用户名: 密码: 验证码:
地震引起的地下水位变化及其机理初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震引起的地下水位变化也可称之为震后水位变化或地下水的震后效应,它是指大地震发生后的外围井点对其响应或被激发而形成的异常(汪成民,2001)。震后水位变化的研究对于减轻次生灾害、研究地壳活动规律、跟踪后续地震、追溯地震前兆等都具有重要的理论和实际意义。通过分析大量的水位记录资料,可从形态上将震后水位变化分为两类:快速的振荡变化和持续的单调变化。前一种类型即水震波,已有很多学者做过研究,本论文主要研究后一种类型的震后水位变化。
     在工作中,首先研究一井多震的情况,即不同地震在同一口井引起的水位变化。选择云南思茅井和新疆乌鲁木齐新04井作为重点研究对象。它们分别代表了震后水位上升和震后水位下降两种类型,并且在几十年的井水位观测过程中,经历了多次在其周边发生的强震事件,可为深入研究提供资料保障。通过解剖它们各自震后水位变化特征,研究水位变幅与震级、距离的定量关系,分析影响井水位变化的因素和构造应力环境。然后,以2001年昆仑山Ms 8.1级地震在川滇地区引起的水位变化为例,综合研究一震多井的水位变化特征,应用有限元数值模拟方法对震后水位变化的原因进行初步的探讨性研究。
     思茅观测井位于云南省思茅城东南11km处的倚象坝子中部,自从1990年以来,共有8次6级以上地震在云南思茅井引起了明显的水位变化(8cm以上),它们的共同特点是,无论地震在那一方位发生,无论地震力学机制如何,震后水位总是上升,并且很快达到峰值,然后缓慢下降,视上升幅值大小需要数天至数周时间才能恢复到变化前水位值。统计回归分析结果显示,震后思茅井水位上升的幅度(△h_i)与震级(M)、井震距(D)之间满足如下关系式
     Lg△h_i=0.319M-0.375 LgD-0.087
     当△h_i≧8cm时,可以进一步得到震级M和井震距的关系式:
     M≥3.104+1.176 LgD
     有一些地震满足上述关系,但并未在思茅井引起8cm以上的水位变化,其原因可能是复杂的。1993年1月27日距思茅井38公里处发生了一个Ms6.2级,此后1994~1995年的4个地震都没有引起相应的水位上升变化,意味着井水位的响应可能受当地应力状态的影响。进一步分析还发现,在云南大姚、姚安、武定一带发生的地震在思茅井引起的水位上升幅度明显偏小,可能是由于红河断裂对地震波起到了较大的衰减或者屏蔽作用所致。
    
    新04井在乌鲁木齐市水磨沟区温泉疗养院内,北东向延伸的压扭性大断裂
    —水磨沟一白杨南沟断裂正从井区通过,井点位于断层上盘。新04井震后水
    位变化以先下降后上升恢复为特征。从1990年以来有7个6.5级以上的地震在
    新04井引起了水位明显下降(3IInn以上),其下降的幅度(乙h办与震级(动、井震
    距(D)之间具有如下关系:
     Lg dh,二0.442护2.053 Lg介3.591
    当兰边兰)3mm时,J哄妻一7.045+4.645Lg刀
     进一步分析结果表明,在新04井附近,从1900至2003年6月的13年半的
    时间内,前后期地震活动水平存在较大差异,对应新04井的震后水位效应也有
    较大的不同。在地震活动水平较低的前期有4个地震应该引起3nun以上的水位下
    降而未出现,在地震活动水平较高的后期所有6个地震都引起了3Inln以上的水位
    下降。这进一步说明了地震引起的井水位变化可能与井孔所在区域的地应力水平
    有关。
     2001年昆仑山8.1级地震是中国50年来发生的最大地震,震后引起的地下
    井水位变化分布范围非常广泛。考虑到川滇地区具有密度较高的地下水位观测
    以及特殊的构造环境和较丰富的地球物理、地质构造等方面的资料,所以选择该
    区域为研究靶区。通过对观测资料的系统分析,(1)再次证明了前人的一个统计
    结果:远震引起的井水位变化以上升为主。在川滇地区共有21口井的水位记录
    曲线图上记录到了2001年昆仑山8.1级地震引起的水位变化,其中17口井记录
    到的都是上升的变化形态,占81%;(2)发现了一个新的现象:震后水位下降井
    只出现在一些特殊的构造部位。这两种现象的出现不是偶然的,有其深刻的地球
    动力学背景,有必要深入研究。
     为了研究震后井水位普遍上升的机理,本论文在地质构造环境和水文地质条
    件分析的基础上,收集了前人地质调查、深部地球物理探测及三维层析成像的成
    果,以11级活动地块划分为框架,建立三维地质模型和流体一固体藕合的数学模
    型,应用有限元数值模拟方法,模拟2001年昆仑山8.1级地震在川滇地区引起
    的应力、应变和地下水位变化的分布规律,对震后井水位变化的机理进行初步的
    分析研究。在计算中分别考虑了介质的弱化或强化以及它们与渗透系数增减4
    种组合引起的水位变化。计算结果显示,岩石介质强化或弱化引起的体应变对渗
    流场水头变化的影响很小,而渗透系数的微小变化则可以引起渗流场水头较大的
    变化。渗透系数减小时的计算结果与实际观测资料比较吻合。
     昆仑山地震后,川滇地区有4口井记录到了震后水位的下降变化,分析发现
    这4口井与其它震后水位下降井(例如新疆04井)具有的共同特点是:位于11
    活动地块的边界带内具有逆冲性质的断层上盘,并且多数井孔穿过了断层破碎
    带。其原因可能是在这种特殊构造部位具备产生表层张性构造的条件,并且能为
    
    地下水提供足够
Groundwater-level changes caused by earthquakes can also be called water-level variations after earthquake or post-seismic effect. They can appear at many wells in a large range as excited anomalies in response to major earthquakes. The study of post-seismic water-level variations has great theoretical and practical implications for mitigation of secondary hazards, research of crustal motion, chasing after-shocks, and tracing back to earthquake precursors. Analysis of record data show that water-level variations after earthquakes can be classified into two types in form: fast oscillational change and continuous monotonous changes. The former is of a water-earthquake wave which has been extensively studied. This thesis focuses on the second type of water-level variations after earthquakes.First, this work studies the case of one well and many earthquakes. It means water-level changes at one well caused by varied events. A well at Simao of Yunnan province and a Xin-04 well at Wulumuqi, Xinjiang are chosen as the study targets,which represent water-level rise and water-level fall after events, respectively. During observations of several decades, a lot of major earthquakes occurred around these two wells, so that there are enough record date available for the research. This word analyzes the features of water-level changes after earthquakes at these two wells, studies the quantitative relationship between the water-level change amplitude, earthquake magnitude, and epicenter distance, and discusses the possible factors affecting water-level changes and tectonic stress settings. Then this thesis makes an integrated study on the case of one earthquake and many wells, by taking the example of water-level variations in Sichuan and Yunnan, associated with the Ms8.1 Kunlun earthquake of 2001. The finite element method is used to explore the causes of water-level variations after the earthquake.The Simao observational well is located at the middle of Yixiangbazi, about 11 km southeast to the Simao town. Since 1990,obvious variations of water-level variations(more than 8cm)at this well have been recorded which are presumably associated with eight times of earthquakes greater than M6. The common characteristics of these variations are that the water-level always went up and reached the peaks quickly after earthquakes, and then fell down slowly. These features exist no matter where earthquakes occurred and of what mechanisms they are. It took several
    
    days or weeks for the water-level to return the value before the earthquakes, dependent on the maximum amplitudes of their rise. Analysis of statistical regression yields the following relationship between the rise amplitude ( h),magnitude(M),and distance between the well and epicenter (D)for the Simao well:When h 8 cm, the relationship between M and D is further obtained:Although some earthquakes meet the above relationship, they did not cause water-level changes greater than 8cm at Siamo. The reason is probably complicated. For instance, an Ms 6.2 event occurred 38km to the Simao well on January 27 of 1993. Following this event four earthquakes in 1994-1995 did not produce rising change of water-level at the Simao well, implying that the response of well water-level might be affected by the local stress state. Further analysis indicates that earthquakes at Dayao,Yaoan, and Wuding of Yunnan caused small rising values of water-level at Simao. It is likely due to that the Honghe fault has a major attenuation or screening role on the seismic wave.The Xin-04 well is located at the yard of the shuimegou hot spring in Wulumuqi city. It is on the hangwall of the Shuimegou-Baiyangnangou fault which is trending NE and of compression with strike-slip. At this well the post-seismic water-level change is characterized by descending first and then rising recover. Since 1990,seven events of M = 6.5 produced marked water-level descending(more than 3mm) at this well. Thy meet the following relationship:When h 3mm, there is M7.045+4.645LgDFurther analysis shows that the seismicity has major differen
引文
白志明,王椿镛.2003.云南地区上部地壳结构和地震构造环境的层析成像研究[J].地震学报.25(2):117~127
    卞斌.1978.邢台地震前的地下水异常。地震战线,(3)
    车用太.1985.地震地下水位观测井的最佳条件讨论[J].地震.(6):41~47
    车用太,王铁城,鱼金子.1989。我国水震波研究的现状与动向[J].地震.(1):70~72
    崔杰门,门福录,张志林.1998.饱水上层中骨架变形等因素对波传播的影响.地震工程与工程振动,18(2):8~18
    陈连旺,陆远忠,张杰,等.1999.华北地区三维构造应力场[J].地震学报,21(2):140~14
    陈培善,彭克中,陈海通.等.1992.由加速度谱测定矩震级值[J].地震学报.14(4):435~445
    陈文化.2001.地震液化流滑震害[J]..自然灾害学报.10(4):88~93
    崔效峰,谢富仁.1999.利用震源机制解对中国西南及邻区进行应力分区的初步研究[J].地震学报.21(5):513~522
    丁仁杰.1990.井孔水位记震能力与地震关系探讨[A].见:国家地震局监测司.水位水化专辑[C].北京:地震出版社,186~193
    付虹,刘丽芳,王世芹,等.2002.地方震及近震地下水同震震后效应研究[J].地震,22(4):55~66
    付虹,万登堡,张立,等.2004.昆仑山口西8.1级地震与我国西部地下水震后效应关系研究[J].地震研究.23(1):14~20
    弗里泽 R A,彻里了A.1987.地下水[M].北京:地震出版社
    傅维洲,贺日政,邱虎.1999.川滇构造带及其邻区的地壳结构与地震分布[J].长春科技大学学报.29(4):369~372
    高小其,许秋龙,兰陵,等.新04号井、新10号井水位和新10号泉流量地震前兆特征的对比分析[J].2002.16(4):346~354
    虢顺民,汪洋,计凤桔.1999.云南思茅—普洱地区中强震群发生的构造机制[J].地震地质.22(2):105~115
    贺双进.1989.利用渭南双王井水震图测定地震参数的经验公式[J].地震.(4):78~80
    阚荣举,张四昌,晏凤桐,等.1977.我国西南地区现代构造应力场与现代构造活动特征的探讨[J].地球物理学报,20(2):96~109
    胡先明.2002.四川深井水位记录昆仑山8.1级地震[J].四川地震.105:39~42
    胡鸿翔,陆涵行,王椿镭,等.1986.滇西地区地壳结构的爆炸地震研究[J].地球物理学报,29:133~144
    
    黄辅琼,迟恭财,徐桂明,等.2000.大陆地下流体对台湾南投7.6级地震的响应研究[J].地震,20(增刊):119~125
    简文彬,陈葆仁,卢华复.等承压含水层波导及其地声响应研究.地震学报,19(3):309~316
    李坪,汪良谋.1977.云南川西地区地震地质基本特征的探讨[A].西南地区地震地质及烈度区划探讨[C].北京:地震出版社
    李国和,王思敬,尚彦军,等.2000.川滇交界地区地壳结构及现代地壳活动模式[J].地质力学学报,6(2):82~91
    李渝生,王士天.2002.中国西南地区晚近期地壳构造应力场的演化历史及成因机制[J].地质灾害与环境保护.13(1):9~12
    刘澜波,郑香媛.1987.地下水微动态译文集[A].北京:科学技术出版社
    刘五洲.1998.地下流体前兆异常形成机理的综合研究[D].博士学位论文.中国地震局地质研究所
    李有才.1995.四川深井水位同震阶变异常与地震预报[J].四川地震,3:32~35
    罗焕炎,雨孙.1988.地下水运动的数值模拟[M].北京:中国建筑工业出版社
    马杏垣主编.1989.中国岩石圈动力学图集[M].北京:地图出版社,49~51
    糜克仁.1991.井孔变径对水位观测精度的影响.地震.11(2):76~77
    门福录,崔杰.1998.建筑物地基地震液化简化分析法.水利学报.(4):54~63
    门福录,崔杰,景立平.1995.含水与不含水地层的分层交错对地面运动和波传播的影响.地球物理学报.38(4):775~787
    戚筱俊.1997.工程地质及水文地质[M].北京:中国水利水电出版社.
    邱泽华,石耀霖.2003地震造成远距离应力阶变的观测实例[J].中国科学(D辑).33(增刊):60~64
    申重阳,王琪,吴云,等.2002.川滇菱形块体主要边界运动模型的GPS数据反演分析[J].地球物理学报.45(3):352~361
    吏謌,杨东全.2001.上覆压力变化时孔隙岩层弹性波递度的确定 及真普通意义.中国科学(D辑),31(11):895~901
    孙叶,谭成轩.1995.中国现今区域构造应力场与地壳运动趋势分析[J].地质力学学报.1(3):1~11
    万登堡.1992.井孔水位记震能力变化与近大地震关系研究[J].地震研究,15(4):381~391
    万永革,吴忠良,周公威,等.2002.地震应力触发研究[J].地震学报,24(5):533~551
    汪成民,车用太,万迪堃,等.1988.地下水微动态研究[M].北京:地震出版社
    汪成民,车用太,万迪堃,等.1990.中国地震地下水动态观测网[A].北京:地震出版社,81~88
    
    汪成民.2001.后效预报[A].见:地震预报引论.地下水微动态与地震预报[C]北京:地震出版社:165
    王道.2000.天山地震活动区地下水同震、震后效应的研究.内陆地震[J].14(3):252~259
    王道,卢静芳,许秋龙.2001.新疆04井水位突降异常的机理分析[J].内陆地震.15(2):104~113
    王道.1992.哈萨克斯坦斋桑7.3级地震前后的地下流体动力学效应[J].内陆地震.6(4):320~326
    王道,卢静芳,陈玲,等.1999.西藏7.5级地震在乌鲁木齐地区地下水中的远场效应[J].内陆地震.13(1):93~95
    王道.2002.昆仑山口西8.1级地震的远程地下水动力学效应[J].内陆地震.16(3):213~223
    王椿庸,Mooney W.D.,王溪莉,等.2002.川滇地区地壳上地幔三维速度结构研究[J].地震学报,24(1):1~16
    王凯英.2002.川滇地区现今应力场与断层相互作用研究[D].博士论文.中国地震局地质研究所.
    王仁,丁中一,殷有泉.1979.固体力学基础[M].北京:地质出版社
    谢富仁,祝景忠.1993.我国西南地区现代构造应力场基本特征[J].地震学报.15(4):399~406
    向宏发,徐锡伟,虢顺民,等2002.丽江—小金河断裂第四纪以来的左旋逆推运动及其构造地质意义—陆内活动地块橫向构造的屏蔽作用.地震地质,24(2):188~198
    熊绍柏,膝吉文,尹周勋,等.1986.攀西构造带南部地壳与上地幔的爆炸地震研究[J].地球物理学报,29:235~244
    熊绍柏,郑晔,尹周勋,等.1993.丽江—攀枝花—者海地带二维地壳结构及其构造意义[J].地球物理学报.36(4):434~443
    熊熊,徐厚泽,滕吉文.2001.青藏高原物质东流的岩石层力学背景探讨[J].地壳形变与地震.21(2):1~6
    徐则民,杨立中.1998.渗流场与应力场相互关系研究中应注意的两个问题[J].18(1):102~107
    徐锡伟,陈文彬,于贵华,等.2002.2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征.地震地质,24(1):1~13
    徐锡伟,程国良,于贵华,等.2003.川演菱形块体顺时针转动的构造学与古地磁学证据.地震地质,25(1):61~70
    徐文骏,王跃.1995.流体饱和多孔介质(双相介质)物性参数的反演.石油地球物理勘探,30(5):602~608
    
    薛禹群.1997.地下水动力学[M].北京:地质出版社
    雅贝尔.1985.地下水水力学[M].北京:地质出版社.
    鱼金子,车用太,王爱英,等.1995.大同—阳高地震前静乐井水位记震能力的异常及其意义[J].山西地震,80:50~53
    殷积涛,郑香媛.1992.用重锤法求承压含水层的水文地质参数[J].8(4):68~75
    张培震,邓起东,张国民,等.2003.中国大陆的强震活劾与活动地块.中国科学(D辑),33(增刊):12~20
    张昭栋,赵淑平,董传富,等.1994.井水位阶变与含水层所受体应力之间的定量关系[J].地球物理学报,37(1):222~229
    张昭栋,郑金涵,张广城.1988.水井含水层系统与水位观测系统对固体潮与地震波的响应[J].地震学报.10(2):171~181
    张昭栋,王昌文,高玉斌.1991.水井(鲁07并)的管径变化和对固体潮的响应.地球物理学报,34(2):203~209
    张昭栋、吴子泉、魏焕,等.两种井孔变径对水位影响试验的解释.高原地震,9(2):33~39
    赵荣国.1994.即将通用的矩震级标度Mw—远震震级测定工作综述[J].国际地震动态.(12):14~17
    庄光国.1999.台湾海峡7.3级地震水震波特征研究[J].地震.19(2):199~203
    Brodsky E E, Roeloffs E A, Woodcock D, et al. 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes [J]. J Geophys Res, 108(B8): 2390, doi: 10. 1029/2002JB002321
    Brodsky E E. 2000. A new observation of dynamically triggered regional seismicity: Earthquakes in the Greece Following the August, 1999 Izmit, Turkey Earthquake [J]. Geophysical Research Letter, 27 (17): 2 741~2 744
    Chia Yeeping, Wang yuan—shian, Chiu Jessie J, et al. 2001. Changes of Groundwater level due to 1999 Chi—Chi Earthquake in the Choshui River Alluvial Fan in Taiwan [J]. B. S. S. A. 91 (5): 1 062~1 068
    Hill D. P., Reasenberg P. A., Michael A., et al. 1993. Seismicity remotely triggered by the magnitude 7.3 landers, California Earthquake [J]. Science. 260: 1 617~1 623
    Hilton H. Cooper JR, Bredehoeft John D, Papadopulos I. S, et al. The reponse of Well-aquifer Systems to Seismic Waves [J]. J Geophys Res, 1965, 70(16): 3 915~3 926.
    King C-Y, Azuma S, Igarashi G, et al. 1999. Earthquake-relatedwater-level changes at 16 closely clustered wells in Tono, central Japan [J]. J Geophys Res, 104(B6): 13 073-13 082
    
    Kitagawa Y. 2000. A study on the mechanism of coseismic groundwater changes: Interpretation by a groundwater model composed of multiple aquifers with different strain responses [J]. J Geophys Res, 105( B8): 19 121-19 134
    Kurz Jochen H, Jahr Thomas, Jentzsch Gerhard. 2003. Geodynamic modelling of the recent stress and strain field in the Vogtland swarm earthquake area using the finite-element-method [J]. Journal of Geodynamics. 35. 247-258
    Maity damodar, Bhattacharyya sriman k. 2003. A parametric study on fluid-structure interaction problems [J]. Journal of sound and vibraion. 263: 917-935
    Matsumoto N. 1992. Regression analysis for anomalous changes of ground water level due to eathquake, Geophys Res Lett [J], 19(12): 1 193-1 196
    Nur A, Booker J R. 1972. Aftershocks caused by pore fuid flow? [J]. Science, 175: 885-887
    Noir J, Jacques E, Bekri S, et al. 1997. Fluid flow triggered migration of events in the 1989 Dobi earthquake sequence of Central Arar [J]. Geophys Res Lett, 24: 2 335-2 338
    Roeloffs E A. 1998. Persistent water level changes in a well near Parkfield California, due to local and distant earthquakes [J]. J Geophys Res, 103(B1): 869-889
    Roeloffs E A, Sneed M, Galloway D L, et al. 2003. Water-level changes induced by local and distant earthquakes at Long Valley caldera, California!] J]. J volcanol Geotherm Res, 127: 269-303
    Quilty E G, Roeloffs E A. 1997. Water level changes in response to the December 20, 1994 M4. 7 earthquake near Parkfield, California [J]. Bull Seismol Soc Am, 87: 310-317
    WakitaH. 1975. Water wells as possible indicators of tectonic strain [J]. Science, 189: 553-555

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700