用户名: 密码: 验证码:
PMMA/纳米TiO_2复合粒子的制备及其在CNR涂料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛具有优异的光催化、紫外光屏蔽等性能,将其添加到高分子材料中可以制备具有无机纳米粒子和有机高分子双重特性的功能性高分子材料。制备过程中,如何提高纳米TiO2与高分子基体材料之间的相容性成为首要解决的问题。表面聚合物接枝通过使高分子链与无机粒子之间产生强的化学键结合,能有效地解决这一问题,同时接枝上的适当厚度的高分子链还能够充当界面缓冲层的作用。本文首先通过硅烷偶联剂KH-570对纳米TiO2进行预处理,在纳米粒子表面引入不饱和双键作为表面聚合接枝活性点,再利用环境友好的乳液聚合法,通过优化聚合体系的工艺条件,在纳米TiO2表面接枝PMMA制备了高接枝率的PMMA/纳米TiO2复合粒子,最后将复合粒子应用到CNR涂料中,并考察了纳米TiO2对复合涂层性能的影响。
     首先,硅烷偶联剂KH570在水乳化体系中进行水解后对纳米TiO2进行表面处理。研究了硅烷偶联剂水解时间、pH值和乳化剂SDS浓度对偶联剂水解速度和水解液稳定性的影响,从而初步确定了水解条件。用煅烧法测定了粉体表面偶联包覆率,研究了硅烷偶联剂的水解条件和偶联条件对偶联效果的影响。结果表明,适宜的KH-570水解偶联条件为:乳化剂SDS浓度0.1%,调pH值为3.5,偶联剂浓度2.0%,室温下水解lh,80℃偶联2h。FTIR分析表明硅烷偶联剂与纳米二氧化钛表面的羟基发生了化学键合,TEM表明表面处理后的纳米粒子能在有机溶剂中均匀分散。
     其次,通过乳液聚合制备了化学接枝的PMMA/纳米TiO2复合粒子。通过FTIR和TGA分析了聚合物与纳米粒子间的相互作用。结果表明,在丙酮抽提前复合粒子中PMMA以化学接枝和物理包覆两种形式与纳米TiO2粒子发生作用。经丙酮72h抽提后,复合粒子表面物理吸附的PMMA被全部除去,此时对比PMMA/M-TiO2和PMMA/TiO2的FTIR谱图可以发现,PMMA与纳米TiO2之间是通过偶联剂分子的“桥梁”作用相连接的。研究了聚合条件对复合粒子的接枝率和聚合体系的稳定性的影响。在KH-570浓度为2%,SLS浓度为0.1%,APS浓度为0.05%,MMA/纳米TiO2用量为10g/5g时,乳液体系产生的凝胶含量较低,且制得的复合粒子的接枝率可达62.7%。TEM观察表明,聚合物接枝后的复合粒子分散性提高,仍保持在纳米级。
     最后,将PMMA/:纳米TiO2复合粒子添加到CNR涂料中制备了纳米TiO2/CNR复合涂料,通过复合涂层的常规性能测试、耐热海水实验和抗菌性实验,发现适当地添加纳米TiO2粒子能够提高涂层的硬度和附着力、耐海水腐蚀性能和抗菌性能。纳米TiO2用量为3.0%时,涂层对大肠杆菌和金黄色葡萄球菌的抗菌率分别达到89%和90%。综合考虑各项性能,纳米TiO2用量为3.0%时复合涂层的综合性能最好。
     本文的研究在聚合接枝改性纳米TiO2的基础上,将制得的PMMA/纳米TiO2复合粒子应用于CNR涂料,为纳米粒子在海洋防腐涂料中的应用提供了新思路。
Nano-titanium dioxide has excellent photocatalystic and UV-shielding properties. Functional polymer materials with the characteristics of both inorganic nanoparticles and organic polymer can be prepared by adding nano-TiO2 in polymer materials. However, the principal problem coming up in the preparing process is how to improve the compatibility between nano-TiO2 and polymer matrix materials. Surface grafting with strong chemical bond between polymer chains and inorganic particles can effectively solve this problem; in addition, the polymer chains with appropriate thickness grafted in the nano-particles can serve as interfacial buffer layer. In this paper, we started with the pretreatment of nano-TiO2 by silane coupling agent KH-570, to introduce unsaturated double bonds as active sites for surface grafting. And then environmentally friendly emulsion polymerization was carried out and PMMA/nano-TiO2 composite particles with high grafting rate were prepared through optimizing the conditions of polymerization system. Finally, the composite particles were used in CNR coating, and the influence of nano-TiO2 on composite coating was investigated.
     First of all, surface treatment of nano-TiO2 was dealt with silane coupling agent KH-570 after hydrolysis in water emulsion system. The influence of different pH value and emulsifier (SDS) concentration on hydrolysis rate and hydrolytic stability was investigated to set the conditions for hydrolysis. The coupling coating rate of nanoparticles was determined by calcinations, and the affect of hydrolysis and coupling conditions on coupling effect was studied. Results show that the appropriate conditions of hydrolysis and coupling were SDS concentration 0.1%, pH value 3.5, KH-570 concentration 2.0%, hydrolysis in ambient temperature, and coupling for 2 hours under 80℃.FTIR analysis indicates that chemical bonding was generated between the coupling agent and hydroxyl group around the nano-TiO2 surface, TEM shows that the nano-TiO2 after surface treatment can be uniformly dispersed in organic solvent.
     Secondly, PMMA/nano-TiO2 composite particles based on chemical grafting were obtained by emulsion polymerization. The interaction between polymer and nano-particles was analyzed with FTIR and TGA. The results show that two kinds of interaction forms, chemical grafting and physical coating, occurred between PMMA and nano-TiO2 before composite particles being extracted by acetone. After 72 hours of acetone extraction, when PMMA that physically adhered on the surface of composite particles was all removed, it can be seen through comparing the FTIR spectrum of PMMA/M-TiO2 with that of PMMA/TiO2 tKD It'V tKH "EUGgH' HIHFt SURvLGHJ Ey Foupling molecules that connected PMMA and nano-TiO2 together. The influence of polymerization conditions on polymer grafting rate and polymerizing stability was also investigated. Comparatively low gel content and grafting rate of 62.7%can be achieved under conditions of KH-570 concentration 2%,SLS concentration 0.1%,APS concentration 0.05%,and MMA/nano-TiO2 content ratio 10:5.TEM shows that dispersity of composite particles was improved after polymer grafting, and the particles stay at nano-level.
     Finally, PMMA/nano-TiO2 composite particles were added in CNR coating as to prepare nano-TiO2/CNR composite coating. Through general performance testing, heat sea-water resistance and antibacterial experiment of composite coating, we can found that the properties of coating, hardness and adhesion, corrosion resistance and antibacterial ability, were improved by filling nano-TiO2 with appropriate content. Antibacterial rates of composite coating against E.coli and staphylococcus aurous were 89% and 90%,respectively,as nano-TiO2 content is 3.0%. Considering all the properties, we can get a conclusion that composite coating with 3.0% nano-TiO2 shows the best overall performance.
     This paper studied the application of PMMA/nano-TiO2 composite particles in CNR coating, basing on the research of polymer grafting modification of nano-TiO2.lt revealed a new idea for nano-particles using in anticorrosion coating.
引文
[1]袁志好,孙永昌,王玉红,等.铁酸锌掺杂对二氧化钛结构相变及光催化性能的影响[g].高等学校化学学报,2004,25(10):1875-1878.
    [2]周秀文.TiO2光催化剂的改性研究[D].北京:中国工程物理研究院,2004.
    [3]蒋子铎,吴壁耀,刘安华,等.二氧化钛的表面化学改性[g].现代化工,1991,(5):14-18.
    [4]Gao v, Masudaa v, Seo t S. TiO2 nanoparticles prepared using an aqueous peroxotitanate solution[g]. Ceramics International,2004,(30):1365-1368.
    [5]Zhu v C, Ding CX. Oriented growth of nano-TiO2 whiskers [g]. NanoStructured Materials, 1999,11(3):427-431.
    [6]Zhang DB, n i LM, Cheng HM. Synthesis of Crystalline Nanosized Titanium Dioxide via a Reverse Micelle Method at Room Temperature[g]. Chinese Chemical Letters,2003,14(1):100-103.
    [7]Dhage SR, Gaikwad SP, Ravi V. Synthesis of nanocrystalline TiO2 by tartarate gel method[g]. Bull Mater Sci,2004,27(6):487-489.
    [8]Nagamine S, Sasaoka E. Synthesis of Nanostructured Titania Templated by Anionic Surfactant in Acidic Conditions [g]. gournal of Porous Materials,2002,(9):167-173.
    [9]方明,高基伟,申乾宏,等.锐钛矿晶型Ti02溶胶的精细结构及其光催化活性[g].硅酸盐学报,2006,34(4):438-441.
    [10]Li v, t hite T, Lim SH. Structure control and its influence on photoacivity and phase tansformation of TiO2 nano-particles [g]. Rev.Adv.Mater.Sci.,2003,(5):211-215.
    [11]Choa CH, Hana MH, Kimb DH. Morphology evolution of anatase TiO2 nanocrystals under a hydrothermal condition (pH=9.5) and their ultra-high photo-catalytic activity[g]. Materials Chemistry and Physics,2005,(92):104-111.
    [12]Khanna PK, Singh N, Charan S. Synthesis of nano-particles of anatase-TiO2 and preparation of its optically transparent coating in PVA[g]. Materials Letters,2007,(61):4275-4279.
    [13]林红,吴疆,石京,等.TiO2光催化应用及其发展前景[g].新材料产业,2005,(9):32-35.
    [14]蒋莉,张鑫.纳米TiO2光催化涂料的研究[g].化学建材,2003,(1):7-9.
    [15]刘小强,杜仕国.纳米二氧化钛改性及其在涂料中的应用[g].化工时刊,2004,18(11):13-16.
    [16]t ang CC, Zhang ZB, ving gv. Photocatalytic decompostition of halogenated organics over nanocrystalline titania [g]. NanoStructured Materials,1997,9:583-586.
    [17]Amadelli R, Samiolo L, Maldotti A. Preparation, Characterisation, and Photocatalytic Behaviour of Co-Ti02 with Visible Light Response[g]. International gournal of Photoenergy,2008::1-9.
    [18]Zhang ZH, vuan v, Fang v g. Preparation of photocatalytic nano-ZnO/TiO2 coating and application for determination of chemical oxygen demand[g]. Talanta,2007,73:523-528.
    [19]马佳彬,李新勇,曲振平,等.纳米二氧化钛的改性及光催化氧化烷烃研究[g].环境污染与防 治,2007,29(1):44-50.
    [20]尹晓敏,程永清.掺杂方式对纳米二氧化钛性能的影响研究[g].人工晶体学报,2006,35(1):45-50.
    [21]Aarthi T, Narahari P, Madras G. Photocatalytic degradation of Azure and Sudan dyes using nano TiO2[g]. gournal of Hazardous Materils,2007,149:725-734.
    [22]李亚峰,赵艳红,陈平,等.负载型TiO2光催化剂的制备及光催化活性研究[g].沈阳建筑大学学报(自然科学版),2008,24(1):123-128.
    [23]t ilhelm P, Stephan D. Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres[g]. gournal of Photochemistry and Photobiology A-Chemistry,2007,185:19-25.
    [24]Pucher P, Benmami M, Azouani R. Nano-TiO2 sols immobilized on porous silica as new efficient photocatalyst[g]. Applied Catalysis,2007,A(332):297-303.
    [25]余晓兰,刘刚,张鹏,等.纳米二氧化钛喷液在空气净化过程中的抗菌抗病毒作用[g].解放军医学杂志,2005,30(7):632-633.
    [26]隆泉,郑保忠,周应揆,等.新型纳米无机抗菌剂的抗菌性能研究[g].功能材料,2006,2(37):274-276.
    [27]李蓓,赵铱民,杨聚才,等.比较纳米载银抗菌剂与纳米二氧化钛抗菌剂抗白色念珠菌性能的实验研究[g].临床口腔医学杂志,2008,24(2):70-72.
    [28]曹建军,郭刚,汪斌华,等.用金红石型纳米TiO2改善粉末涂料耐光老化性能[g].钢铁钒钛,2005,26(1):34-40.
    [29]TA E, gA M. Comparison of photooxidation and photoreduction reactions on TiO2 nanoparticles[g]. gOURNAL OF PHOTOCHEMISTRv AND PHOTOBIOLOGv A-CHEMISTRv, 2007,186(2-3):115-120.
    [30]Egerton TA, Tooley IR, Kessell LM. Photogreying of TiO2 nanoparticles[g]. gOURNAL OF NANOPARTICLE RESEARCH,2007,9(2):251-260
    [31]TA E, Ng E, gA M. Interaction of TiO2 nano-particles with organic UV absorbers[g]. gOURNAL OF PHOTOCHEMISTRv AND PHOTOBIOLOGv A-CHEMISTRv,2008,193(1):10-17.
    [32]张立德,牟季美.纳米材料学[M].沈阳:辽宁科技出版社,1994.
    [33]胡圣飞,郦华兴,陈志刚,等.纳米粒子的分散与表征技术[g].化工新型材料,2002,30(11):29-31.
    [34]祖庸,王训.超细二氧化钛分散性研究[g].涂料工业,1999,(6):6-8.
    [35]李晓娥,王训,庸祖,等.透明超细二氧化钛的制备[g].无机盐工业,2000,(9):5-6.
    [36]鄢程,李竟先,潘志东,等.纳米TiO2颗粒的表面改性研究进展[g].陶瓷学报,2002,23(1):62-65.
    [37]林嵩,徐宏,古宏晨,等.纳米TiO2表面电位特性的研究[g].材料科学与工程学报,2004,22(4):544-546.
    [38]胡杰,陈维国.水体系中纳米二氧化钛的分散性能[g].现代纺织技术,2008,(1):58-60.
    [39]Cao n, Ting-gie t, vong g The coating process of nano-scale hydrous silica coating on TiO2 particles by chemical deposition in aqueous solution [g]. Acta Phys Chim Sin,2002,18(10):884-889.
    [40]张淑霞,李建保.TiO2颗粒表面无机包覆的研究进展[g].化学通报,2001,(2):71-75.
    [41]姚超,高国生,林西平,等.硅烷偶联剂对纳米二氧化钛表面改性的研究[g].无机材料学报,2006,21(2):315-321.
    [42]gia-cheng G, gian Z, Xiao-wei T. Characteristics and properties of surface coated nano-Ti02[g]. Trans Nonferrous Met Soc China,2006,16::1252-1258.
    [43]于艳辉,哈日巴拉,徐传友,等.纳米二氧化钛表面改性技术进展[g].无机盐工业,2008,40(1):11-13.
    [44]v.gGao, R.Sun, Z.gZhang. Tribological properties of oleic acid-modified TiO2 nanoparticle in water[g]. Materials Science and Engineering A,2000,286::149-151.
    [45]邹玲,乌学东,陈海刚,等.表面修饰二氧化钛纳米粒子的结构表征及形成机理[g].物理化学学报,2001,17(4):305-309.
    [46]程冰,王秀峰,伍媛婷,等.金红石型纳米TiO2粉体的制备及其分散[g].电子元件与材料,2005,24(5):1-4.
    [47]宋影伟,刘福春,韩恩厚,等.纳米二氧化钛水性分散体性能研究[g].功能材料,2006,37(3):459-461.
    [48]单风君,高杰.溶胶-凝胶法制备纳米Ti02粉体分散性的研究[g].化学与生物工程,2004,(4):25-26.
    [49]王相田.超细颗粒分散过程分析[g].化学通报,1995,(5):13-17.
    [50]王璧,徐瑞芬,丁雪佳,等.PMMA/TiO2纳米复合粒子的制备及初步应用研究[g].北京化工大学学报,2006,33(2):72-75.
    [5l]李国辉,李春忠,吕志敏,等.纳米氧化钛颗粒表面处理及表征[g].华东理工大学学报,2000,26(6):639-641.
    [52]于晓辉,董相廷,王进贤,等.无机/高分子核壳结构纳米粒子的研究进展[g].长春理工大学学报,2006,39(3):76-82.
    [53]徐冬梅,张可达,王平,等.TiO2聚脲微胶囊的制备及性能[g].精细化工,2002,19(1):25-28.
    [54]王世兴,王命泰,雷勇,等.纳米TiO2的高分子“锚定位”包覆[g].无机材料学报,2000,15(1):45-49.
    [55]何涛波,毋伟,陈建峰,等.碳酸钙/聚甲基丙烯酸甲酯纳米复合粒子制备及表征[g].化学反应工程与工艺,2003,119(2):135-140.
    [56]罗美芳,王焕冰,李春忠,等.调节pH控制载银纳米TiO2表面包覆的PMMA[g].功能高分子学报,2008,21(4):397-401.
    [57]杨明娇.PMMA/纳米TiO2复合粒子的制备及对POM、PC和PVC耐光老化性能研究[D].成都: 四川大学,2006.
    [58]李淑娟,刘祥萱,王煊军,等.细乳液聚合包覆无机纳米粒子的研究进展[g].表面技术,2007,36(2):50-53.
    [59]Erdem B, SudolE D, Dimonie VL. Encapsulation of inorganic particles via miniemulsion polymerizationⅢ[g]. gPolym Sc:i PartA:Polym Chem,2000,38(4):4441-4450.
    [60]Hong Rv, Pan TT, Han v P, et al. Graft Polymerization Synthesis and Application of Magnetic Fe304/Polyacrylic Acid Composite Nanoparticles[g]. gournal of Applied Polymer Science, 2007,106:1439-1447.
    [61]Chen v, Lin A, Gan F. Improvement of polyacrylate coating by filling modified nano-TiO2[g]. Applied Surface Science,2006,(252):8635-8640.
    [62]史建新.无机纳米粒子表面接枝包覆PMMA的制备研究[D].兰州:兰州理工大学,2007.
    [63]李玉平,王亚强,贺卫卫,等.纳米Si02表面接枝及其在原位乳液聚合体系中的分散稳定性[g].湖南大学学报,2006,33(3):80-83.
    [64]vang M, Dan v. Preparation and characterization of poly (methylmethacrylate)/titanium oxide composite particles[g]. Colloid and Polymer Science,2005,284(3):243-250.
    [65]潘柯良,朱云峰,江龙,等.P (MM A-AN)/TiO2复合粒子的制备及光催化性能[g].高分子材料科学与工程,2007,23(5):163-166.
    [66]刘舒扬,杨明娇,淡宜,等.PMMA/TiO2复合粒子光催化降解有机污染物的性能[g].高分子材料科学与工程,2006,22(3):93-97.
    [67]刘舒扬.聚合物/TiO2催化功能性复合拉子的制备、结构及降解有机污染物的研究[D].成都:四川大学,2006.
    [68]王超,王琪,邱桂花,等.超声辐照原位乳液聚合制备P(BA-MMA-AA)/TiO2纳米复合乳液的研究[g].高分子学报,2006,(9):1038-1044.
    [69]王超.超声辐照原位乳液聚合制备P (BA-MMA-AA)/TiO2和PS/Na+-MMT纳米复合材料的研究[D].成都:四川大学,2005.
    [70]刘鹏,田军,刘维民,等.无机纳米粒子表面引发接枝聚合[g].化学通报,2003,(2):73-77.
    [71]Ueda g Sato S, Tsunokawa A, et al. Scale-up synthesis of vinyl polymer-grafted nano-sized silica by radical polymerization of vinyl monomers initiated by surface initiating groups in the solvent-free dry-system[g]. European Polymer gournal,2005,41(2):193-200.
    [72]王俊杰,崔晶,庄毅,等.偶氮基团引发PMMA在纳米TiO2表面接枝聚合研究[g].功能高分子学报,2005,18(2):279-284.
    [73]王慧珺.利用氧化还原引发体系制备聚合物接枝的纳米二氧化硅粒子[D].杭州:浙江大学,2008.
    [74]安丽娟,李兆强,王燕萍,等.表面引发原子转移自由基聚合方法合成Fe3O4/PMMA复合纳米微粒[g].高等学校化学学报,2006,27(7):1372-1375.
    [75]Bombalski L, Min K, Dong H, et al. Preparation of t ell-Defined Hybrid Materials by ATRP in Miniemulsion[g]. Macromolecules,2007,40(21):7429-7432.
    [76]Liu P, t ang T. Surface-graft hyperbranched polymer via self-condensing atom transfer radical polymerization from zinc oxide nanoparticles[g]. Polymer Engineering and science,2007,(10):1298-1303.
    [77]Fan X, Lin L, Phillip B. Messersmith. Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator:A new route toward polymer-matrix nanocomposites[g]. Composites Science and Technology,2006,(66):1195-1201.
    [78]欧宝立,李笃信.用ATRP方法制备聚苯乙烯/纳米二氧化硅杂化粒子[g].中国科学B辑化学,2006,36(5):393-398.
    [79]t ang t, Neoh K, Kang E. Surface Functionalization of Fe3O4 Magnetic Nanoparticles via RAFT-Mediated Graft Polymerization[g]. Macromol Rapid Commun,2006,(27):1665-1669.
    [80]Hojjati B, Charpentier PA. Synthesis and Kinetics of Graft Polymerization of Methyl Methacrylate from the RAFT Coordinated Surface of Nano-TiO2[g]. gournal of Polymer Science:Part A:Polymer Chemistry,2008,(46):3926-3937.
    [81]佟丽萍,李健,孙亚君,等.氯化橡胶及其涂料的现状与发展[g].涂料工业,2003,33(4):39-44.
    [82]Sturman BT. Notes on chlorinated rubber and other chlorine donors[g]. gournal of Pyrotechnics, 2005,(22):63-66.
    [83]Dan v, Si-dong L, De-min g et al. Study on the structure and properties of chlorinated natural rubber from latex:proceedings of the Symposium of International Rubber Conference 2004, [C].2004.
    [84]vang D, Li S-D, Fu t-t, et al. Pyrolysis GC-MS of Chlorinated Natural Rubber[g]. gournal of Applied Polymer Science,2003,(87):199-204.
    [85]Cai v, Li S-D, Li C-P, et al. Thermal Degradations of Chlorinated Natural Rubber from Latex and Chlorinated Natural Rubber from Solution[g]. gournal of Applied Polymer Science,2007,(106):743-748.
    [86]刘争男,李旭东,黄宝琛,等.氯化橡胶的研究进展[g].特种橡胶制品,2005,26(3):54-58.
    [87]Dan v, Sidony L, giepiny Z, et al. Analysis of sol and gel in chlorinated natural rubber from latex[g]. China Synthetic Rubber Industry,2003,26(1)47.
    [88]vANG D, Si-dong L, gIE-PING Z, et al. FTIR,Py-GC/MS,TG and DTA Investigating into the Sol and Gel of Chlorinated Natural Rubber from Latex[g]. gournal of Polymer Materials,2003,(20):163-171.
    [89]吴仁涛,赵仁高.氯化橡胶新工艺及其在涂料中的应用[g].泰安师专学报,2002,24(3):57-59.
    [90]林青,郑智扬,施小芳,等.氯化天然橡胶在热空气中脱氯化氢的反应动力学[g].合成橡胶工业,2008,31(2):96-99.
    [9l]何兰珍,钟杰平,杨磊,等.受热历程中氯化天然橡胶脱氯化氢的研究[g].北京化工大学学报, 2004,31(3):77-81.
    [92]杨丹,钟杰平,李思东,等.酸、碱及盐对胶乳法氯化天然橡胶热稳定性的影响[g].特种橡胶制品,2003,24(3):1-5.
    [93]Zhong gP, Li SD, Chen t v, et al. Study on preparation of chlorinated natural rubber from latex and its thermal stability[g]. gournal of Applied Polymer Science,1999,73::2863-2867.
    [94]Zhong gP, Li SD, vu HP, et al. Thermooxidative decomposition and its kinetics on chlorinated rubber from latex[g]. gournal of Applied Polymer Science,2001,81::1305-1309.
    [95]vu HP, Li SD, Zhong gP. Effects of Copper Oxide on Thermal Stability of Chlorianted Natural Rubber from Latex[g]. gournal of Polymer Materials,2003,(20):201-206.
    [96]v u HP, Li SD, Zhong gp, et al. Studies of thermooxidative degradation process of chlorinated natural rubber from latex[g]. Thermochimica Acta,2004,(410):119-124.
    [97]郑智扬,施小芳,林青,等.CNR热氧降解历程的研究[g].橡胶工业,2007,54(9):565-567.
    [98]杨丹,李思东,钟杰平,等.硬脂酸盐热稳定剂对胶乳法氯化橡胶热稳定性的影响[g].橡胶工业,2003,50(11):656-660.
    [99]陈亚胜,杨丹,何兰珍,等.胶乳法氯化天然橡胶的光、热氧稳定性能[g].化学研究与应用,2004,16(6):758-761.
    [100]Feliu S, Chico B. Study of the Interfacial Chemistry of Chlorinated Rubber Paint on Different Substrates After the Curing Process[g]. Surface and interface analysis,1998,(26):433-443.
    [101]Elsner CI, Di.Sarli AR. The influence of elecrolyte composition on the diffudion process through chlorinated rubber and vinyl coatings[g]. Corrosion Prevention C Control,1996,(10):124-130.
    [102]Cayuela F, Morcillo M. Analysis of bleaching processes in aluminium pigmented cr coating under osmotic effect[g]. Pigment C Resin Technology,2001,30(2):109-113.
    [103]李水冰,曹京宜,熊金平,等.氯化橡胶涂层在浸泡老化联合作用下的失效机制[g].中国涂料,2007,(增刊):44-49.
    [104]贺江,胡延新,马雪丽,等.改性氯化橡胶涂料的研制[g].油气田地面工程,2000,19(2):36-37.
    [105]龚大春,仇敏,刘正权,等.厚浆型氯化橡胶防腐漆的研制[g].湖北化工,1999,(2):18-19.
    [106]陆伯岑,欧伯兴.水相法氯化橡胶的性能试验[g].涂料工业,2005,35(9):6-11.
    [107]刘艳芳,陈永贵,郑德亮,等.水相法氯化橡胶在涂料中的应用试验[g].中国涂料,2006,(10):29-31.
    [108]P.R.Sere, A.R.Armas, C.I.Elsner, et al. The surface condiction effect on adhesion and corrosion resistance of carbon steel/chlorianted rubber/artificial sea wter systems[g]. Corrosion Science, 1996,38(6).
    [109]陈博.漆酚改性与纳米TiO2复合涂料的制备及性能研究[D].武汉:武汉大学,2005.
    [110]杨景花.纳米二氧化钛改性氟碳涂料及涂装工艺的研究[D].长沙:湖南大学,2006.
    [111]Chen v, Lin A, Gan F. Improvement of polyacrylate coating by filling modified nano-TiO2[g]. Applied Surface Science,2006,252::8635-8640.
    [112]张哗,周贵恩,李磊,等.纳米Ti02-甲基丙烯酸甲酯聚合物均匀分散系的制备和结构[g].材料研究学报,1998,12(3):291-294.
    [113]熊明娜,周树学,陈辉,等.溶胶-凝胶法制备丙烯酸树脂/TiO2有机-无机杂化材料及其结构表征[g].高分子学报,2005,(3):417-422.
    [114]范林.纳米二氧化钛(钛白粉)粉体制备及应用[g].中国粉体工业,2006,(2):21-23.
    [115]苗利利,王水利.纳米二氧化钛制备工艺的研究[g].纳米科技,2006,(5):47-50.
    [117]Matsuda A, Kobayashi K, Kogure T. Effects of electric field on the formation of titania nanocrystals on SiO2-7I22 gel coatings during hot-water treatment[g]. gournal of the Ceramic Society of gapan, 2005,113(4):333-335.
    [119]张径.以Si02纳米粒子为种子的甲基丙烯酸甲酯乳液聚合[g].化学与粘合,2001,(1):1-4.
    [120]徐瑞芬,佘广为.原位聚合法制备纳米TiO2/有机硅改性丙烯酸酯复合乳液[g].有机硅材料,2003,17(6):11-14.
    [121]徐瑞芬,何晓囡,张鹏,等.纳米Ti02/硅丙复合乳液的光催化抗菌性能研究[g].精细化工,2005,22(3):168-170.
    [122]方征平,徐钰珍,许承威,等.纳米粒子对聚合物的改性机理[g].材料科学与工程学报,2003,21(2):279-282.
    [123]Zhang Z, Breidt C, Chang L. Enhancement of the wear resistance of epoxy:short carbon fibre,graphite, PTFE and nano-TiO2[g]. Composites,2004,Part A(35):1385-1392.
    [124]Kumpei K, Atsunori M, TToshihiro K. Hydrophobic and photocatalytically active surface using micropatterns of anatase nanocrystals-dispersed coating[g]. gournal of the Ceramic Society of gapan, 2004,112(5):1425-1429
    [125]徐瑞芬,佘广为,许秀艳,等.复合涂料中纳米TiO2降解污染物和抗菌性能研究[g].化工进展,2003,22(11):1193-1195.
    [126]刘永屏,董善刚,高福安,等.纳米TiO2改性内墙生态涂料的研制[g].新型建筑材料,2002,(10):73-75.
    [127]Negishi N, Takeuchi K, Ibusuhi T. Surface structure of the TiO2 thin coating photocatalyst[g]. gournal of Materials Science,1998,(33):5789-5794.
    [128]徐瑞芬,何晓囡,张鹏,等.纳米TiO2/硅丙复合乳液的光催化抗菌性能研究[g].精细化工,2005,22(3):168-170.
    [129]vuan t v, gi g, Fu gH. A facile method to construct hybrid multilayered coatings as a strong and multifunctional antibacterial coating[g]. gournal of Biomedical Materials Research Part B-Applied Biomedical,2008,85B(2):556-563.
    [130]徐小英.纳米TiO2改性氯醚树脂防腐涂料的研究[D].重庆:重庆大学,2004.
    [131]范艳华.纳米TiO2涂层及其耐海洋腐蚀性能的研究[D].济南:山东大学,2006.
    [132]Shen GX, Chen v C, Lin Cg Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method[g]. Thin Solid Coatings,2005,489(1-2):130-136.
    [133]vun H, Li g Chen H-B. A study on the N-, S-and Cl-modi?ed nano-TiO2 coatings for corrosion protection of stainless steel[g]. Electrochimica Acta,2007,(52):6679-6685.
    [134]陈美玲,曲园园,杨莉,等.Si02改性低表面能纳米结构无毒海洋防污涂料[g].化工新型材料,2008,36(5):71-72.
    [135]Gademann K. Cyanobacterial natural products for the inhibition of biocoating formation and biofouling[g]. Chinmia,2007,61(6):373-377.
    [136]李善文,陈美玲,杨莉,等.环保友好纳米二氧化钛低表面能船舶防污涂料[g].功能材料,2008,39(5):853-856.
    [137]刘福春,韩恩厚.抗紫外纳米TiO2/ZnO复合丙烯酸醋涂料[g].材料研究学报,2003,17(2):144-138.
    [138]郭刚.金红石型纳米TiO2在高分子材料抗老化功能改性中的研究[D].成都:四川大学,2005.
    [139]Xiang B, Shengtao Z, t enzhang H. Effect of Nano-TiO2 on MP-25 Resin[g]. gournal of Applied Polymer Science,2008,107::1598-1603.
    [140]Aoyama S, Umiya K, Amemiya. M. Adsorption of silane coupling agent on Co-y-Fe203 and its effect on dispersibility[g]. gournal of Material Science,1988,(23):1729-1734.
    [141]Kim g Sham M, t u. g Nanoscale characterisation of interphase in silane treated glass fibre composites[g]. Composites:Part A,2001,(32):607-618.
    [142]徐溢,滕毅,唐守渊,等.提高硅烷试剂溶液稳定性的研究[g].腐蚀与防护,2002,23(5):193-195.
    [143]王雪明.硅烷偶联剂在金属预处理及有机涂层中的应用研究[D].济南:山东大学,2005.
    [144]Abel ML, Allington RD, Digby RP, et al. Understanding the relationship between silane application conditions, bond durability and locus of failure[g]. International gournal of Adhesion C Adhesives, 2006,(26):2-15.
    [145]薛茹君,吴玉程.硅烷偶联剂表面修饰纳米氧化铝[g].应用化学,2007,24(11):1236-1239.
    [146]薛茹君,吴玉程.硅烷偶联剂修饰改性的机理及改性绢云母的性能[g].硅酸盐学报,2007,35(3):373-376.
    [147]Shurui M, Liyi S, Xin F, et al. Graft modification of ZnO nanoparticles with silane coupling agent KH570 in mixed solvent[g]. Shanghai Univ (Engl Ed),2008,12(3):278-282.
    [148]王斌,霍瑞亭.硅烷偶联剂水解工艺的研究[g].济南纺织化纤科技,2008,(2):25-28.
    [149]Shen GX, Chen v C, Lin Cg Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method[g]. THIN SOLID COATINGS,2005,489(1-2):130-136.
    [150]涂料工艺编委会.涂料工艺(上册)[M].北京:化学工艺出版社,1997:304.
    [151]程学群.纳米TiO2表面改性研究及其在涂料中的应用[D].武汉:机械科学研究院,2003.
    [152]陈仪本,欧阳友生,黄小茉,等.工业杀菌剂[M].北京:北京工业出版社,2001.
    [153]徐瑞芬,许秀艳,付国柱,等.纳米二氧化钛在抗菌塑料中的应用性能研究[g].塑料,2002,31(3):26-29.
    [154]童玉清,田明,徐瑞芬,等.新型的高杀菌纳米二氧化钛/聚丙烯复合材料的结构和物理特性研究[g].复合材料学报,2003,20(5):88-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700