用户名: 密码: 验证码:
碱性体系下As(Ⅲ)的催化氧化及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷是有色金属矿产中一种常见的伴生元素,而含砷化合物中,As~(3+)的毒性和移动性均远远超过As~(5+),因此As~(3+)的氧化成为常规除砷过程中必不可少的处理步骤。以往探索三价砷氧化过程,多处理的是酸性体系,而对碱性体系探讨不足。本文研究的是碱性环境中三价砷的空气氧化过程,讨论了不同试剂对该过程的催化效应,确定了高锰酸钾试剂对反应具有显著的促进作用。实验考察了溶液pH值、总砷浓度、空气流量、反应温度等因素对三价砷氧化速率的影响,并采用X射线衍射、扫描电镜、化学物相分析等方法对反应产物进行了表征。
     结果表明:高锰酸钾在和三价砷的反应过程中具备超计量氧化的特点,在体系As/Mn摩尔比升至21:1时仍能高效地将As~(3+)氧化,其对空气氧化过程的促进作用主要表现在:高锰酸钾直接氧化As~(3+);体系有空气通入的情况下,锰离子或锰氧化物可表现出一定的催化作用;高锰酸钾反应产物K_(0.27)MnO_2(H_2O)_(0.54)对As~(3+)存在较强的吸附作用,可促进As~(3+)的催化氧化过程。锰-砷反应过程存在着两种反应速率,初始反应速率极快,而后变缓,这主要受反应机理以及反应物、反应产物的扩散过程控制。体系pH值通过影响产物性质而对氧化效果有显著的影响,体系初始pH=12.5~13范围内反应将生成富钾新生态二氧化锰K_(0.27)MNO_2(H_2O)_(0.54);初始pH=12时反应产物以液态存在;最适宜的体系pH值为13。体系总砷浓度升高可影响固体产物形貌,同时减慢氧化速率,最适宜的总砷浓度为0.0667~0.2002mol/L,其中总砷浓度为0.0667mol/L时,反应2h即可完全氧化体系中的As~(3+)。增加体系空气流量或者升高温度会显著加快As~(3+)的氧化速率,最适宜的气流量为0.2m~3/h,最佳的反应温度为80℃。
     以高锰酸钾作催化剂,空气氧化三价砷,具有试剂用量少、操作简单、氧化效率高等优点,具备良好的工业应用前景。
Arsenic is a ubiquitous associated element in nonferrous metallic minerals, As~(3+) is more toxic than As~(5+), thus the oxidation of As~(3+) is an absolutely necessary process in normal arsenic-removing process. Former researches on arsenic oxidation were mainly dealing with acidic system, and few achievements had been made in alkaline system. In this article, the arsenic air oxidation process was systematically studied in basic system. Analyzed and compared the catalytic effects of different catalysts, potassium permanganate was confirmed the most effective catalyst in this system. Influences of experimental conditions on arsenic oxidation rates were also discussed, such as solution pH value, arsenic concentration, air flow and reaction temperature. Reaction products were characterized by x-ray diffraction analysis, SEM paragraph analysis and chemical phase analysis.
     The results showed that potassium permanganate could oxidize far more arsenic than simply calculated from chemical reaction equations, As~(3+) were effectively oxidized when system As/Mn molar ratio exceeded 21:1. Potassium permanganate could promote As~(3+) oxidation by the following mechanisms: potassium permanganate directly oxidized As~(3+); manganese ions or manganese compounds could catalyze the air oxidation process; potassium permanganate reacted product K_(0.27)MnO_2(H_2O)_(0.54) could adsorb As~(3+), thus promoting the catalytic oxidation process. There existed two different reaction rates in Mn-As reaction process, the fast reaction rate in the beginning would slow down when reaction progressed for about 30min, controlled by variations in reaction mechanism and diffusion process. The system pH values could significantly influence oxidation effects by changing product properties, K_(0.27)MnO_2(H_2O)_(0.54) which belongs to potassium-richδ-MnO_2 would be produced when initial system pH values were 12.5~13, however liquid manganese product would be produced when initial pH changed to 12. The increase in arsenic concentration would influence product morphology and decelerate reaction rates, the optimum As concentrations were 0.0667~0.2002mol/L. It took 2h for the complete oxidation of As~(3+) when C_(As)=0.0667mol/L. The increase in air flow or temperature would accelerate As~(3+) oxidation, and the optimum conditions were 0.2m~3/h and 80℃.
     Taking potassium permanganate as catalyst, the air catalization oxidation process of arsenic has the advantages as little reagent dosage, easy operation and high oxidation efficiency, thus it has wide application prospect in industry.
引文
[1]冯树屏.砷的分析化学.北京:中国环境科学出版社,1986.7-10
    [2]Thomas S.Y.Choong,T.G.Ghuah,Y.Robiah,et al.Arsenic toxicity,heath harzard and removal techniques from water:an overview.Desalination,2007,(217):139-166
    [3]廖祥文.含砷工业废水处理技术现状及展望.矿产综合利用,2006,8(4):27-30
    [4]Korte N.E,Fernando Q.A review of arsenic(Ⅲ) in groundwater.Critical Reviews in Environmental Control,1991,21(1):1-39
    [5]Monique Bissen,Morgane-Marie Vieillard-Baron.TiO_2-catalyzed photo oxidation of arsenite to arsenate in aqueous samples.Chemosphere,2001,44:751-757
    [6]Chien-Jen Shih,Cheng-Fang Lin.Arsenic contaminated site at an abandoned copper smelter plant:waste characterization and solidification/stabilization treatment.Chemosphere,2003,53:691-703
    [7]田文增,陈白珍,仇勇海.有色冶金工业含砷物料的处理及利用现状.湖南有色金属,2004,12,20(6):11-15
    [8]肖唐付,洪冰,杨中华.砷的水地球化学及其环境效应.地质科技情报,2001,20(1):72-73
    [9]李智民.砷对人体的毒性及环境治理.渭南师专学报(自然科学版),1994(2):9-10
    [10]曹庭礼,郭炳南.无机化学丛书氮砷分族.北京:科学出版社,1995.195-203
    [11]白建刚,李汉生.三氧化二砷抗肿瘤研究进展.中国药事,2008,22(12):1105-1107
    [12]沈洁,金璋.亚砷酸同步联合三维适形放射治疗原发性肝癌临床观察.临床医学,2008,28(11):39-40
    [13]N.L.Piret.The removal and safe disposal of arsenic in copper processing.JOM,1999,9,51(9):16-17
    [14]M.Leist,R.J.Casey,D.Caridi.The management of arsenic wastes:problems and prospects.Journal of Hazardous Materials2001,B76:125-138
    [15]Engin D.Gezer,Umit Yildiz,Sildiz,et al.Removal copper,Chromium and arsenic from CCA-treated yellow pine by oleic acid.Building and Environment,2006,41:380-385
    [16]S.A.Stronach,N.L.Walker,D.E.Macphee,et al.Reactions between cement and As(Ⅲ) oxide:The system CaO-SiO_2-As_2S_3-H_2O at 25 ℃.Waste Management,1997,17(1):9-13.
    [17]王华东,郝春曦.环境中的砷.北京:中国环境科学出版社,1992.10-14
    [18]宜之强.中国砷矿资源概述.化工矿产地质,1998,20(3):205-207
    [19]彭子玉.有色金属高砷物料的冶炼脱砷.工程设计与研究,1990,(70):20-30
    [20]T.Fujita,R.Taguchi,M.Abumiya,et al.Novel atmospheric scorodite synthesis by oxidation of ferrous sulfate solution.Hydrometallurgy,2008,90(2-4):92-102
    [21]杨洁.三价砷氧化技术初步研究:[硕士学位论文].南京:南京工业大学,2004
    [22]Jorg Matschullat.Arsenic in the geosphere-a review.The Science of the Total Environment,2000,(249):297-312
    [23]P.L.Smedley,D.G.Kinniburgh.A review of the source,behavior and distribution of arsenic in natural waters.Applied Geochemistry,2002,17:517-568
    [24]李玉虎.高砷次氧化锌脱砷及砷的固化与稳定性评价:[硕士学位论文].长沙:中南大学,2006
    [25]Li Na,Fan Maohong.Oxidation of As(Ⅲ) by potassium permanganate.Journal of environmental sciences,2007,19:783-786
    [26]邱立萍.砷污染危害及其治理技术.新疆环境保护,1999,21(3):15-19
    [27]洪育民.贵溪冶炼厂闪速炉电收尘烟灰除砷及综合利用研究.湿法冶金,2003,22(4):208-211
    [28]刘政,姚媛.高砷钴矿火法富集过程中砷的污染和治理.江西有色金属,2002,16(4):35-37
    [29]张雷.铜冶炼过程中高砷烟尘的湿法处理工艺.四川有色金属,2002,(4):21-23
    [30]柏宏明.砷烟尘脱砷及含砷残渣的无污染处理.云南冶金,1999,28(6):25-27
    [31]覃用宁,黎光旺,何辉.含砷烟尘湿法提取白砷新工艺.有色冶炼,2003,6(3):37-40
    [32]尹爱君,刘肇华,蒋作宏.硫化钠法处理SO_2烟气的吸收液脱砷研究.中南工业大学学报,1999,30(4):386-388
    [33]闻瑞梅.半导体工业废水、废气中砷、、硫、氟、氯及氮氧化物和重金属的综合治理.电子学报,2000,28(11):1-3
    [34]刘小波,章礼,杨名江.含砷烟尘作玻璃澄清剂的应用研究.环境科学研究,1995,8(3):46-48
    [35]周红华.高砷锑烟灰综合回收工艺研究.湖南有色金属,2005,21(1):21-22
    [36]李鹏,唐谟堂,鲁君乐.由含砷烟灰直接制取砷酸铜.中国有色金属学报,1997,7(1):37-39
    [37]田凯.贵冶含砷物料的综合利用,有色金属(冶炼部分),2000(4):17-19
    [38]周晓源,郑子恩,李有刚.朝鲜平北冶炼厂湿法提砷工艺设计.有色金属,2003,55(3):62-64
    [39]庄明龙,柴立元,闵小波.含砷废水处理研究进展.工业水处理,2004,24(7):11-16
    [40]方兆珩,石伟,韩宝玲.高砷溶液中和脱砷过程.化工冶金,2000,21(4):359-362
    [41]戈保梁,杨波,周国仲.云锡高砷高硫尾矿中有价元素的综合回收.金属矿山,2003(4):51-53
    [42]魏昶,姜琪,罗天骄.重有色金属冶炼中砷的脱除与回收.有色金属,2003,55(supplement):46-49,
    [43]李云,袁朝新,王云.难处理砷金矿原矿焙烧试验研究.有色金属(冶炼部分),2005,(2):21-23
    [44]王蓉颜.砷渣返回压煮处理的工艺研究.硬质合金,2000,17(3):139-142
    [45]江国红,张岳.高砷高锑难浸金矿石的碱性水化学预氧化-氰化浸金工艺研究.湿法冶金,2004,23(4):199-201
    [46]仇勇海,卢炳强,陈白珍.无污染砷碱渣处理技术工业试验.中南大学学报(自然科学版),2005,36(2):234-237
    [47]张子岩,刘建华,万林生.用氢氧化钠浸出含钻高砷铁渣中砷的试验研究.湿法冶金,2005,24(2):105-107
    [48]吴继烈.关于集中治理砷害的思考.江西铜业工程,1998,(3):46-50
    [49]李裕后,陈世民.韶冶厂砷的危害及治理方案探讨.有色矿冶,2000,16(3):47-48
    [50]张才明.次氧化锌氧化水解除砷方法的研究及应用.有色金属(冶炼部分),1997,(2):9-11
    [51]赵晓军,张旭.高砷氯氧锑碱浸脱砷实验研究.云南冶金,2005,34(6):37-39
    [52]金哲男.处理炼锑砷碱渣的新工艺.有色金属(冶炼部分),1999,(5):11-14
    [53]付一鸣,王德全,姜澜.固体含砷废料的稳定性及处理方法.有色矿冶,2002,18(4):42-45
    [54]A.J.Monhemius,P.M.Swash.Removing and stabilizing As from copper refining circuits by hydrothermal processing.JOM,1999,51(9):30-33
    [55]R.G.Robins.The solubility of metal arsenates.Metallurgical Transactions,1981, 14B:103-109
    [56]R.C.M.Mambote,M.A.Reuter,A.vanSandwijk,et al.Immobilization of arsenic in crystalline form from aqueous solution by hydrothermal processing above 483.15K.Minerals Engineering,2001,14(4):391-403
    [57]王小龙,张昕红.铜阳极泥处理工艺的探讨.矿冶,2005,14(4):46-48
    [58]夏德长.从电解精炼铜阳极泥中选择性浸出砷和锑.湿法冶金.1997,9(3):61-64
    [59]胡建辉.铜阳极泥湿法处理过程中砷害综合治理研究.稀有金属,2000,24(5):364-368
    [60]冯克亮.水质砷污染及除砷新技术.海洋环境科学,1994,13(1):78-79
    [61]王薇,徐炎华.水体中砷污染和治理概况.微量元素与健康研究,2005,22(5):59-60
    [62]刘建国,卢学实,曾虹燕.水体系中砷污染及除砷方法探讨.湖南环境生物职业技术学院学报,2002,8(2):119-122
    [63]杨胜科,王文科,张威.水体系中高砷去除方法探讨.西北地质,1999,32(4):47-49
    [64]董准勤.含砷酸性废水的处理.硫酸工业,2006,(5):49-50
    [65]李华伦,朱昌洛.含砷碱废水的无害化治理.矿产综合利用,2002,8(4):12-14
    [66]杨力.砷污染及含砷废水治理.有色金属加工,1999,(4):27-29
    [67]Guha S,Chaudhuri M.Removal of arsenic(Ⅲ) from groundwater by low-cost materials.Asian Environment,1990,12(1):42-50
    [68]肖亚兵,钱沙华,黄进泉.纳米二氧化钛对砷(Ⅲ)砷(Ⅴ)吸附性能的研究.分析科学学报,2003,19(2):172-174
    [69]梁慧锋,刘占牛.除砷技术研究现状.邢台学院学报,2005,20(2):96-98
    [70]Suzuki TM,Bomani JO,Matsunaga H.Removal of As(Ⅲ) and As(Ⅴ) by a porous spherical resin loaded with monoclinic hydrous zirconium oxide.Chemistry Letters 1997,(1):119
    [71]Marcel Mulder.膜技术基本原理[M].北京:清华大学出版社,1999.374-376
    [72]陶有胜.电化学法添加铁和化学氧化法相结合治理含砷废水.国外环境科学技术,1997,(1):39-40
    [73]Suhendrayatna,Akira Ohki,Takayoshi Kuroiwa.Arsenic compounds in the freshwater green microalga Chlorella vulgarism after exposure to arsenate.Applied Organ metallic Chemistry,1999,13:127-133
    [74]Weeger William,Didier Lievremont,Magalie Perret.Oxidation of arsenic to arsenate by a bacterium isolated from an aquatic environment.BioMetals.1999,12(2):141-149.
    [75]杨洁,顾海红.含砷废水处理技术研究进展.工业水处理,2003,23(6):14-17
    [76]Cullen W R,Reimer K J.Arsenic speciation in the environment.Chemical Reviews,1989,89(4):713-764
    [77]Veronique Lenoble.As(Ⅴ) retention and As(Ⅲ) simultaneous oxidation and removal on a MnO_2-loaded polystyrene resin.Science of the Total Environment,2004(326):197-207
    [78]Ferguson J F,Gavis J.Review of the Arsenic Cycle in Natural Waters.Water Resources,1972,6,1259-1274
    [79]Michael J.Scott.Reactions at oxide surfaces.1.Oxidation of As(Ⅲ) by synthetic birnessite.Environmental Science Technology,1995,29(8):1898-1905
    [80]Meinrat O.Andreae.Arsenic speciation in seawater and interstitial waters:The influence of biological-chemical interactions on the chemistry of a trace element.Oceanogr,1979,24(3):440-452
    [81]Patrick Seyler.Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake.Environ.Sci.Technol,1989,23:1258-1263
    [82]E Deschamps,V.S.T.Ciminelli,P.G.Weidler,et al.Arsenic sorption onto soils enriched in Mn and Fe minerals.Clay Clay Miner,2003,51(2):197-204
    [83]Wolfgang Driehaus.Oxidation of arsenate(Ⅲ) with manganese oxides in water treatment.Water Research,29(1):297-305
    [84]Veronika Dutre,Carlo Vandecasteele,Stefan Opdenakker.Oxidation of arsenic beating fly ash as pretreatment before solidification.Journal of Harzardous Materials,1999,B68:205-215
    [85]张昭,彭少方.废水中除砷的热力学分析及应用.成都科技大学学报,1995(3):36-41
    [86]肖纯,杨声海.硫化锌精矿空气氧化硫酸浸出的动力学研究.有色金属(冶炼部分),2008(1):7-10
    [87]杨天足,唐建军.焦锑酸钠生产工艺及研究进展.无机盐工业,1999,31(1):20-23
    [88]刘琦.高砷酸性废水除砷新工艺.洛阳工业高等专科学校学报,2005,15(1):10-11
    [89]郭瑞霞,李宝华.活性炭在水处理应用中的研究进展.炭素技术,2006,25(1):20-24
    [90]张发饶,柯家骏,赖雅银.水溶液中As(Ⅲ)的空气氧化.有色金属(冶炼部分),1996(4):22-26
    [91]黄华林.辉锑矿碱性湿法制备焦锑酸钠的研究.广东化工,1999(2):109-110
    [92]吴崖松,费正新《电子工业含砷废物处理研究》微电子技术,1997,8vol.25(4):57-59
    [93]Veronique Lenoble,Veronique Deluchat,Bernard Serpaud,et al.Arsenite oxidation and arsenate determination by the molybdene blue method.Talanta,2003,61:267-276
    [94]王颖,李娜.二氧化氯、次氯酸钠及其联合消毒模拟水样效果的比较.卫生研究,2008,37(3):285-289
    [95]周相武,汪晓军.次氯酸钠溶液的氧化性研究.氯碱工业,2006,8(8):28-30
    [96]M.Borho.Optimized removal of arsenate by adaptation of oxidation and precipitation processes to the filtration step.Water Science Technology,34(9):25-31
    [97]张荣良,丘克强.铜冶炼闪速炉烟尘氧化浸出与中和脱砷.中南大学学报,2006,37(1):73-78
    [98]Stephanie L.Brock.A review of porous manganese oxide materials.Chemical Material,1998,10:2619-2628
    [99]Fendorf S E,Zasoski R J.Chromium(Ⅲ) -oxidation by δ-MnO_2.Environmental Science Technology,1992,26:79-85
    [100]Eary L E,Ray D.Kinetics of chromium(Ⅲ) oxidation to chromium(Ⅵ) by reaction with manganese dioxide.Environmental Science Technology,1987,21:1187-1193
    [101]Anderson Dia.Microwave-hydrothermal synthesis of nanostructured Na-bimessites and phase transformation by arsenic(Ⅲ) oxidation.Materials Research Bulletin,2008,43(6):1528-1538
    [102]Bruce A Manning.Arsenic(Ⅲ) oxidation and arsenic(Ⅴ) adsorption reactions on synthetic bimessite.Environmental Science Technology,2002(36):976-981
    [103]赵安珍,徐仁扣.二氧化锰对As(Ⅲ)的氧化及其对针铁矿去除水体中As(Ⅲ)的影响.环境污染与防治,2006,28(4):252-253
    [104]梁慧锋,刘占牛.新生态二氧化锰悬浊液的制备及对三价砷氧化吸附机理的探讨.河北大学学报(自然科学版),2005,25(5):515-519
    [105]梁慧锋,马子川.新生态MnO_2对水中As(Ⅴ)的吸附作用研究.安全与环境学报,2005,5(1):50-53
    [106]梁慧锋,马子川.新生态二氧化锰对水中三价砷去除作用的研究.环境污染与防治,2005,27(3):168-171
    [107]Ement M T,Khoe G H.Photochemical oxidation of arsenic by oxygen and iron in acidic solution.Water Research,2001,35(13):649-656
    [108]Zaw Myint.Arsenic removal from water using advanced oxidation processes.Toxicology Letters,2002,133(1):113-118
    [109]V Dutre,C Vandecasteele.Solidification/stabilization of hazardous arsenic containing waste from a copper refining process.Journal of Hazardous Materials,1995(40):55-68
    [110]刘青.溴酸钾滴定法测定矿物中的砷.云南冶金,2006,35(3):64-69
    [111]王维利,车广华.氧化还原滴定法测定污染水中砷和锑.中国卫生检验杂志2001,11(5):580
    [112]向德辉.固体催化剂.北京:化学工业出版社,1983:65-68
    [113]李荣生,甑开吉.催化作用基础(第二版).北京:科学出版社,1990.55-60
    [114]陈维平.清洁生产方法制备砷新工艺及其基础理论研究:[博士学位论文].长沙:湖南大学,2007
    [115]梁英教,车荫昌.无机物热力学数据手册.沈阳:东北大学出版社出版,1993
    [116]伊赫桑·巴伦.纯物质热化学数据手册.北京:科学出版社,2003:531-545
    [117]王晓霞,叶红齐.超细铜粉的制备与应用.材料导报,2004,18(3):140-142
    [118]Hidefumi Hirai.Polymer-protected copper collides as catalysts for selective hydration of acrylonitrile.Chem Lett.,1983,139(7):1047
    [119]王彦妮.纳米粒子在乙炔聚合反应中的催化作用.催化学报,1995,16(4):304
    [120]新宇.纳米铜粉的应用前景.应用科技,1999,6:16-17
    [121]J.R.安德森.金属催化剂的结构.北京:化学工业出版社,1985.112-115
    [122]Anne-Claire Gaillt.Structure of synthetic K-rich birnessite obtained by high-temperature decomposition of KMnO4.Ⅰ.Two-layer polytype from 800℃experiment.Chem.Mater,2003,15(24):4666-4678
    [123]Johnnie N Moore.Reaction scheme for the oxidation of As(Ⅲ) to As(Ⅴ) by birnessite.Clays and Clay Minerals,1990,38(5):549-555
    [124]徐友辉.锰元素化学性质变化规律的热力学探讨.内江师范学院学报,2007,22(2):60-63
    [125]谢高阳,愈练民.无机化学丛书锰分族.北京:科学出版社,1998.10-20
    [126]中国有色金属工业总公司矿产地质研究院.锰矿石分析.北京:地质出版社,1991.17-21
    [127]Christophe Tournassat.Arsenic(Ⅲ) oxidation by birnessite and precipitation of manganese(Ⅱ) arsenate.Environmental Science Technology,2002,36(3):493-500
    [128]Deok Hyun Moon.Arsenic immobilization by calcium-arsenic precipitates in lime treated soils.Science of the Total Environment,2004(330):171-185
    [129]梁慧锋,马子川.新生态二氧化锰的性质及pH值影响除砷效果的研究.无机化学学报,2006,22(4):743-747
    [130]赵卫红.砷酸根的液固界面变换吸附研究.青岛海洋大学学报,1997,27(2):233-240
    [131]马子川.新生态MnO_2在碱法制浆废水处理中的应用.河北省科学院学报,2002,19(2):117-122
    [132]张传福,谭鹏夫.第VA族元素物理化学数据手册.长沙:中南工业大学出版社,1995
    [133]D W Oscarson.Kinetics of oxidation of Arsenite by Various Manganese Dioxides.Soil.Sci.Soc.Am.J,1983,47:644-648
    [134]Dennis E Yallman.Redox stability of inorganic arsenic(Ⅲ) and arsenic(Ⅴ) in aqueous solution.Anal.Chem,1980,52:199-201
    [135]梁连科,车荫昌.冶金热力学及动力学.沈阳:东北工学院出版社,1990.203-205
    [136]莫鼎成.冶金动力学.长沙:中南工业大学出版社,1987.139-142
    [137]G.S.乌帕达耶.冶金热力学与动力学的应用计算.北京:冶金工业出版社,1981.156-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700