用户名: 密码: 验证码:
土壤渗透水微量元素对地表环境的响应及在洞穴现代沉积物研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洞穴沉积物作为重建古气候研究的重要载体之一,具有高分辨率连续记录和高精度定年的特征,从洞穴沉积物中可以提取大量记录古气候和古环境演变的信息,且代用指标多样化。尽管微量元素具有来源多样性和影响因素复杂性的特征,在重建古气候研究中的应用不如δ180广泛,但微量元素可以揭示地下水在洞穴上覆表层岩溶带的运移过程与地表环境的关系,研究微量元素的影响因素是解释洞穴沉积物记录的环境信息的重要依据。目前研究微量元素的来源和控制因素的主要方法是洞穴监测。
     本文选取重庆市武隆县芙蓉洞作为研究区域,监测洞穴所在区域的大气降水量、气温、土壤环境和洞穴环境,并收集降水、土壤、基岩、土壤渗透水、洞穴水和洞穴现代沉积物,重点分析地表环境对各类样品中的Ca、Mg、Sr的浓度和Mg/Ca、Sr/Ca、Mg/Sr比值的影响,并监测土壤渗透水、洞穴水和洞穴现代沉积物地球化学性质对2009/2010年的西南地区冬春干旱气候事件的反映。经过研究得出以下结论:
     (1)芙蓉洞上覆土壤的粒度分析结果显示<16μm粒径组的平均比重达到63.2%,是芙蓉洞上覆土壤颗粒的主要粒径组。0-10cm的表层土壤中>63μm的颗粒平均比重9.07%,深度在10cm以下的土壤中其平均比重为5.14%;随着深度的增加土壤中粘土所占比重呈增加趋势。土壤的粒度组成特征有助于降水的渗透,并减缓地下水在土壤中的下渗速度。土壤中Ca、Mg、Sr的浓度随着深度的增加而增加,Sr的浓度与粘土含量呈正相关关系。但各土壤剖面中的元素浓度有较大差异,可能与土壤中含有碳酸盐碎屑物质有关。土壤的地球化学组成与基岩相似,均表现出Ca>Mg>Sr,基岩中含有白云岩使土壤中的Mg浓度较高。但由于Ca在土壤中的迁移率较大,使土壤的Mg/Ca、Sr/Ca比值大于基岩,Mg/Sr比值小于基岩。
     (2)通过2010-2012年土壤渗透水量的变化,发现夏秋季节渗透水量大,冬春季竹渗透水少或断流,与研究区域的降水量季节性分布特征相似,说明渗透水量能响应大气降水量的变化。在土壤渗透水的监测过程中还发现,场次降水强度和持续时间,以及土壤渗透水采样点的坡度、土壤的颗粒组成等因素也可能影响土壤渗透水量对降水量的响应。
     (3)对土壤渗透水的地球化学性质进行了监测,结果显示2009/2010年的冬春干旱气候以后,2010年4月渗透水的Ca、Mg、Sr的浓度普遍较高,在土壤不同深度收集的渗透水Ca、 Mg、Sr的浓度随着深度的增加而上升,说明渗透水在土壤中的滞留时间和渗透距离都对Ca、 Mg. Sr的浓度有重要影响,相同的影响因素导致渗透水中Ca、Mg、Sr之间均呈正相关关系。2011年土壤渗透水的Mg/Ca、Sr/Ca比值同时上升,且Mg/Ca>1,说明碳酸钙提前沉淀(PCP)不但发生在基岩中,可能由于高温使地表蒸发旺盛导致渗透水的C02脱气,在土壤中也出现PCP。土壤渗透水的Mg/Sr比值在一年中出现两次峰值,与降水量的两个峰值有较好的对应关系。在高温多雨的夏季,Mg/Sr比值的峰值能快速响应气温和降水量的变化。但在气温相对较低的初夏或秋季,Mg/Sr比值峰值滞后于降雨量,说明Mg/Sr比值受到气温和降水量的双重影响,但气温高有助于提高Mg/Sr比值响应降水量的灵敏度。
     (4)芙蓉洞洞穴环境监测数据显示,洞内C02浓度有季节性变化,夏季高于冬季,与土壤C02浓度的季节性变化相似。洞穴滴水的Mg/Ca、Sr/Ca比值在2011年5-8月同时上升,9-11月同时下降,推测原因为2009/2010年冬春干旱气候导致表层岩溶带含水量减少,使岩溶带裂隙和孔隙的通风性增强,导致地下水在表层岩溶带产生PCP,使地下水的Mg/Ca、Sr/Ca比值上升。随着地下水的运移,此气候信息被传递到滴水中,说明芙蓉洞滴水的地球化学性质能够响应极端气候事件。各滴水点的元素浓度和元素比值的变化趋势均一致,说明洞穴滴水的水源和地表环境对地下水的影响有相似性。
     各滴水的元素浓度和比值在数量上存在差异,可能与地下水的水文地质过程有关。MP7滴水的Ca、Sr的浓度低于其他滴水,且Mg的浓度低于滴水的平均值,但Mg/Ca比值普遍大于1,根据MP7滴水量大于500mL/分钟的实际情况,推测该地下水快速通过了白云岩层。滴水MP5的滴率小于MP4,MP5的Mg/Ca、Sr/Ca比值均大于MP4,因为MP5滴水的地下水在洞穴顶板滞留时间更长,从而产生了PCP,滴水MP5的Ca浓度减小,导致Mg/Ca、Sr/Ca比值增加。
     (5)在芙蓉洞收集的洞穴现代沉积物的Ca、Mg浓度差异较小,但Sr的浓度差异较大。样品20100226-MP2、20110802-MP3中Sr的浓度都超过80μg/g,可能沉积物中混入了细小的粘土颗粒。样品20111201-MP4、20111201-MP5的Sr的浓度分别为5.37μg/g和7.03μg/g,原因有待进一步分析。
     滴水携带的水文地质信息可以传输到洞穴沉积物中,如滴水MP5的Mg/Ca, Sr/Ca比值均大于MP4,在MP4、MP5两个滴水点沉积的洞穴现代沉积物的Mg/Ca、Sr/Ca比值也呈现相应特征。
     根据采集的芙蓉洞现代沉积物的Ca、Mg、Sr的浓度以及Mg/Ca、Sr/Ca比值的变化,没有发现记录2009/2010年冬春干旱气候事件的相应信息,说明在洞穴沉积物形成过程中还有其他未知因素的影响,导致芙蓉洞洞穴现代沉积物没有记录地表环境极端气候信息。
     利用野外监测数据得出的洞穴现代沉积物的KMg1平均值0.0288±0.0038,通过经验公式计算的KMg2平均值为0.01856±0.01389,根据KMg1和KMg2计算的芙蓉洞平均气温,分别为16.9±2.2℃和10.9±8.2℃,在芙蓉洞监测记录的洞穴平均气温为16-16.8℃,说明野外监测数据与实际温度更接近,且变化幅度较小,因此可以利用芙蓉洞穴监测数据进一步研究芙蓉洞石笋微量元素记录的重庆地区古气候和古环境的变化。
Speleothems are increasingly used to provide high resolution, accurately dated paleoclimate information to reconstruct paleoclimate and paleoenvironment. Speleothems contain a number of suitable proxies to record the environmental information. Although unlike oxygen isotopes, trace elements have been widely used for the variety of sources and complex factors, trace elements are used to reveal the groundwater runoff in the epikarst overlying the cave with the process and the surface environment. Study of the factors controlling the trace elements in water-soil-cave system is an important basis work to explain the environmental information recorded in speleothems. Currently, cave monitoring is a common method to study the source of trace elements and their controlling factors.
     We have installed equipment to monitor the rainfall and air temperature outside Furong Cave which is located at Wulong County in Chongqing. The content of CO2in the soil, temperature, humidity and concentration of CO2in Furong Cave were also monitored. The rainfall, soil, bedrocks, soil infiltrating water, cave water and modern speleothems were collected. In this paper, studying on the response of the concentration of trace elements and the ratios of Mg/Ca, Sr/Ca and Mg/Sr of the samples to the surface environment is the main objective. The other goal is to monitor geochemical properties of soil infiltrating water, cave water and modern speleothems reflecting the arid climate at southwestern region in winter and spring from2009to2010. The conclusions are as follows:
     1) The data of soil particle size showed that the diameter of main particles is<16μm which counts for63.2%in all the soil particles. The proportion of particles that have diameter of>63μm is9.07%in the depth of0-10cm while the proportion is5.14%in the depth below10cm indicating the proportion of clay (the particle diameter<4μm) increased with soil depth. The concertrations of Ca, Mg and Sr in the soil are also increased with soil depth. The Sr concentration is positively correlated to clay content. The difference of the element concentration in every soil profile was inferred that there was much unweathered carbonate debris in the soil. The chemical composition of soil was similar to the bedrocks that was the concentrations of Ca>Mg>Sr. However,the mobility of Ca was higher than Mg and Sr in the soil which resulted in the ratios of Mg/Ca and Sr/Ca in the soil were larger than the bedrocks. The higher concentration of Mg in the soil was attributed to the dolomite., More Mg was dissolved in water during the weathering of bedrock so that the ratios of Mg/Sr in the bedrocks was higher than the soil.
     2) The volume of soil infiltrating water varied seasonally and was corresponding to the precipitation and other factors, such as the intensity and the duration time of precipitation, the slope gradient and the soil particle composition.
     3) The concentrations of Ca, Mg, Sr of soil infiltrating water collected in April,2010, were higher than the samples collected in other months. This was explained that the soil infiltrating water was resident in the soil for longer time ascribing to the arid climate at southwestern region in winter and spring from2009to2010. The concentrations of Ca, Mg, Sr of soil infiltrating water were increased along with increasing soil depth. The results indicate that the concentrations of trace elements of soil infiltrating were controlled by the residence time and the distance flowing in the soil which resulted to the positive relationship of Ca, Mg, Sr with each other. The ratios of Mg/Ca and Sr/Ca were increased and the ratios of Mg/Ca were more than1in2011. It was argued that the prior calcite precipitation (PCP) was occurred in the soil because the higher temperature and more intense evaporation resulted in CO2degassing from the soil infiltrating water. The effect of PCP was to remove Ca from the water in the proportion. The maximum value of Mg/Sr was appeared in summer when temperature was highest and the precipitation was the most. In early spring and autumn, the peak value of Mg/Sr was behind the rainfall for the lower temperature. It was illustrated that the ratio of Mg/Sr of soil infiltrating water was controlled by rainfall and temperature. Higher temperature enhanced the sensitivity of Mg/Sr to rainfall.
     4) The content of CO2in cave was more in summer than in winter as same as in soil. The ratios of Mg/Ca and Sr/Ca of drip water were increased from May to August while decreased from September to November in2011. It was estimated that less water in the epikarst zone for the arid climate in winter and spring from2009to2010enhanced the ventilation in rock fracture and PCP was occurred as groundwater flowing in the rocks. The information of the arid climate was transferred by groundwater and responded to the geochemical character of drip water.
     For the drip water of all monitoring sites, the concentration of Ca,Mg, Sr and the Mg/Ca and Sr/Ca ratios presented similar variation in this study. This was attributed to the similar sources and the factors of influence of surface environment to groundwater. It was presumed that the difference of hydrogeology condition was the main factor to result in the different values of concentration and ratios of trace elements. The ratios of Mg/Ca of MP7drip water was more than I which was explained the groundwater flew across the dolomite. The dripping rate of MP5drip water was slower than MP4and the residence time of MP5was longer resulting in CO2degassing from drip water. PCP was occurred and the ratios of Mg/Ca and Sr/Ca of MP5were higher than MP4.
     5) The concentrations of Ca and Mg of the modern speleothems were small difference, while the maximum concentration of Sr was87.87μg/g and the minimum was5.37μg/g. The ratios of Mg/Ca and Sr/Ca of MP5modern speleothems were higher than MP4which was the same as drip water. It showed that the hydrogeology information could be transferred by drip water to the speleothems. Nevertheless, it was not found that the information about the arid climate at southwestern region in winter and spring from2009to2010was recorded in the modern speleothems.
     The partition coefficient of Mg (KMgl) of speleothems was0.0288±0.0038which was calculated by using the data of cave monitoring. The other partition coefficient of Mg (KMg2) was0.01856±0.01389by using the formula. The mean cave temperature was16.9±2.2℃(calculated by KMgl) and10.±8.2℃(calculated by KMg2), respectively. The average temperature of Furong Cave monitored by instrument was16-16.8℃. It showed that the monitoring data approached the actual data.
引文
班凤梅,潘根兴,蔡炳贵,朱健,谭明.北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义.中国岩溶,2009,28(3):243-248.
    班凤梅.洞穴滴水地球化学变化特征及其与十壤过程的联系—以北京石花洞为例.南京农业大学博士学位论文,2007.
    杜金洲,董文明,丁国柱,等.放射性锶和铯在石灰性土壤上的吸着和解吸,核化学与放射化学.1996,19(4):239-242.
    黄俊华,胡超涌,周群峰,杨桂芳.长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究.沉积学报.2002,20(3):442-446.
    李彬,袁道先,林玉石,李红春,覃嘉铭.洞穴次生化学沉积物中Mg、Sr、Ca及其比值的环境指代意义.中国岩溶.2000,19(2):115-122.
    李俊云,李红春,刘子琦,等.贵州中西部洞穴水系与碳酸钙沉积物的Mg/Sr比值和地球化学特征.中国岩溶.2006,25(3):177-186.
    李俊云,李廷勇,于建力,向晓晶,陈昀暄,李玄.重庆芙蓉洞土壤带Mg,Sr元素特征及其环境意义.中国科学:地球科学,2013(出版中).
    李爽,倪师军,张成江,等.锶在土壤中的吸附动力学.核化学与放射化学.2007,29(2):90-95.
    李廷勇,李红春,李俊云,袁道先,唐亮亮,沈川洲,叶成礼.重庆芙蓉洞洞穴沉积物δ13C、δ180特征及意义.地质论评,2008,54(5):712-720.
    李廷勇,李红春,向晓晶,郭子兴,李俊云,周福莉,陈虹利,彭玲莉.碳同位素(613C)在重庆岩溶地区植被-土壤-基岩-洞穴系统运移特征研究.中国科学:地球科学.2012,42(4):526-535.
    林玉石,向官升,张美良,等.论洞穴石笋结构构造转变.西北地质.2009,42(3):36-46.
    刘伟,王世杰,罗维均,容丽.贵州荔波喀斯特与非喀斯特地区土壤水运移的对比研究.地球与环境.2011,39(2):137-149.
    刘英俊,曹励明,李兆麟,等.元素地球化学.北京:科学出版社.1984:360-366.
    刘英俊,曹励明.元素地球化学导论.北京:地质出版社.1987:42-56.
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社.1999:147-211.
    罗维均,于世杰.贵州凉风洞大气降水—十壤水—滴水的δ180信号传递及其意义.科学通报.2008,53(17):2071-2076.
    吕贻忠,李保国.土壤学.北京:中国农业出版社.2006:25-233.
    马志邦,李红春.距今3 ka来京东地区的古温度变化:石笋Mg/Sr记录.科学通报.2002,47(23):1829-1834.
    覃星铭,蒋忠诚,罗为群,邓艳,吴华英,卢茜.典型岩溶农业区洼地和坡地的元素迁移特征 差异.中国农学通报,2010,26(20):349-352.
    王素萍,段海霞,冯建英.20009/2010年冬季全国干旱状况及其影响与成因.干旱气象.2010,28(1):107-112.
    王昕亚,李廷勇,胡蓉,王建力.重庆芙蓉洞洞穴滴水地球化学初探.西南大学学报(自然科学版).2007,29(2):122-126.
    王新中,班凤梅,潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素—以北京石花洞为例.第四纪研究.2005,25(2):248-264.
    王云,魏复盛.土壤环境元素化学.北京:中国环境科学出版社.1995:371-379.
    向晓晶,李廷勇,王建力,李俊云,陈昀暄,周福莉,张天文,白莹.重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响.中国岩溶.2011,30(2):193-199.
    肖德安,罗维均,王世杰,陈生花.喀斯特地区浅层地下水对植被退化的水文地球化学响应—以贵州荔波拉桥小流域为例.地球与环境.2012,40(3):297-304.
    肖德安,王世杰.土壤水研究进展与方向评述.生态环境学报.2009,18(3):1182-1188.
    叶明阳,李廷勇,王建力,李俊云,刘仙,唐亮亮,衣成城,杨圆鉴.芙蓉洞洞穴水Ca2+, Mg2+浓度变化对气候事件的响应.水土保持学报.2009,23(3):82-86.
    衣成城,李廷勇,李俊云,王建力,向晓晶,白莹,唐亮亮,谢世友.芙蓉洞洞穴滴水离子浓度和元素比值变化特征及其环境意义.中国岩溶.2011,30(2):200-208.
    袁道先,覃嘉铭,林玉石,等.桂林20万年石笋高分辨率古环境重建.桂林:广西师范大学出版社.1999.
    袁道先,蔡桂鸿.岩溶环境学.重庆:重庆出版社.1988:141-144.
    张辉.土壤环境学.化学工业出版社,2006,21-27.
    张美良,朱晓燕,林玉石,陈坤琨,彭稳,邹丽霞.桂林盘龙洞滴水的物理化学指标变化研究及其意义.地球与环境.2009,37(1):1-10.
    张平中,陈一萌,Johnnson, K.P.,陈发虎,Ingram, L.,张欣利,张成君,王苏民,庞福顺,龙路德.甘肃武都万象洞滴水与现代石笋同位素的环境意义.科学通报.2004,49(15):1529-1531.
    赵振华.微量元素地球化学原理.北京:科学出版社.1997:183-185.
    中华人民共和国国家统计局.中国统计年鉴—2009-2012.北京:中国统计出版社.
    周根陶,郑永飞.文石-水体系氧同位素分馏机理的实验研究.地球化学,1999,28(6):521-533.
    周厚云,王悦,黄柳苑,麦上泉.氧同位素阶段5c~d时期川东北石笋Mg, Sr和Ba记录及其意义.科学通报,2011,56(33):2791-2796.
    周运超,王世杰,谢兴能,罗维均,黎廷宇.贵州4个洞穴滴水对大气降雨响应的动力学及其意义.科学通报.2004,49(21):2220-2227.
    朱鹤健,何宜庚.土壤地理学.北京:高等教育出版社.1993:51-52.
    朱健,班凤梅.蔡炳贵,谭明.北京石花洞降水至滴水下渗时间示踪观测.第四纪研究,2008,28(3):509-510.
    朱学稳.1994.芙蓉洞的次生化学沉积物.中国岩溶,13(4):357-368.
    Baker, A., Barnes, W.L., Smart, P.L.,1997. Stalagmite drip discharge and organic matter fluxes in Lower Cave, Bristol. Hydrological Processes 11,1541-1555.
    Baker, A., Genty. D., Fairchild. I.J.,2000. Hydrological characterisation of stalagmite dripwaters at Grotte de Villars, Dordogne, by the analysis of inorganic species and luminescent organic matter. Hydrology and Earth System Sciences 4,439-449.
    Baldini J. U. L., McDermott F., Hoffman D. L., Richards D. A., Clipson N.,2008. Very high-frequency and seasonal cave atmosphere pCO2 variability:implications for stalagmite growth and oxygen isotope-based paleoclimate records. Earth Planet. Sci. Lett.272,118-129.
    Baldini, J.U.L., McDermott, F., Fairchild, I.J.,2002. Structure of the 8200 year cold event revealed by a speleothem trace element record. Science 296,2203-2206.
    Baldini, J.U.L., McDermott, F., Fairchild, I.J.,2006. Spatial variability in cave drip water hydrochemistry:implications for stalagmite paleoclimate records. Chemical Geology 235, 290-304.
    Banner J. L., Guilfoyle A., James E. W., Stern L. A., Musgrove M.,2007. Seasonal variations in modern speleothem calcite growth in central Texas, U.S.A. J. Sediment. Res.77,615-622.
    Banner, J.L.,1995. Application of the trace element and isotope geochemistry of Sr to studies of carbonate diagenesis. Sedi-mentology 42,805-824.
    Banner, J.L., Musgrove, M., As erom, Y., Edwards, R.L., Hoff, J.A.,1996. High-resolution temporal record of Holocene ground-water chemistry:tracing links between climate and hydrology. Geology 24,1049-1053.
    Bar-Matthews M., Ayalon A., Matthews A., Sass E., Halicz L.,1996. Carbon and oxygen isotope study of the active water-carbonate system in a karstic Mediterranean cave; implications for paleoclimate research in semiarid regions. Geochim. Cos-mochim. Acta 60,337-347.
    Bar-Matthews, M., Ayalon, A., Kaufman, A., Wasserburg, G.J.,1999. The Eastern Mediterranean paleoclimate as a reflection of regional events:Soreq cave, Israel. Earth and Planetary Science Letters 166,85-95.
    Boch R. and Spotl C,2008. The origin of lamination in stalagmites from Katerloch Cave, Austria: Towards a season-ality proxy. PAGES News 16,1-22.
    Bond-Lamberty B. and Thomson A. (2010) Temperature-associ-ated increases in the global soil respiration record. Nature 464,579-582.
    Borsato, A., Frisia, S., Fairchild, I.J., Somogyi, A., Susini, J.,2007. Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence:implications for incorporation of environmentally significant species. Geochimica Cosmochimica Acta 71, 1494-1512.
    Bourdin, C., Douville, E., Genty, D.,2011. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France. Chemical Geology,290,1-11.
    Buhl, D., Immenhauser, A., Smeulders, G., Kabiri, L., Richter, D.K.,2007. Time series δ26Mg analysis in speleothem calcite:kinetic versus equilibrium fractionation, comparison with other proxies and implications for palaeoclimate research. Chemical Geology 244,715-729.
    Buhmann D. and Dreybrodt W.,1985a. The kinetics of calcite dissolution and precipitation in geologically relevant situations of karst areas. Open system. Chem. Geol.48,189-211.
    Choudens-Sanchez D.2009. Calcite and aragonite precipitation under controlled instantaneous supersaturation:Elucidating theroleof CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism. Journal of Sedimentary Research,79(6):363-376.
    Clemens, S.C., Prell, W.L., Sun, Y.B.,2010. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons:Reinterpreting cave speleothem δ18O. Paleochenogrphy 25,4207-4225.
    Cruz, F.R., Burns, S.J., Jercinovic, M., Karmann, I., Sharp, W.D., Vuille, M.,2007. Evidence of rainfall variations in Southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochimica et Cosmochimica Acta 71,2250-2263.
    Dreybrodt W.,1980. Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems. Chem. Geol.29,89-105.
    Ersek, V., Hostetler, S.W., Cheng, H., Clark, P.U., Anslow, F.S., Mix, A.C., Edwards, R.L.,2009. Environmental influences on speleothem growth in southwestern Oregon during the last 380000 years. Earth and Planetary Science Letters 279,316-325.
    Erik L.G., Neil J.T., Isabel P.M.,2011. A pedogenic goethite record of soil CO2 variations as a response to soil moisture content. Geochimica et Cosmochimica Acta 75,7099-7116.
    Fairchild I J, Borsato A, Tooth A F, Frisia, S., Hawkesworth, C.J., Huang, Y.M., McDermott, F., Spiro, B.,2000. Controls on trace element Sr-Mg compositions of carbonate cave waters: implications for speleothem climatic records. Chem. Geology,166:255-269.
    Fairchild I. J., Tooth A. F., Huang Y. M., Borsato A., Frisia S., McDermott F.,1996. Spatial and temporal variations in water and stalactite chemistry in currently active caves:a precursor to interpretations of past climate. In:Bottrell, S. (Ed.), Proceedings of the Fourth International Symposium on the Geochemistry of the Earth's surface. Ilkley, Yorshire, pp.229-233.
    Fairchild, I.J., Baker, A., Borsato, A., Frisia, S., Hinton, R.W., McDermott, F., Tooth, A.F.,2001. High-resolution, multiple-trace-element variation in speleothems. Journal of the Geological Society, London 158,831-841.
    Fairchild, I.J., Treble P. C.,2009. Trace elements in speleothems as recorders of environmental change. Quaternary Science Reviews 28,449-468.
    Fairchild, I.J., Smith, C.L., Baker, A., Fuller, L., Sp6tl, C., Mattey, D., McDermott, F., EIMF,2006a. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews 75.105-153.
    Fairchild. I.J., Tuckwell, G.W., Baker, A., Tooth, A.F.,2006b. Modelling of dripwater hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK):implications for climate change studies. Journal of Hydrology 321.213-231.
    Feng W. M., Banner J., Guilfoyle A., Musgrove M. L., James E.,2012. Oxygen isotopic fractionation between drip water and speleothem calcite:A 10-year monitoring study, central Texas, USA. Chemical Geology, doi:10.1016/j.chemgeo.2012.02.004.
    Frisia S., Fairchild I. J., Fohlmeister J., Miorandi R., Spo'tl C.and Borsato A.2011. Carbon mass-balance modeling and carbon isotope exchange processes in dynamic caves. Geochim. Cos-mochim. Acta 75,380-400.
    Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F.,2000. Calcite fabrics, growth mechanisms, and environment of formation in speleothems from the Italian Alps and southwestern Ireland. Journal of Sedimentary Research 70,1183-1196.
    Frisia, S., Borsato, A., Fairchild, I.J., McDermott, F., Selmo, E.M.,2002. Aragonite-calcite relationships in speleothems (Grotte de Clamouse, France):environment, fabrics, and carbonate geochemistry. Journal of Sedimentary Research 72,687-699.
    Frumkin, A., Stein, M.,2004. The Sahara-East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem. Earth and Planetary Science Letters 217,451-464.
    Fuchtbauer H., Hardie L. A. Experimentally determined homogeneous distribution coefficients for precipitated magnesium calcites:Application to marine carbonate cements. Abstr. Geol Soc Am, Annual Meeting, Denver, Colo,1976.
    Fuller, L.,2007. High-Resolution Multiproxy Geochemical Holocene Climate Records From 1000-year Old Scottish Stalagmites. Ph.D. thesis (unpublished), University of Birmingham, UK.
    Gabitov, R.I., Watson, E.B.,2006. Partitioning of strontium between calcite and fluid. Geochemistry, Geophysics, Geosystems 7, Q11004. doi:10.1029/2005GC001216.
    Galy, A., Bar-Matthews, M., Halicz, L., O'Nions, R.K.,2002. Mg isotopic composition of carbonate: insight from speleothem formation. Earth and Planetary Science Letters 201.105-115.
    Gascoyne M.,1992. Palaeoclimate determination from cave deposits. Quaternary Science Reviews 11,209-632.
    Gascoyne, M.,1983. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies. Journal of Hydrology 61,213-222.
    Goede, A.,1994. Continuous early last glacial palaeoenvironmental record from a Tasmanian speleothem based on stable isotope and minor element variations. Quaternary Science Reviews 13,283-291.
    Goede, A., McCulloch, M., McDermott, F.. Hawkesworth, C.,1998. Aeolian contribution to strontium and strontium isotope variations in a Tasmanian speleothem. Chemical Geology 149, 37-50.
    Goede, A., Vogel, J.C.,1991. Trace element variations and dating of a Late Pleistocene Tasmanian speleothem. Palaeogeography, Palaeoclimatology, Palaeoecology 88,121-131.
    Griffiths, M. L., Drysdale, R.N., Gagan, M.K., et al.2010. Evidence for Holocene changes in Australian-Indonesian monsoon rainfall from stalagmite trace element and stable isotope ratios. Earth and Planetary Science Letters 292,27-38.
    Hartland, A., Fairchild, I.J., Lead, J.R., Baker, A.,2012. From soil to cave:Transport of trace metals by natural organic matter in cave dripwaters. Chemical Geology, doi:10.1016/j. chemgeo. 2012.01.032.
    Heathwaite, A.L.,1997. Sources and pathways of phosphorus loss from agriculture. In:Tunney, H., Careton, O.T., Brookes, P.C., Johnstone, A.E. (Eds.), Phosphorus Loss From Soil to Water. CAB International, Wallingford, UK, pp.205-223.
    Hellstrom, J.C., McCulloch, M.T.,2000. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem. Earth and Planetary Science Letters 179, 287-297.
    Hendy, C.H., Wilson, A.T.,1968. Palaeoclimate data from speleothems. Nature 219,48-51.
    Holland, H.D., Kirsipu, T.V., Huebner, S., Oxburgh, U.M.,1964. On some aspects of the chemical evolution of cave waters. Journal of Geology 72,36-67.
    Hu C. Y, Huang J. H, FangN. Q. et al.,2005. Adsorbed silicain sta-Iagmite carbonate and its relationship to past rainfall. Geochimica et CosmochimicaActa.69,2285-2292.
    Huang Y. M., Fairchild I. J.,2000. Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim. Cosmochim. Acta.
    Huang, Y., Fairchild, I.J.,2001. Partitioning of Sr2+ and Mg2+ into calcite under arstanalogue experimental conditions. Geochimica et Cosmochimica Acta 65,47-62.
    Huang, Y., Fairchild, I.J., Borsato, A., Frisia, S., Cassidy, N.J., McDermott, F., Hawkesworth, C.J., 2001. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chemical Geology 175,429-448.
    Johnson, K.R., Hu, C., Belshaw, N.S., Henderson, G.M.,2006. Seasonal trace-element and stable isotope variations in a Chinese speleothem:the potential for highresolution paleomonsoon reconstruction. Earth and Planetary Science Letters 244,394-407.
    Karmann, I., Cruz, F.W., Viana Jr., O., Burns, S.J.,2007. Climate influence on trace element geochemistry of waters from Santana-Pe'rolas cave system, Brazil.Chemical Geology 244, 232-247.
    Katz A.,1973. The interaction of magnesium w ith calcite during crystal growth at 25-90℃ and one atmosphere. Geochim Cosmochim Acta 37,1563-1586.
    Katz, A.,1973. The interaction of magnesium with calcite during crystal growth at 25-95℃ and one atmosphere. Geochimica et Cosmochimica Acta 36,481-496.
    Kaufman, A., Wasserburg,G., Porcelli, D.. Bar-Matthews, M., Ayalon, A., Halicz, L.,1998. U-Th isotope systematics from the Soreq cave, Israel and climatic correlations. Earth and Planetary Science Letters 156,141-155.
    Kaufmann G, Dreybrodt W.,2004. Stalagmite growth and palaeo-climate:an inverse approach. Earth and Planetary Science Letters 224,529-545.
    Kinsman D. J.J., Holland H. K.1969. The co-precipitation of cations with CaCO3-Ⅳ. The co-precipitation of Sr2+ with aragonite between 16℃ and 96℃. Geochimica et Cosmochimica Acta 33,1-17.
    Kowalczk A. and Froelich P. N.2010. Cave air ventilation and CO2 outgassing by radon-222 modeling:how fast do caves breathe? Earth Planet. Sci. Lett.289,209-219.
    Ku T. L., Li H. C.,1998. Speleothems as high-resolution paleoenvironment archives:Records from northeastern China. Proc Indian Acad Sci 107,321-330.
    Li T.-Y., Li H.-C., Xiang X.-J., Kuo T.-S., Li J.-Y., Zhou F.-L., Chen H.-L., Peng L.-L.2011. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area. Sci China Earth Sci, doi:10.1007/sl 1430-011-4294-y.
    Li, H.C., Ku, T.H., You, C.F., Cheng, H., Edwards, R.L., Ma, Z.B., Tsai, W.S., Li, M.D.,2005. 87Sr/86Sr and Sr/Ca in speleothems for paleoclimate reconstruction in Central China between 70 and 280 kyr ago. Geochimica et Cosmochimica Acta 69,3933-3947.
    Li, T.Y., Shen, C.C., Li, H.C., Li, J.Y.. Chiang, H.W., Song, S.R., Yuan, D.X., Lin,C.D.J., Gao, P., Zhou, L.P., Wang, J.L., Ye, M.Y., Tang, L.L., Xie, S.Y. 2011. Oxygen and carbon isotopic systematics of aragonite speleothems and wateer in Furong Cave, Chongqing, China. Geochimica et Cosmochimica Acta 75,4140-4156.
    Lorens, R.B.,1981. Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochimica et Cosmochimica Acta 45,553-561.
    Mattey D. P., Fairchild I. J., Atkinson T. C., Latin J. P., Ainsworth M. and Durell R.,2010. Gibraltar and trace elements in modern speleothem from St Michaels Cave, Seasonal microcli-mate control of calcite fabrics, stable isotopes. Geol. Soc. Lond. Spec. Publ.336,323-344.
    Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., Frisia, S.,2008. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem:reconstructed drip water and relationship to local precipitation. Earth and Planetary Science Letters 269, 80-95.
    McDermott, F.,2004. Palaeo-climate reconstruction from stable isotope variations in speleothems:a review. Quaternary Science Reviews 23,901-918.
    McDonald, J., Drysdale, R., Hill, D.,2004. The 2002-2003 El Nino recorded in Australian cave drip waters:implications for reconstructing rainfall histories using stalagmites. Geophysical Research Letters 31 (L22202). doi:10.1029/2004GL020859.
    McDonald, J., Drysdale. R., Hill, D., Chisari, R., Wong, H.,2007. The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia. Chemical Geology 244,605-623.
    McMillan, E.A., Fairchild, I.J., Frisia, S., Borsato, A., McDermott, F.,2005. Annual trace element cycles in calcite-aragonite speleothems:evidence of drought in the western Mediterranean 1200-1100 yr BP. Journal of Quaternary Science 20,423-433.
    Miorandi R., Borsato, A., Frisia, S., Fairchild, I. J., and Richter, D. K. (2010) Epikarst hydrology and implications for stalag-mite capture of climate changes at Grotta di Ernesto (NE Italy):results from long-term monitoring. Hydrol. Processes. doi:10.1002/hyp.7744.
    Morse, J.W., Bender, M.L.,1990. Partition coefficients in calcite:examination of factors influencing the validity of experimental results and their application to natural systems. Chemical Geology 82,265-277.
    Mucci A.,1987. Influence of temperature on the composition of magnesium calcite overgrpwths precipitated from sea water. Geochim Cosm o-chim Acta 51,1977-1984.
    Mucci A., Morse J.W.,1990. Chemistry of low-temperature abiotic calcites:experimental studies on coprecipitation, stability, and fractionation, Rev. Aq. Sci.3,217-254.
    Murray, J. W.,1954. The deposition of calcite and aragonite in caves. TheJournal of Geology,62(13), 481-492.
    Musgrove, M., Banner, J.L.,2004. Controls on the spatial and temporal variability of vadose dripwater geochemistry:Edwards Aquifer, central Texas. Geochimica et Cosmochimica Acta 68, 1007-1020.
    Nurnberg, D., Muller, A., Schneider, R. R.,2000. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca rates in planktic foraminifera:A comparison to sea surface temperature estimates from oxygen isotopes, and foraminiferal transfer function. Paleoceanogra phy,15(1):124-134.
    Oster J. L., Montanez I. P., Guilderson T. P., Sharp W. D., Banner J. L.2010. Modeling speleothem δ13C variability in a central Sierra Nevada cave using 14C and 87Sr/86Sr. Geochim. Cosmochim. Acta 74,5228-5242.
    Oster J. L., Montanez I. P., Keliey N. P.,2012. Response of a modern cave system to large seasonal precipitation variability. Geochim. Cosmochim. Acta 91,92-108.
    Oster J. L., Montafiez I. P., Sharp W. D., Cooper K. M.,2009. Late Pleistocene California droughts during deglaciation and Arctic warming. Earth Planet. Sci. Lett.288,434-443.
    Oster, J.L., Montanez, I.P., Kelley, N.P.,2012. Response of a modern cave system to large seasonal precipitation variability. Geochimica et Cosmochimica Acta 91,92-108.
    Pape J. R., Banner J. L., Mack L. E., Musgrove M. E., Guilfoyle A.,2010. Controls on oxygen isotope variability in precipitation and cave drip waters, central Texas, USA. J. Hydrol.385, 203-215.
    Paquette, J., Reeder, R.J.,1995. Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochimica et Cosmochimica Acta 59,735-749.
    Pausata, F.S.R., Battisti, D.S., Nisancioglu, K.H., Bitz. C.M.,2011. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event. Nature Geoscience 4,474-480.
    Peterse, F., Prins. M.A., Beets, C.J., Troelstra, S.R., Zheng, H.B., Gu, Z.Y., Schouten, S., Damste, J.S.S.,2011. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation. Earth and Planetary Science Letters 301,256-264.
    Pingitore, N.E., Eastman. M.P.,1986. The coprecipitation of Sr2+ with calcite at 25℃ and 1 atmosphere. Geochimica et Cosmochimica Acta 50,2195-2203.
    Richter, D.K., Gotte, T., Niggemann, S., Wurth. G.,2004. REE3+ and Mn2+ activated cathodoluminescence in lateglacial and Holocene stalagmites of central Europe:evidence for climatic processes? The Holocene 14,759-767.
    Rickaby, R.E.M., Elderfield, H.,1999. Planktonic foraminiferal Cd/Ca:paleonutrients or paleotemperature? Paleoceanography 14,293-303.
    Riechelmann S., Buhl D., Schroder-Ritzrau, A., Spotl, C., Riechelmann, D.F.C., Richter, D.K., Kluge T., Marx T., Immenhauser A.,2012. Hydrogeochemistry and fractionation pathways of Mg isotopes in a continental weathering system:Lessons from field experiments. Chemical Geology 300-301,109-122.
    Riechelmann D.F.C., Schroder-Ritzrau, A., Scholz, D., Spotl, C., Richter, D.K., Mangini, A.,2011. Monitoring of the Bunker Cave (NW Germany):Assessing the complexity of cave environment al parame ters. Journal of Hydrology 409,682-695.
    Rimstidt, J.D., Balog, A., Webb, J.,1998. Distribution of trace elements between carbonate minerals and aqueous solutions. Geochimica Cosmochimica Acta 62,1851-1863.
    Roberts, M S., Smart, P L,.Hawkesworth C J, Perkins W T, Pearce N J G.,1999. Trace element variations in coeval Holocene speleothems from GB Cave, southwest England. The Holocene 9, 707-713.
    Roberts, M.S., Smart, P., Baker, A.,1998. Annual trace element variations in a Holocene speleothem. Earth and Planetary Science Letters 154,237-246.
    Sherwin, C. M., Baldini, J.U.L.2011. Cave air and hydrological controls on prior caleite precipitation and stalagmite growth rates:Implications for palaeoclimate reconstructions using speleothems. Geochimica et Cosmochimica Acta 75,3915-3929.
    Smart P L and Friederich H.1986. Water movement and storage in the unsaturated zone of a maturely karstified aquifer, Mendip Hills, England. In Proceedings of the Conference on Environmental Problems in Karst Terrains and their Solutions. National Wter wells Assoiation, Bowling Green. K.Y.57-87.
    Spotl C., Fairchild I. J., Tooth A. F.,2005. Cave air control on dripwater geochemistry, Obir Caves (Austria):implications for speleothem deposition in dynamically ventilated caves. Geo-chim. Cosmochim. Acta69,2451-2468.
    Sunqvist. H.S., Seibert, J., Ho lmg ren, K...2007. Understanding conditions behind speleothem formation in Korallgrottan, northwestern Sweden. Journal of Hydrology 347,13-22.
    Tan, M., Baker, A., Genty, D., Smith, C, Esper, J., Cai, B.G.,2006. Applications of stalagmite laminae to paleoclimate reconstructions:comparison with dendrochronology/climatology. Quaternary Science Reviews 25,2103-2117.
    Tooth, A.F., Fairchild, I.J.,2003. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters, Crag Cave, southwest Ireland. Journal of Hydrology 273,51-68.
    Treble, P., Shelley, J.M.G., Chappell, J.,2003. Comparison of high-resolution subannual records of trace elements in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia. Earth and Planetary Science Letters 216,141-153.
    Treble, P.C., Chappell, J., Gagan, M.K., Harrison, T.M., McKeegan, K.D.,2005b. In situ measurement of seasonal d18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth and Planetary Science Letters 233,7-32.
    Treble, P.C., Chappell, J., Shelley, J.M.G.,2005a. Complex speleothem growth processes revealed by trace element mapping and scanning electron microscopy of annual layers. Geochimica Cosmochimica Acta 69,4855-4863.
    Verheyden, S., Genty, D., Cattani, O., Breukelen, M.R. v.,2008. Water release patterns of heated speleothem calcite and hydrogen isotope composition of fluid inclusions. Chemical Geology, 247,266-281.
    Verheyden, S., Keppens, E., Fairchild, I.J., McDermott, F.,Weis, D.,2000. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem:implications for paleoclimate reconstructions. Chemical Geology 169,131-144.
    Wang, Y., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., Dorale, J.A.,2001. A high-resolution absolute dated late pleistocene monsoon record from Hulu cave, China. Science 294,2345-2348.
    Whitaker T, Jones D., Baldini J. U. L. and Baker A. J.,2010. A high-resolution spatial survey of cave air carbon dioxide concentrations in Scoska Cave (North Yorkshire, UK):impli-cations for calcite deposition and re-dissolution. Cave Karst Sci.36,85-92.
    White W. B.,1988. Geomorphology and Hydrology of Karst Terrains. Oxford University Press, New York.
    Wolff, E.W., Fischer, H., Fundel, F., et al.,2007. Southern ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 449,491-496.
    Wong, C.I., Banner, J.L., Musgrove, M.,2011. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation:Implications for and modeling of speleothem paleoclimate records. Geochimica et Cosmochica Acta,75,3514-3529.
    Wynn,P.M., Fairchild, I.J., Baker, A., Baldini, J.U.L.,McDermott, F.,2008. Isotopic archives of sulphate in speleothems. Geochimica Cosmochimica Acta 72,2465-2477.
    Zhou H., Chi B., Lawrence M., Zhao J., Yan J., Greig A., Feng Y.2008. High resolution and precisely date record of weathering and hydrological dynamics recorded by manganese and rare-earth elements in a stalagmite from Central China. Quaternary Research 69,438-446.
    Zhou, H.Y., Wang, Q., Zhao, J.X., Zheng, L.N., Guan, H.Z.. Feng, Y.X., Greig, A.,2008c. Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications. Palaeogeography. Palaeoclimato logy, Palaeoecology 270,128-138.
    Zhou, J., Lundstrom, C.C., Fouke, B., Panno, S., Hackley, K., Curry, B.,2005. Geochemistry of speleothem records from southern Illinois:development of (234U)/(238U) as a proxy for paleoprecipitation. Chemical Geology 221,1-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700