid mechanics Partl. The finite-difference technique[J]. J. Fluid Mech.,1984a,148:1-17.
    [74]Ryskin G, Leal L G. Numerical solution of free-boundary problems in fluid mechanics Part2. Buoyancy-driven motion of a gas bubble through a quiescent liquid[J]. J. Fluid Mech.,1984b,148: 19-36.
    [75]Ryskin G, Leal L G. Numerical solution of free-boundary problems in fluid mechanics Part3.Bubble deformation in an axisymmetric straining flow[J]. J. Fluid Mech.,1984c,148:37-44.
    [76]Glimm J, McBryan O, Menikoff R, Sharp D. Front tracking applied to Rayleigly-Taylor instability[J]. SIAM J. Sci. and Stat. Comput.,1986,7(1):230-251.
    [77]Glimm J, Grove J W, Lindquist B, Mcbryan O A, Tryggvason G. The bifurcation of tracked scalar waves[J]. SIAM J. Sci. and Stat. Comput.,1988,9(1):61-79.
    [78]Glimm J, Grove J W, Li X L, Tan D C. Robust computational algorithms for dynamic interface tracking in three dimensions[J] SIAM J. Sci. Comput.,2000,21(6):2240-2256.
    [79]Unverdi S O, Tryggvason G. A front-tracking method for viscous, incompressible, multi-fluid flows[J]. J. Comput. Phys.,1992,100:25-37.
    [80]Hua J, Lou J. Numerical simulation of bubble rising in viscous liquid[J]. J. Comput. Phys.,2007,222: 769-795.
    [81]Tryggvason G, Bunner B, Esmaeeli A. Front-tracking method for the computations of multiphase flow[J]. J. Comput. Phys.,2001,169:708-759.
    [82]Hirt C W, Nichols B D. Volume of fluid (vof) method for the dynamics of free boundaries [J]. J. Comput. Phys.,1981,39:201-225.
    [83]Ashgriz N, Poo J Y. FLAIR. Flux line-segment model for advection and interface reconstruction[J]. J. Comput. Phys.,1991,93(2):449-468.
    [84]Youngs D L. Time-dependent multi-material flow with large fluid distortion[A]//Morton K W, Baineks M J. Numerical Methods for Fluid Dynamics.Academic[C]. New York:Academic,1982.
    [85]Lorstad D, Fuchs L. High-order surface tension VOF-model for 3D bubble flows with high density ratio[J]. J. Comput. Phys.,2004,200(1):153-176.
    [86]Puckett E G, Almgren A S, Bell J B, Marcus D L, Rider W J. A high-order projection method for tracking fluid interfaces in variable density incompressible flows[J]. J. Comput. Phys.,1997,130: 269-282.
    [87]Osher S, Sethian J A. Fronts propagating with curvature dependent speed:algorithms based on Hamilton-Jacobi formulations[J]. J. Comput. Phys.,1988,79(1):12-49.
    [88]Sussman M, Smereka P. Axisymmetric free boundary problems[J]. J. Fluid Mech.,1997,341:269-294.
    [89]Huang J T, Zhang H S. A level set method for simulation of rising bubble[J]. Journal of Hydrodynamics, Ser. B,2004,16(4):379-385.
    [90]Tan K L, Khoo B C, White J K. A level set-boundary element method for the simulation of underwater bubble dynamics[J]. SIAM J. Sci. and Stat. Comput.,2008,30(2):549-571.
    [91]Sussman M, Almgren A S, Bell J B, Colella P, Howell L H, Welcome M L. An adaptive level set approach for incompressible two-phase flows[J]. J. Comput. Phys.,1999,148:81-124.
    [92]Sussman M. A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[J]. J. Comput. Phys.,2003,187:110-136.
    [93]Pijl S P, Segal A, Vuik C. A mass-conserving level-set method for modelling of multi-phase flows[J]. Int. J. Numer. Meth. Fluids.2005,47:339-361.
    [94]Pijl S P, Segal A, Vuik C, Wesseling P. Computing three-dimensional two-phase flows with a mass-conserving level set method[J]. Comput. Visual Sci.,2008,11:221-235.
    [95]Rothman D H, Keller J M. Immiscible cellular-automaton fluids[J]. J. Stat. Phys.,1988,52:1119-1127.
    [96]Shan X, Chen H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Phys. Rev. E,1993,47:1815-1819.
    [97]Michael R. Swift, W. R. Osborn and J. M Yeomans. Lattice Boltzmann simulation of non-ideal fluids s[J]. Phys. Rev. Lett.,1995,75:830-833.
    [98]Inamuro T, Ogata T, Tajima S, Konishi N. A lattice Boltzmann method for incompressible two-phase flows with large density differences[J]. J. Comput. Phys.,2004,198(2):628-644.
    [99]Zheng H W, Shu C, Che Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. J. Comput. Phys.,2006,218:353-371.
    [100]董自强.多相和多组分流动中热质传递的Lattice Boltzmonn方法的数值研究[D].大连:大连理工大学,2009.
    [101]Phillip A, Lauterborn W. Cavitation erosion by single laser-produced bubbles[J]. J. Fluid Mech.,1998, 361:75-116.
    [102]Brujan E A, Nahen K, Schmidt P, Vogel A. Dynamics of laser-induced cavitation bubbles near an elastic boundary [J]. J. Fluid Mech.,2001,433:251-281.
    [103]Oguz H N, Prosperetti A. Bubble entrainment by the impact of drops on liquid surface[J]. J. Fluid Mech.,1990,219:143-179.
    [104]Lundgren T S, Mansour N N. Vortex ring bubbles[J]. J. Fluid Mech.,1991,224:177-196.
    [105]Lenoir M. Calcul numerique de l'implosion d'une bulle de cavitation au voisinage d'une paroi ou d'une surface libre[J]. J. Mecanique,1976,15:725-751.
    [106]Guerri L, Lucca G, Prosperetti A. A numerical method for the dynamics of non-spherical cavitation bubbles[C]//LeCroisette D H. Proceedings of the 2nd International Colloquium on Drops and Bubbles. Pasadena (CA):Jet Propulsion Laboratory,1982, (Publ.82-7):175-181.
    [107]Taib B B. Boundary integral method applied to cavitation bubble dynamics[D]. Ph.D. thesis. The Universityof Wollongong, Australia,1985.
    [108]Best J P, Kucera A. A numerical investigation of non-spherical rebounding bubbles[J]. J.Fluid Mech., 1992,245:137-154.
    [109]Best J P. The dynamics of underwater explosions. Ph.D. thesis, The University of Wollongong, Australia,1991.
    [110]Best J P. The formation of toroidal bubbles upon the collapse of transient cavities[J].J.Fluid Mech., 1993,251:70-107.
    [111]Pearson A. Hydrodynamics of jet impact in a collapsing bubble[D]. Ph.D. thesis, The University of Birmingham,2003.
    [112]Robinson P B, Blake J R, Kodama T, Shima A, Tomita Y. Interaction of cavitation bubbles with a free surface[J]. J. Appl.Phys.,2001,89(12):8225-8237.
    [113]Wang Q X, Yeo K S, Khoo B C, Lam K Y. Nonlinear interaction between gas bubble and free surface[J]. Comput. Fluids,1996,25(7):607-628.
    [114]Zhang S G, Duncan J H, Chahine G L. The final stage of the collapse of a cavitation bubble near a rigid wall[J]. J.Fluid Mech.,1993,257:147-181.
    [115]Chahine G L, Perdue T O. Simulation of the three-dimensional behaviour of an unsteady large bubble near a structure[C]. Proc. Third International Colloquium on Bubbles and Drops, Monterey, California, 1988.
    [116]Wang Q X. Numerical simulation of violent bubble motion[J]. Phys. Fluids,2004,16(5):1610-1619.
    [117]Wang Q X, Yeo K S, Khoo B C, Lam K Y. Vortex ring modelling of toroidal bubbles[J].Theoret. Comput. Fluid Dynamics,2005,19(5):1-15.
    [118]Zhang Y L, Yeo K S, Khoo B C, Wang C.3D jet impact and toroidal bubbles[J]. J. Comput. Phys., 2001,166:336-360.
    [119]Wilkerson S A. A boundary integral approach to three dimensional underwater explosion bubble dynamics[D]. Ph.D. dissertation, Johns Hopkins University,1990.
    [120]Wilkerson S A. Boundary integral technique for explosion bubble collapse analysis[C]. Proc. ASME Energy-Source Technology Conference and Exhibition, Houston, Texas,1989.
    [121]Harris P J. A numerical model for determining the motion of a bubble close to a fixed rigid structure in a fluid [J]. Int. J. Numer. Methods Eng.,1992,33:1813-1822.
    [122]Chahine G L. Numerical modelling of the dynamic behaviour of bubbles in nonuniform flow fields[C]. ASME Symposium on Numerical Methods for Mutiphase Flows, Toronto,1990.
    [123]Chahine G L. Bubble interactions with vortices[M]//Green S. In Vortex Flows, Dordrecht:Kluwer, 1993.
    [124]Zhang Y L, Yeo K S, Khoo B C, Wang C.3D jet impact and toroidal bubbles[J]. J. Comput. Phys., 2001,166:336-360.
    [125]鲁传敬.三维水下爆炸气泡的数值模拟[J].航空学报,1996,17(1):90-93
    [126]蔡悦斌,鲁传敬,何友声.瞬态空化泡演变过程的数值模拟[J].应用力学学报.1997,14(2):1-6.
    [127]严育兵.边界积分法的若干问题和近壁空化气泡表面张力效应的数值研究[D].上海:复旦大学,2002.
    [128]戚定满.两空泡运动特性研究[J].力学季刊.2000,21(1):16-20.
    [129]Zhang Z Y, Zhang H S. Surface tension effects on the behavior of a cavity growing, collapsing and rebounding near a rigid wall. Phys. Rev. E,2004,70,056310:1-15.
    [130]王含.气泡行为的数值研究[D].上海:复旦大学,2010.
    [131]张淑君,吴锤结,王惠民.单个三维气泡运动的直接数值模拟[J].河海大学学报,2005,33(5):534-536.
    [132]张淑君,吴锤结.气泡之间相互作用的数值模拟[J].水动力学研究与进展,2008,23(6):681-686.
    [133]张淑君,吴锤结.气泡群动力特性模拟分析[J].河海大学学报,2010,38(2):139-143.
    [134]吴锤结,李霞.三维气泡与自由表面相互作用的直接数值模拟[J].固体力学学报,2006,27:103-109.
    [135]李霞,吴锤结,孙芦忠.不同底坡有流流场中单个气泡运动的三维数值模拟[J].解放军理工大学学报(自然科学版),2009,10(3):290-295.
    [136]李玉节,张效慈,吴有生.水下爆炸气泡激起的船体鞭状运动[J].中国造船,2001,42(3):1-7.
    [137]方斌,朱锡,陈细弟,张振华.水平刚性面下方水下爆炸气泡垂向运动的理论研究[J].爆炸与冲击,2006,26(4):345-350.
    [138]张效慈,李玉节,赵本立.深水爆炸水动压力场对潜体结构的动态影响[J].中国造船,1997(11):61-67.
    [139]牟金磊,朱锡,黄晓明,李海涛.水下爆炸气泡射流现象的试验研究[J].哈尔滨工程大学学报,2010,31(2):155-158.
    [140]姚熊亮,陈建平.水下爆炸二次脉动压力下舰船抗爆性能研究[J].中国造船,2001,42(2):48-55.
    [141]姚熊亮,陈建平,任慧龙.水下爆炸气泡脉动压力下舰船动态响应分析[J].哈尔滨工程大学学报,2000,21(1):1-5.
    [142]刘建湖.船舶非接触水下爆炸动力学的理论和应用[D].无锡:中国船舶科学研究中心博士学位论文,中国船舶科学研究中心,2002.
    [143]汪俊,刘建湖,李玉节.加筋圆柱壳水下爆炸动响应数值模拟[J].船舶力学,2006,10(2):126-137.
    [144]李海涛,朱锡,张振华,牟金磊.弹塑性边界下水下爆炸气泡动态特性的数值仿真研究[J].系统仿真学报,2009,21(14),4532-4539.
    [145]李健,荣吉利,雷旺.水下爆炸气泡运动的理论研究[J].应用力学学报,2010,27(1):119-125.
    [146]张志江,徐更光,王廷增.炸药水中爆炸气泡脉动分析计算[J].爆破,2007,24(1):17-20.
    [147]杜志鹏,汪玉,辛春亮.水下刚性壁装药爆炸气泡简化模型和数值仿真[J].计算机仿真,2009,26(4):10-17.
    [148]Zong Z. Hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble[J]. J. Fluid Struct.,2005,20:359-372.
    [149]宗智,邹丽,刘谋斌,王喜军.模拟二维水下爆炸问题的光滑粒子(SPH)方法[J].水动力学研究与进展,2007,22(1):61-67.
    [150]张阿漫,姚熊亮.水深和药量的变化对水下爆炸气泡射流的影响研究[J].工程力学,2008,25(3):222-229.
    [151]Zhang A M, Yao X L, Yu X B. The dynamics of three-dimensional underwater explosion bubble[J]. J. Sound Vib.,2008,311(3-5):1196-1212.
    [152]张阿漫,姚熊亮.近自由而的多个水下爆炸气泡相互作用研究[J].力学学报,2008,40(1):26-34.
    [153]张阿漫,姚熊亮.水下爆炸气泡与复杂弹塑性结构的相互作用研究[J].应用数学和力学,2008,29(1):81-92.
    [154]张阿漫,王诗平,白兆宏,黄超.不同环境下气泡脉动特性实验研究[J].力学学报,2011,43(1):71-83.
    [155]刘云龙,张阿漫,王诗平,田昭丽.基于边界元法的气泡同波浪相互作用研究[J].物理学报,2012,61(22):224702.
    [156]Klaseboer E, Hung K C, Wang C, Wang C W, Khoo B C, Boyce P, Debono S, Charlier H. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure. J. Fluid Mech.,2005,537:387-413.
    [157]Wang B, Zhang Y, Wang, Y P. Experimental study on bubble oscillation formed during underwater explosions.Explo.Shock Waves[J].2008,28(6):572-576.
    [158]Klaseboer E, Khoo B C. A modified Rayleigh Plesset model for a non-spherically symmetric oscillating bubble with applications to boundary integral methods[J]. Eng. Anal. Bound. Elem.2006, 30:59-71.
    [159]钱德拉佩特拉,贝莱冈度,曾攀译.工程中的有限元方法.[M].北京:清华大学出版社,2006.
    [160]Blake J R, Boulton-Stone J M, Tong R P, Boundary integral methods for rising, bursting and collapsing bubbles[M]//Power H. BE Applications in Fluid Mechanics, Southampton, U.K.: Computational Mechanics Publications,4,1995.
    [161]Longuet-Higgins M S, Cokelet E D. The deformation of steep surface waves on water.1. A numerical method of computation[J]. Proc. R Soc. Lond. A,1976,350:1-26.
    [162]Lundgren T S, Mansour N N. Oscillations of drops in zero gravity withweak viscous effects[J]. J Fluid Mech.,1988,194:479-510.
    [163]Fritts M J, Boris J P. The lagrangian solution of transient problems in hydrodynamics using a triangular mesh[J]. J. Comput. Phys.,1979,31(2):173-215.
    [164]Loewenberg M, Hinch E J. Numerical simulation of a concentrated emulsion in shear flow[J]. J. Fluid Mech.,1996,321(8):395-419.
    [165]Zinchenko A Z, Rother A, Davis R H. A novel boundary-integral algorithm for viscous interaction of deformable drops[J]. Phys. Fluids,1997,9(6):1493-1511.
    [166]Cristini V, Blawzdziewicz J, Loewenberg M. Drop breakup threedimensional viscous flows, Phys. Fluids[J],1998,10(8):1781-1783.
    [167]Wang C, Khoo B C, Yeo K S. Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics. Comput. Fluids[J],2003,32:1195-1212.
    [168]Lawson N J, Rudman M, Guerra A and Liow J L. Experimental and numerical comparisons of a large bubble [J]. Exp. Fluids,1999,26:524-534.
    [169]Alehossein, H, Qin, Z Y. Numerical analysis of Rayleigh-Plesset equation for cavitating water jets [J]. Int. J. Numer. Meth. Engng.2007,72:780-807.
    [170]Wang B, Zhang G S, Gao N, WANG Y P. Application of high-speed photography in bubble oscillation at underwater explosion[J]. J. Energ. Mater.,2010,8(1):102-106.
    [171]Holt M. Underwater explosions[J]. Ann. Rev. Fluid Mech.1977,9:187-214.
    [172]Robinson P B, Blake J R. Kodama T, Shima A, Tomita Y. Interaction of cavitation bubbles with a free surface[J]. J. Appl. Phys.,2001,89(12):8225-8237.
    [173]Chahine G L, Bovis A.1980 Oscillation and collapse of a cavitation bubble in the vicinity of a two-liquid interface[M]//Lauterborn W. Cavitation and Inhomogeneities in Undemter Acoustics, Springer,1980:23-29.
    [174]Gibson D C, Blake J R. The growth and collapse of bubbles near deformable surfaces. Appl.Sci. Res., 1982,9:215-224.
    [175]Klaseboer E, Khoo B C, Hung K C. Dynamics of an oscillating bubble near a floating structure[J]. J. Fluid Struct.,2005,21:395-412.
    [176]Chahine L. Experimental and asymptotic study of nonspherical bubble collapse[J]. Appl. Sci. Res. 1982,38:187-197.
    [177]Lauterborn W and Bolle H. Experimental investigations of cavitation bubble collapse in the neighborhood of a solid boundary[J]. J. Fluid Mech.,1975,72:391-399.
    [178]Bevirm K, Fieldingp J. Numerical solution of incompressible bubble collapse with jetting[C]// Ockendon J R, Hodgkins W R. Moving Boundary Problems in Heat Flow and Difusion. Oxford: Clarendon Press,1974:286-294.
    [179]Mitchell T M, Hammitt F G. Axisymmetric cavitation bubble collapse[J]. Trans. ASME I:J. Fluids Engng,1973,95:29-37.
    [180]Gibson D C, Blake J R. Growth and collapse of cavitation bubble near flexible boundaries[C]. Proc. 7th Austral. Hydraulics and Fluid Mech. Conf., Brisbane,1980:283-286.
    [181]Cerone P, Blake J R. A note on the instantaneous streamlines, pathlines and pressure contours for a cavitation bubble near a rigid boundary[J], J. Austral. Math. Soc. B,1984,26:31-44.
    [182]Tong R P, Schiffers W P, Shaw S J, Blake J R, Emmony D C. The role of'splashing'in the collapse of a laser-generated cavity near a rigid boundary [J]. J. Fluid Mech.,1999,380:339-361.
    [183]Goldstein H. Classic Mechanics[M]. New York:Addison-Wesley,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700