用户名: 密码: 验证码:
高效接触氧化—强化混凝处理城镇污水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用接触氧化一强化混凝的方法对低浓度城镇污水进行处理,可获得短时高效的处理效果。在最佳工况下各污染物的总去除率可达到COD84%、NH_3-N85%、TN38%、TP大于90%以及浊度95%,出水COD<50mg/L、NH_3-N<5mg/L、TN<20mg/L、TP<0.5mg/L,满足GB18918-2002城镇污水一级排放标准。
     生物接触氧化法能去除溶解性有机污染物。试验结果表明,生物接触氧化工艺的最佳工况为:HRT=2.5h、温度和DO的交互影响值△=2~3。该工况下接触氧化工艺对污染物的去除效果为:COD 65%~70%,NH_3-N30%~40%(温度<10℃)和80%(常温)。对于进水浓度范围在COD100~320mg/L、NH_3-N18~35mg/L以及TP3~8mg/L的城镇生活污水,平均出水浓度为COD74mg/L,NH_3-N20mg/L(温度<10℃)和8mg/L(常温),TP为4.5mg/L。
     强化混凝法可去除悬浮性和胶体性污染物,为了提高生物接触氧化出水处理效果,采用自制新型氧化偶合絮凝剂进行深度处理。结果表明,强化混凝工艺的最佳条件为:药剂总投加量180m/L、沉淀时间25min、絮凝反应时间15min和搅拌强度100r/min。生化出水污染物去除率分别为:COD56.5%、NH_3-N51%、TP91.3%和浊度97.3%。另外,强化混凝处理生化出水满足回用水排放标准时,所需的药剂投加量满足方程V=1.2194x-25.805。
     采用不同分析方法对有机污染物、NH_3-N和TP的去除机理进行分析。研究结果表明,生化处理对烷烃类污染物、芳烃及杂环类化合物均有良好的去除效果;系统内亚硝酸盐累积量的增加是发生同步硝化反硝化的重要标志;各类P去除率的高低取决于不同的除磷机理:溶解性正磷酸盐主要通过化学沉淀作用去除,聚磷酸盐、有机磷等非正磷酸盐主要通过吸附机制去除。
With the application of integrated process of contact oxidation and enhancedcoagulation, low concentrated municipal sewage can be treated with high efficiency.Under the optimal condition, the total removal of pollutants can reach COD 84%,NH_(3-)N 85%, TN 38%, TP >90% and turbidity 95%, respectively. Correspondinglythe effluent with the characteristics of COD<50mg/L, NH_(3-)N<5mg/L, TN<20mg/Land TP<0.5mg/L can meet the first standard of GB 18918-2002.
     Biological contact oxidation is efficient for the removal of dissolved organicmatters. The result shows that the optimal condition for the process can concludeHRT = 2.5h and A value standing for cross influence of temperature and DO ranges 2to 3. The efficiency can reach 65%~70% for COD, 30%-40% for NH3-N (lowtemperature) and 80% (normal temperature). Sewages with the characteristics ofCOD from 100 to 320mg/L, Nt-I3-N from 18 to 35mg/L and TP from 3 to 8mg/Laverage the effluents of COD 74mg/L, NH3-N 20mg/L (low temperature) and 8mg/L(normal temperature) and TP 4.5mg/L.
     Enhanced coagulation is available for suspended pollutants and colloids. Theresearch utilizes the self-made new coupling oxidation flocculant for the advancedtreatment of effluents from previous process. The condition including the amount ofchemicals, precipitation time, flocculation reaction time and mix strength best follows180mg/L, 25min, 15min and 100r/min correspondingly. The removal rate reachesCOD56.5%, NH_3-N51%, TP91.3% and turbidity 97.3%, respectively. Flocculantamount for the treatment to meet the discharge standard is accord to the equation:
     y = 1.2194x - 25.805.
     The mechanism of pollutants removal depends on kinds of analytical ways.From the results of GC-MS, the biological technology can well treat the alkane, areneand heterocyclic compounds; the simultaneous nitrification and denitrification can beindicated by the accumulation of nitrite; the removal of phosphorus depends on theremoval mechanisms, such as dissolved orthophosphate can be treated by chemical precipitation while non-orthophosphate by adsorption.
引文
[1]Wong S W,Tang B S,Basil van Horen.Strategic urban management in China:A case study of Guangzhou Development District[J].Habitat International,2006,30(3):645-667.
    [2]林猛.从志愿组织的视角解读城镇管理的新举措[J].求索,2004,2:94—95.
    [3]夏军,张永勇,王中根.城镇化地区水资源承载能力研究[J].水利学报,2006,12(37):1482-1488.
    [4]李耀辉,孙国武,张强等.中亚与我国西北地区环境蠕变问题的分析[J].中国环境科学,2006,26(5):609—613.
    [5]王晓昌,金鹏康,赵红梅等.城镇生活污水中的污染物分类及处理性评价[J].给水排水,2004,9(30):38—41.
    [6]Leslie Grady C P,Jr Glen T D Aigger,Henry C L in.废水生物处理[M].张锡辉,刘勇弟.北京:化学工业出版社,环境科学与工程出版中心,2003:123-142.
    [7]王晓莲,彭永臻,王淑莹.城镇可持续污水生物处理技术[J].水处理技术,2004,2(30):106-109.
    [8]Chiu Y C,Lee L L,Chang C N.Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J].International Biodeterioration & Biodegradation,2007,59:1-7.
    [9]Jin R C,Zheng P,Hu A H et al.Performance comparision of two anammox reactors:SBR and UBF[J].Chemical Engineering Journal,2007(in press).
    [10]Zhang S J,Peng Y Z,Wang S Y et al.Organic maaer and concentrated nitrogen removal by shortcut nitrification and dentrification from mature municipal landfill leachate[J].Journal of Environmental Sciences,2007,19:647—651.
    [11]李先宁,宋海亮,吕锡武等.反应器分区提高生物接触氧化硝化性能的研究[J].中国环境科学,2006,26(1):62—66.
    [12]李旭东,汪群慧,李祎飞等.FCR多级接触氧化系统处理乳品工业废水的研究[J].环境科学,2007,9(28):2020—2024.
    [13]曹宏斌,李玉平,陈艳丽等.生物膜接触氧化法处理苯胺废水[J].环境科学学报,2004,1(24):33-37.
    [14]李明,曾光明,张盼月等.强化混凝去除水源水中天然有机物的研究进展[J].环境科学与技术,2006,2(29):109—111.
    [15]Tuhkanen T,Ketonen A,Gillberg L,et al.Removal of different size fractions of natural organic matter in drinking water by optimised coagulation[A].Chemical Water and Wastewater Treatment[C].2004,201-208.
    [16]Edzwald J K,Tobiason J E.Enhanced versus Optimized Multiple Objective Coagulation[A].Chemical Water and Wastewater Treatment[C].NewYork,1998,113—124.
    [17]Kadir K,Taner Y,Nuri A.Feasibility of physico-chemical treatment and Advanced Oxidation Processes(AOPs)as a means of pretreatment of olive mill effluent(OME)[J].Process Biochemistry,2005,40:2409-2416.
    [18]Saumuel Suman Raj D,Anjaneyulu Y.Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment.
    ??Process Biochemistry,2005,40:165—175.
    [19]潘碌亭.中国微污染水源水处理技术研究现状与进展[J].工业水处理,2006,6(26):6-9.
    [20]奚旦立,孙裕生,刘秀英.环境监测(修订版)[M].北京:高等教育出版社,2003,2.
    [21]陈庆选,李志荣,张振家.温度对两种固定化硝化菌硝化反应的影响[J].水资源保护,2007,1(23):80-83.
    [22]张锡辉,刘勇弟,译.废水生物处理[M].第二版.北京:化学工业出版社,2003:73—74.
    [23]陈中祥,曹广斌,刘永等.低温工厂化养殖水体氨氮处理微生物的初步研究[J].农业工程学报,2005,8(21):132-136.
    [24]邱立平,马军,张立昕.水力停留时间对曝气生物滤池处理效能及运行特性的影响[J].环境污染与防治,2004,6(26):433-437.
    [25]刘飞,胡光安,韩舞鹰.水力停留时间、水温与氨氮浓度对浸没式生物滤池氨氮去除速率的效应[J].淡水鱼业,2004,1(34):3-5.
    [26]肖羽堂,许建华,吴鸣.天然水温对生物修复污染水源除NH_4~+-N效果的影响研究[J].水科学进展,2002,2(13):201-205.
    [27]李娟英,赵庆祥.低浓度氨氮硝化过程中影响因素的研究[J].环境污染与防治,2006,1(28):11—13.
    [28]李娟英,赵庆祥.氨氮生物硝化过程影响因素研究[J].中国矿业大学学报,2006,1(35):120—124.
    [29]Philips S,Hendr IKU S J,Verstraetel W.Origins,causes and effects of increased nitrite concentration in aquatic environments[J].Rev.of Environ.Sci and Biotechnol,2002(1): 1115—141.
    [30]支霞辉,王红武,丁峰等.常温条件下短程硝化反硝化生物脱氮研究[J].环境科学研究,2006,1(19):26—29.
    [31]于德爽,彭永臻,张相忠等.中温短程硝化反硝化的影响因素研究[J].中国给水排水,2003,1(9):40-42.
    [32]王春荣,王宝贞,王琳.温度及氨氮负荷对曝气生物滤池硝化作用的影响[J].城镇环境与城镇生态,2004,4(17):24—27.
    [33]高景风,彭永臻,王淑莹.温度对亚硝酸型硝化/反硝化的影响[J].高技术通讯,2002(12):88—93.
    [34]Shinya M,Akihiko T,Satoshi T.Modeling of membrane-aerated biofilm:Effects of C/N ratio,biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification[J].Biochemical Engineering Journal,2007(in press).[35]Jian L,Shu L C.Impact of organic carbon on nitrification performance of different biofilters [J].Aquacultural Engineering,2005,33:150—162.
    [36]Wu Y C,Smith E D.Fixed-film biological processes for wastewater treatment[M].Noyes Data Corporation,1983,165—166.
    [37]王文斌,祁佩时.悬浮生物膜载体强化氨氮降解研究[J].环境科学,2006,12(27):2502—2505.
    [38]Julian C,Teresa V,Javier L.Effect of influent COD/N ratio on biological nitrogen removal (BNR)from high—strength ammonium industrial wastewater[J].Process Biochemistry,2004,39:2035—2041.
    [39]Fontenot Q,Bonvillain C,Kilgen M et al.Effects of temperature,salinity,and carbon:nitrogen ratio on sequencing batch reactor treating shrimp aquaculture wastewater[J].
    ??Bioresource Technology,2007,98:1700-1703.
    [40]Eldon R,Sung Joo K,Hung Suck E Effect of COD/N ratio and salinity on the performance of sequencing batch reactors[J].Bioresource Technology,2007(in press).
    [41]王立立,胡勇有.曝气生物滤池去除有机物及硝化氨氮的影响因素研究[J].环境污染与防治,2006,4(28):257-260.
    [42]张树德,张杰,李捷等.曝气生物滤池中总有机碳及氨氮的变化和对硝化作用的影响[J].安全与环境学报,2005,4(5):33—35.
    [43]阮文权,卞庆荣,陈坚.COD与DO对好氧颗粒污泥同步硝化和反硝化脱氮的影响[J].应用与环境生物学报,2004,10(3):366-369.
    [44]魏琛,罗固源.游离氨对稳定生物亚硝化的影响分析[J].重庆环境科学,2003,12(25):50-52.
    [45]白宇,张杰,闫立龙等.污水深度处理生物滤层中菌群的时空分布特征[J].城镇环境与城镇生态,2004,4(17):21—23.
    [46]李思敏,张胜,孙广垠等.生物砂滤池除氨氮效果及影响因素分析[J].中国给水排水,2006,1(22):74—76.
    [47]Malgorzata Komorowska K,Hanna M,Eugeniusz K.Factors affecting the biological nitrogen removal from wastewater[J].Process Biochemistry,2006,41:1015-1021.
    [48]Timothy M.L,Cindy H.N,Lisa M.P et al.Aerobic Biological Treatment of a Pharmaceutical Wastewater:Effect of Temperature on COD Removal and Bacterial Community Development[J].Wat.Res.,2001,18(35):4417—4425.
    [49]Femando Morgan S,D.Grant A.Effects of temperature transient conditions on aerobic biological treatment of wastewater[J].Water Research,2003,37:3590—3601.
    [50]杨钙仁,童成立,张文菊等.陆地碳循环中的微生物分解作用及其影响因素[J].土壤通报,2005,4(36):605-609.
    [51]Bemd M,Andrea B.The effects on release and ecologically relevant properties of dissolved organic carbon in sterilized and biologically active soil samples[J].Soil biology & biochemistry,2002,34:459—466.
    [52]周群英,高廷耀编著.环境工程微生物学(第二版)[M].高等教育出版社,2003.7.
    [53]徐伟峰,孙力平,古建国等.DO对同步硝化反硝化影响及动力学[J].城镇环境与城镇生态,2003,1(16):8-10.
    [54]高大文,王淑莹.温度变化对DO和ORP作为过程控制参数的影响[J].环境科学,2003,1(24):63—69.
    [55]M.Ndegwa P,Wang L,K.Vaddella V.Potential strategies for process control and monitoring of stabilization of dairy wastewaters in batch aerobic treatment systems[J].Process Biochemistry 2007,42:1272-1278.
    [56]高大文,彭永臻,王淑莹等.利用ORP和pH控制豆制品废水的处理过程[J].哈尔滨工业大学学报,2003,6(35):647-650.
    [57]王学江,夏四清,陈玲等.DO对MBBR同步硝化反硝化生物脱氮影响研究[J].同济大学学报(自然科学版),2006,4(34):514—518.
    [58]王伟,彭永臻,王海东等.溶解氧对分段进水生物脱氮工艺的影响[J].中国环境科学,2006,26(3):293—297.
    [59]周少奇,张鸿郭,杨志泉.溶解氧对垃圾压缩站废水同时硝化反硝化脱氮的影响[J].华南理工大学学报(自然科学版),2005,11(33):1-4.
    [60]Holman J B,Wareham D G COD,ammonia and dissolved oxygen time profiles in the simultaneous nitrifcation/denitrification process[J].Biochemical Engineering Journal,2005,22:125-133.
    [61]马世豪,何星海.《城镇污水处理厂污染物排放标准》浅释[J].给水排水,2003,9(29):89-94.
    [62]陈钦安,林春绵,徐明仙等.混凝法处理洗浴废水的试验研究[J]’水处理技术,2004,5(30):303—306.
    [63]隋智慧,张景彬,宋旭梅.PSF混凝剂对印染废水的处理[J].印染,2006,9:4-6.
    [64]毛艳梅,奚旦立.混凝一动态膜深度处理印染废水[J].印染,2006,8:8—11.
    [65]郑怀礼,刘克万,龙腾锐等.聚合氯化铝铁(PAFC)絮凝剂污水除磷的研究[J].环境化学,2005,6(24):693-695.
    [66]Tomaszewska M,Mozia S,W.Morawski A.Removal of organic matter by coagulation enhanced with adsorption on PAC[J].Desalination,2004,161:79—87.
    [67]王冬光,付英,于水利等.聚硅酸铁混凝剂净水效能及机理[J].环境工程学报,2007,6(1):6-11.
    [68]唐利,崔福义,王建玲等.高锰酸钾强化混凝处理洗车废水的研究[J].给水排水,2005,8(31):65-67.
    [69]赵艳,李风亭.天然果胶的絮凝性能研究[J].农业环境科学学报,2005,24(增刊):219—222.
    [70]王东田,海老,江邦雄.低温低浊水混凝沉淀处理研究[J].给水排水,2005,11(31):32-34.
    [71]张文华,田沈,钱城等.混凝法处理生物质气化洗涤废水研究[J].环境保护,2003,10:13-16.
    [72]李明玉,刘佩红,陈伟红等.聚硅硫酸亚铁的混凝特性及影响因素.应用化学,2004,4(21):396-398.
    [73]Yan M,Wang D S,Shi B Y et al.Effect of pre—ozonation on optimized coagulation of a typical North China source water[J].Chemosphere,2007(in press).
    [74]M.Ebeling J,E Welsh C,L.Rishel K.Performance evaluation of an inclined belt flter using coagulation/flocculation aids for the removal of suspended solids and phosphorus from microscreen backwash effluent[J].Aquacultural Engineering,2006,35:61—77.
    [75]王弘宇,马放,周丹丹.同步硝化好氧反硝化生物脱氮机理分析及其研究进展[J].四川环境,2004,6(23):62—70.
    [76]周少奇,范家明,吴宋标等.氧化沟同时硝化反硝化的生物脱氮机理[J].环境科学与技术,2002,6(25):3—5.
    [77]黄梅,周少奇.同时硝化反硝化脱氮机理及影响因素分析[J].环境卫生工程,2006,5(14):22-25.
    [78]L A Robertson,ED W J VAN Niel,ROB A M Torremans,et al.Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaeera Pantotropha[J].Applied and Environmental Microbiology,1988,54(11):2812-2818.
    [79]孙振世,柯强,陈英旭.SBR生物脱氮机理及其影u向因素[J].中国沼气,2001,19(2):16—19.
    [80]高大文,彭永臻,王淑莹等.控制pH实现短程硝化反硝化生物脱氮技术[J].哈尔滨工业大学学报,2005,12(27):1664—1666.
    [81]陈旭良,郑平,金仁村.pH和碱度对生物硝化影响的探讨[J].浙江大学学报(农业与生命科学版),2005,31(6):755—759.
    [82]郭海娟,马放,沈耀良.DO和pH值在短程硝化中的作用[J].环境污染治理技术与设备,2006,1(7):37—41.
    [83]王少坡,王淑莹,彭永臻等.常温内源反硝化脱氮过程中pH和ORP变化规律[J].环境污染治理技术与设备,2005,3(6):20-24.
    [84]付英,于水利.除污染型聚硅酸铁混凝剂除磷[J].清华大学学报(自然科学版),2007,9(47):1489—1494.
    [85]李伟伟,高宝玉,许春华等.化学混凝对两级曝气生物滤池出水的除磷效果研究[J].中国给水排水,2007,5(23):54—61.
    [86]赵统刚,吴德意,孔海南等.粉煤灰合成沸石除磷机理研究[J].水处理技术,2006,7(32):23—26.
    [87]Xie W M,Wang Q H,Ma H Z et al.Study on phosphorus removal using a coagulation system[J]I Process Biochemistry,2005,40:2623-2627.
    [88]肖凡,顾国维.生物强化除磷机理的探讨[J].环境科学与技术(增刊),2005,6(28):7-9.
    [89]Hsu P.Complementary role of iron(Ⅲ),sulfate and calcium in precipitation of phosphate from solution[J].Environ Lett,1973,5(2):115-36.
    [90]El Samrani A G, Lartiges B S,E.Montarges P et al.Clarification of municipal sewage with ferric chloride:the nature of coagulant species[J].Water research,2004,38:756-768.
    [91]王付林,王晓昌,黄廷林等.高锰酸钾和氯对高藻水的氧化助凝作用.中国给水排水,2004,3(20):9—11.
    [92]马军,刘晓飞,张金松等.臭氧/高锰酸盐预氧化助凝及影响因素.中国给水排水,2005,8(21):10-13.
    [93]张永吉,刘前军,周玲玲.高锰酸盐复合药剂预氧化处理松花江水的效果及机理.水处理技术,2005,5(3 1):83-86.
    [94]马军,任芝军.高锰酸盐预氧化/BAC处理受污染地表水.中国给水排水,2005,11(21):59—61.
    [95]马军,梁咏梅,余敏.高锰酸盐预氧化工艺水中总锰浓度变化规律与控制方法.给水排水,2004,1(30):11—14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700