用户名: 密码: 验证码:
纳米TiO_2光催化去除水中含氧酸盐的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体中多种含氧酸盐污染物,给人体生命健康带来极大危害。硝酸盐是普遍存在于地下水中的一种典型的含氧酸盐污染物,过量摄入硝酸盐可引发高铁血红蛋白症和诱发癌症,目前仍没有较完善的地下水硝酸盐处理方法。纳米TiO_2光催化法是一种颇具应用前景的水处理方法,本文以纳米TiO_2光催化法为主要研究方法,选取Evonik P90为TiO_2催化剂,通过室内试验,探讨了以硝酸盐为主的含氧酸盐污染物的光催化还原去除。论文的主要结论包括以下几个方面:
     (1)制备了改性的P90/Ag光催化剂,与P90相比,P90/Ag具备更强的光催化活性,光照35min后,全部NO_3~-被还原为84.5%的N_2和15.5%的NH_4~+。分析了溶液pH值、催化剂用量、初始硝酸盐浓度以及甲酸与硝酸盐摩尔比(IFNR)对硝酸盐光催化还原的影响。结果表明,酸性pH条件有利于硝酸盐的还原,催化剂用量为1g/L时硝酸盐去除速率最快,增加硝酸盐的初始浓度可以提高其绝对去除速率,而增加IFNR对提高光催化活性的效果不甚明显。试验结果为选用合适的光催化剂及寻求优化反应条件提供了试验依据。
     (2)基于光催化直接去除饮用水中硝酸盐存在的不足,提出了用离子交换与光催化还原相耦合去除地下水中硝酸盐的方法。试验结果表明,光催化还原法可以高效去除模拟盐水和真实离子交换废液中的硝酸盐,且处理后的废液可以重复利用于离子交换树脂的再生过程,认为离子交换与光催化还原耦合法是可行的。耦合法相比单一的离子交换法或光催化还原法,不仅可以降低处理和排放离子交换废液的高昂费用和节省NaCl的消耗,而且通过间接处理离子交换废液而不是地下水,可以最小化副产物(NO_2~-,NH_4~+)对水质的二次污染,使处理后的地下水水质得到保证,从而为地下水中硝酸盐的去除提供了一条新途径。
     (3)在实验室研究的基础上,将试验规模放大70倍数,分析探讨了中试放大条件下硝酸盐的光催化去除效果。以PhotoCat@设备为中试反应器,清水中硝酸盐的光催化去除难以实现,而离子交换盐水中的NO_3~-以0.7mg-N/(L min)的速率被有效去除。由于PhotoCat@设备采用UV254低压汞灯为紫外光源,甲酸光解和光催化氧化的协同作用,使得甲酸和硝酸盐以接近1:1的比例共同去除得以实现。中试结果进一步展现了离子交换和光催化耦合法的应用潜力,为光催化去除硝酸盐的工业化应用提供了科学依据。
     (4)将纳米TiO_2光催化还原法拓展至溴酸盐等含氧酸盐的光催化去除,分别考查了含氧酸盐的光催化还原速率、反应动力学、还原产物以及与甲酸的共同去除效应。结果表明,光催化条件下,溴酸盐、氯酸盐、亚硝酸盐、重铬酸盐、碘酸盐和亚氯酸盐均得到了不同程度的去除,仅高氯酸盐不能被光催化去除。溴酸盐、氯酸盐和重铬酸盐分别被还原为单一的还原产物Br-、Cl-和Cr(III),可以实现与甲酸共同降解;而生成多种还原产物的含氧酸盐(如NO_3~-、NO_2~-)难以实现与甲酸的共同全部去除。含氧酸盐与甲酸共同降解的试验,为光催化直接去除饮用水中的含氧酸盐污染物和减少甲酸的二次污染提供了参考依据。
     (5)分组比较了光催化条件下各含氧酸盐的还原速率,结果表明,三种卤素含氧酸盐的光催化还原速率从大到小排序为IO_3~->BrO_3~->ClO_3,三种不同价态的含氯酸盐的光催化还原速率从大到小排序为ClO_2~->ClO_3~->ClO_4~-,酸性条件下各含氧酸盐的光催化反应速率从大到小排序为:BrO_3~->NO_2~->ClO_3~->NO_3~->Cr(VI),并从标准电极电势、原子半径、电子轨道排布式、电子亲和能和X-O键离解能等方面探讨了影响含氧酸盐还原速率的原因。
Oxo-anions contaminants in water pose a great risk to human health. As a typicaloxo-anions contaminant, nitrate is prevalent in groundwater. Intake of excess nitrate maycause methemoglobinemia and cancer. So far there has been no perfect nitrate reductiontechnology for drinking water treatment. Photocatalysis is a promising technology for watertreatment. This study investigated the photocatalytic reduction of nitrate and other oxo-anionsthrough laboratory experiments mainly using photocatalysis with Evonik P90as the titaniumdioxide photocatalyst. The major conclusions of this work are presented as follows:
     (1) P90/Ag photocatalyst was synthesized, which showed higher photocatalytic activitythan P90. After35minutes of irradiation, nitrate was completely removed to84.5%N_2and15.5%NH_4~+using P90/Ag. The influence of pH, catalyst dosage, initial nitrate concentrationand formic acid-to-nitrate molar ratio (IFNR) on photocatalytic nitrate reduction wasinvestigated. The results showed that acid condition was favorable for nitrate reduction;Nitrate removal was fastest at catalyst dosage of1g/L; Increasing the initial nitrateconcentration inhanced it's absolute removal rate; Increasing IFNR did not significantlyincrease photocatalytic activity. Those results provided experimental support for choosing asuitable catalyst and seeking for optimized reaction condition.
     (2) Based on the shortcomings of direct photocatalytic nitrate reduction in drinking water,a technology that combining ion exchange with photocatalytic reduction was proposed toremove nitrate from groundwater. Experimental results showed that it was effective to removenitrate from synthetic and real ion exchange brines using photocatalytic reduction, and thetreated brine could be reused for regeneration of ion exchange resins. It is believed that ionexchange combined with photocatalytic reduction is a feasible way to remove nitrate.Compared with single ion exchange or photocatalysis, the combination technology can greatlydecrease the expense on brine discharge or treatment and save salt consumption, moreover, bytreating the ion exchange brine instead of groundwater, it can minimize the contamination ofgroundwater with side products(NO_2~-,NH_4~+) and ensure the water quality. Therefore, Thiscombination technology can be a new approach for nitrate reduction from groundwater.
     (3) Based on laboratory research work, the scale of experiment was enlarged by70times,and photocatalytic nitrate reduction was examined under pilot scale condition usingPhotoCat@as the pilot scale photoreactor. The results showed that nitrate removal in nanopurewater was hard to achieve, while nitrate in ion exchange brine was effectively removed at arate of0.7mg-N/(L min). Using UV254low pressure mercury lamp as the light source, bothphotolysis and photocatalytic oxidation of formic acid occurred, which made simultaneousremoval of formic acid and nitrate possible. Those results further testified the potential of thecombination of ion exchange and photocatalytic reduction, and provided scientific proof forindustrial application of photocatalytic nitrate reduction.
     (4) Expanding photocatalysis from removal of nitrate to bromate and other oxo-anions,this study investigated their photocatalytic removal activity, kinetics, by-products as well assimultaneous removal with formic acid. The results showed that bromate, chlorate, nitrite,dichromate, iodate and chlorite could be photocatalytically reduced, but perchlorate could notbe removed. Bromate, chlorate and dichromate were reduced to bromide, chloride andtrivalent chromium, respectively, and could be simultaneously removed with formic acid. Butfor those yielding multiple byproducts (e.g., NO_3~-、NO_2~-), they were hardly simultaneouslyremoved with formic acid. The study of simultaneous removal of oxo-anions with formic acidprovided important reference for removal of oxo-anions contaminants directly from drinkingwater and minimization the secondary pollution of formic acid.
     (5) Photocatalytic removal rates of oxo-anions were compared. Halogen oxoanions weresorted as IO_3~->BrO_3~->ClO_3, and chlorates were sorted as ClO_2~->ClO_3~->ClO_4~-. Under acidiccondition, oxo-anions were sorted as BrO_3~->NO_2~->ClO_3~->NO_3~->Cr(VI). The standardreduction potential, atomic radii, electron orbital configuration, electron affinity, and the bonddissociation energy were good indicators for the relative of reduction using photocatalysis.
引文
蔡少华,罗国斌.1998.关于卤素含氧酸及其盐氧化还原规律性的探讨.大学化学,13(1):54~56
    陈士夫,赵梦月,陶跃,武梁新.1996.玻璃纤维附载TiO2光催化降解有机磷农药.环境科学,17(4):33-35
    崔宝臣,张富,崔福义,孔庆双,刘淑芝.2008. TiO2光催化还原去除饮用水中硝酸盐的实验研究.应用化工,37(3):265~292
    范潇梦,关小红,马军.2008.零价铁还原水中硝酸盐的机理及影响因素.中国给水排水,24(14):5~9
    费宇雷,曹国民,张立辉,迟峰,李栋.2011.离子交换树脂脱除地下水中的硝酸盐.净水技术,30(1):20~24
    付宏祥,吕功煊,张宏,李树本.1998. Cr (VI)离子在TiO2表面的吸附与光催化还原消除.环境科学,3:80~83
    高春朵,陈广庚.1999.卤素含氧酸及其盐氧化还原性浅析.聊城师院学报自然科学版,12(4):47:50
    黄民生.1995.略论地下水硝酸盐氮污染及其防治措施.上海环境科学,14(9):26~27
    姜桂华,王文科,杨晓婷,李永涛.2002.关中盆地潜水硝酸盐污染分析及防治对策.水资源保护,(2):6~8
    金赞芳,王飞儿,陈英旭.2004.城市地下水硝酸盐污染及其成因分析.土壤学报,41(2):252~258
    康海彦.2007.纳米铁系金属复合材料去除地下水中硝酸盐污染的研究.[博士学位论文].天津:南开大学
    陆彩霞.2010.氢自养反应器去除饮用水中高浓度硝酸盐的研究.[博士学位论文].天津:天津大学
    栾勇,傅平丰,戴学刚,杜竹玮.2004.金属离子掺杂对TiO2光催化性能的影响.化学进展,16(5):738~746
    彭珂珊.2000.21世纪中国水资源危机.水利水电科技进展,20(5):13~16
    沈琳.2009.我国水资源污染的现状,原因及对策.生态经济,4:182~185
    沈梦蔚.2004.地下水硝酸盐去除方法的研究.[硕士学位论文].杭州:浙江大学
    孙剑辉,李成杰,刘浩,孙胜鹏,范貌宏,王国良.2008.水体中高氯酸盐污染控制技术.环境工程学报,2(4):461~465
    唐玉朝,胡春,王怡中.2002. TiO2光催化反应机理及动力学研究进展.化学进展,14(3):192~199
    童桂华.2008.去除地下水硝酸盐PRB介质试验研究.[硕士学位论文].青岛:中国海洋大学
    王楠.2010.纳米TiO2表面改性及光催化降解典型有毒污染物研究.[硕士学位论文].武汉:华中科技大学
    易秀,薛澄泽.1993.氮肥在娄土中的渗漏污染研究.农业环境保护,12(6):250~253
    于佳,唐玄乐,刘家仁.2008.高氯酸盐对人体健康影响的研究进展.环境与健康杂志,25(7):648~650
    中国环境状况公报.2011.中华人民共和国环境保护部
    张立辉,曹国民,盛梅,刘勇弟,张子间.2010.地下水硝酸盐去除技术进展.净水技术,29(5):4~10
    张苓苓.2010. TiO2光催化去除水中溴酸盐的动力学影响因素研究.[硕士学位论文].哈尔滨:哈尔滨工业大学
    张维理,田哲旭,张宁,李晓齐.1995.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1(2):80~87
    赵同科,张成军,杜连凤,刘宝存,安志装.2007.环渤海七省(市)地下水硝酸盐含量调查.农业环境科学学报.26(2):779~783
    赵秀春,王成见,孟春霞.2008.青岛市地下水中硝酸盐氮的污染及其影响因素分析.水文,28(5):94~96
    周爱国,蔡鹤生,刘存富.2001.硝酸盐中15N和18O的测试新技术及其在地下水氮污染防治研究中的进展.地质科技情报,20(4):94~98
    Akmehmet B I, Inel Y.1996. Photocatalytic degradation of organic contaminants in semiconductorsuspensions with added H2O2. Journal of Environmental Science&Health Part A,31(1):123~138
    Akunna J C, Bizeau C, Moletta R.1993. Nitrate and nitrite reductions with anaerobic sludge using variouscarbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Research,27(8):1303~1312.
    Alowitz M J, Scherer M M.2002. Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal.Environmental Science&Technology,36(3):299~306
    Anderson J A.2012. Simultaneous photocatalytic degradation of nitrate and oxalic acid over gold promotedtitania. Catalysis Today,181(1):171~176
    Bems B, Jentoft F C, Schl gl R.1999. Photoinduced decomposition of nitrate in drinking water in thepresence of titania and humic acids. Applied Catalysis B: Environmental,20(2):155~163
    Bhatkhande D S, Pangarkar V G, Beenackers A A.2001. Photocatalytic degradation for environmentalapplications–a review. Journal of Chemical Technology and Biotechnology,77(1):102~116
    Blake D M1994Bibliography of work on the photocatalytic removal of hazardous compounds from waterand air, National Renewable Energy Lab., Golden, CO (United States)
    Burow K R, Nolan B T, Rupert M G, Dubrovsky N M.2010. Nitrate in Groundwater of the United States,1991~2003. Environmental Science&Technology,44(13):4988~4997
    Carraway E R, Hoffman A J, Hoffmann M R.1994. Photocatalytic oxidation of organic acids onquantum~sized semiconductor colloids. Environmental Science&Technology,28(5):786~793
    Chaplin B P, Roundy E, Guy K A, Shapley J R, Werth C J.2006. Effects of natural water ions and humicacid on catalytic nitrate reduction kinetics using an alumina supported Pd-Cu catalyst. EnvironmentalScience&Technology,40(9):3075~3081
    Chen J, Tang C, Sakura Y, Yu J, Fukushima Y.2005. Nitrate pollution from agriculture in differenthydrogeological zones of the regional groundwater flow system in the North China Plain.Hydrogeology Journal,13(3):481~492
    Chenthamarakshan C, Yang H, Savage C, Rajeshwar K.1999. Photocatalytic reactions of divalent lead ionsin UV~irradiated titania suspensions. Research on chemical intermediates,25(9):861~876
    Chenthamarakshan C, Rajeshwar K.2000. Photocatalytic reduction of divalent zinc and cadmium ions inaqueous TiO2suspensions: an interfacial induced adsorption–reduction pathway mediated by formateions. Electrochemistry communications,2(7):527~530
    Chenthamarakshan C, Rajeshwar K, Wolfrum E J.2000. Heterogeneous photocatalytic reduction of Cr(VI)in UV irradiated titania suspensions: Effect of protons, ammonium ions, and other interfacial aspects.Langmuir,16(6):2715~2721
    Choi J, Park H, Hoffmann M R.2009. Effects of single metal~ion doping on the visible lightphotoreactivity of TiO2. The Journal of Physical Chemistry C,114(2):783~792
    Choi W, Termin A, Hoffmann M R.1994. The role of metal ion dopants in quantum sized TiO2: correlationbetween photoreactivity and charge carrier recombination dynamics. The Journal of PhysicalChemistry,98(51):13669~13679
    Chong M N, Jin B, Chow C W, Saint C.2010. Recent developments in photocatalytic water treatmenttechnology: A review. Water Research,44(10):2997~3027
    Comly H H.1945. Cyanosis in infants caused by nitrates in well water. Journal of the American MedicalAssociation,129(2):112~116
    Costa J L, Massone H, Mart nez D, Suero E E, Vidal C M, Bedmar F.2002. Nitrate contamination of a ruralaquifer and accumulation in the unsaturated zone. Agricultural water management,57(1):33~47
    De Roos A J, Ward M H, Lynch C F, Cantor K P.2003. Nitrate in public water supplies and the risk ofcolon and rectum cancers. Epidemiology,14(6):640~649
    Diebold U.2003. The surface science of titanium dioxide. Surface science reports,48(5):53~229
    Doudrick K, Monzón O, Mangonon A, Hristovski K, Westerhoff P.2011. Nitrate Reduction in Water UsingCommercial Titanium Dioxide Photocatalysts (P25, P90, and Hombikat UV100). Journal ofEnvironmental Engineering,138(8):852~861
    Doudrick K, Yang T, Hristovski K, Westerhoff P.2013. Photocatalytic nitrate reduction in water: Managingthe hole scavenger and reaction by-product selectivity. Applied Catalysis B: Environmental,136-137:40~47
    Edwards A.1973. Isotopic tracer techniques for identification of sources of nitrate pollution. Journal ofEnvironmental Quality,2(3):382~387
    EEA.2003. Europe's environment-the third assessment. The European Environment Agency, Copenhagen
    Epron F, Gauthard F, Pinéda C, Barbier J.2001. Catalytic Reduction of Nitrate and Nitrite on Pt–Cu/Al2O3Catalysts in Aqueous Solution: Role of the Interaction between Copper and Platinum in the Reaction.Journal of Catalysis,198(2):309~318
    Forouzan F, Richards T C, Bard A J.1996. Photoinduced reaction at TiO2particles. Photodeposition fromNill solutions with oxalate. The Journal of Physical Chemistry,100(46):18123~18127
    Frank S N, Bard A J.1977a. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueoussolutions at semiconductor powders. The Journal of Physical Chemistry,81(15):1484~1488
    Frank S N, Bard A J.1977b. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions attitanium dioxide powder. Journal of the American Chemical Society,99(1):303~304
    French R A, Jacobson A R, Kim B, Isley S L, Penn R L, Baveye P C.2009. Influence of Ionic Strength, pH,and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles. EnvironmentalScience&Technology,43(5):1354~1359
    Fujishima A, Honda K.1972. Electrochemical photolysis of water at the surface of an irradiatedsemiconductor. Nature,238
    Fujishima A, Inoue T, Honda K.1979. Competitive photoelectrochemical oxidation of reducing agents atthe titanium dioxide photoanode. Journal of the American Chemical Society,101(19):5582~5588
    Fujishima A, Rao T N, Tryk D A.2000. Titanium dioxide photocatalysis. Journal of Photochemistry andPhotobiology C: Photochemistry Reviews,1(1):1~21
    Gao W, Guan N, Chen J, Guan X, Jin R, Zeng H, Liu Z, Zhang F.2003. Titania supported Pd-Cu bimetalliccatalyst for the reduction of nitrate in drinking water. Applied Catalysis B: Environmental,46(2):341~351
    Gao W, Jin R, Chen J, Guan X, Zeng H, Zhang F, Guan N.2004. Titania-supported bimetallic catalysts forphotocatalytic reduction of nitrate. Catalysis Today,90(3):331~336
    Ghaly M Y, Farah J Y, Fathy A M.2007. Enhancement of decolorization rate and COD removal from dyescontaining wastewater by the addition of hydrogen peroxide under solar photocatalytic oxidation.Desalination,217(1):74~84
    Gr tzel C, Jirousek M, Gr tzel M.1990. Decomposition of organophosphorus compounds onphotoactivated TiO2surfaces. J. Mol. Catal.:375–387
    H rold S, Tacke T, Vorlop K D.1993a. Catalytical removal of nitrate and nitrite from drinking water:1.Screening for hydrogenation catalysts and influence of reaction conditions on activity and selectivity.Environmental technology,14(10):931~939
    H rold S, Vorlop K D, Tacke T, Sell M.1993b. Development of catalysts for a selective nitrate and nitriteremoval from drinking water. Catalysis Today,17(1):21~30
    Hamilton P A, Helsel D R.2005. Effects of Agriculture on Ground-Water Quality in Five Regions of theUnited States. Ground Water,33(2):217~226
    Harbour J R, Hair M L.1979. Radical intermediates in the photosynthetic generation of hydrogen peroxidewith aqueous zinc oxide dispersions. Journal of Physical Chemistry,83(6):652~656
    Hernández-Alonso M D, Coronado J M, Javier Maira A, Soria J, Loddo V, Augugliaro V.2002. Ozoneenhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanideions. Applied Catalysis B: Environmental,39(3):257~267
    Hill A.1982. Nitrate distribution in the ground water of the Alliston region of Ontario, Canada. GroundWater,20(6):696~702
    Hirayama J, Kondo H, Miura Y K, Abe R, Kamiya Y.2012. Highly effective photocatalytic systemcomprising semiconductor photocatalyst and supported bimetallic non-photocatalyst for selectivereduction of nitrate to nitrogen in water. Catalysis Communications,20:99~102
    Hiscock K, Lloyd J, Lerner D, Carey M.1989. An engineering solution to the nitrate problem of a boreholeat Swaffham, Norfolk, UK. Journal of hydrology,107(1):267~281
    Hong C S, Wang Y, Bush B.1998. Kinetics and products of the TiO2, photocatalytic degradation of2-chlorobiphenyl in water. Chemosphere,36(7):1653~1667
    Huang C P, Wang H W, Chiu P C.1998. Nitrate reduction by metallic iron. Water Research,32(8):2257~2264
    Hurum D C, Agrios A G, Gray K A, Rajh T, Thurnauer M C.2003. Explaining the enhanced photocatalyticactivity of Degussa P25mixed~phase TiO2using EPR. The Journal of Physical Chemistry B,107(19):4545~4549
    Kato H, Kudo A.2002. Photocatalytic reduction of nitrate ions over tantalate photocatalysts. PhysicalChemistry Chemical Physics,4(12):2833~2838
    Ketir W, Bouguelia A, Trari M.2009. NO-3removal with a new delafossite CuCrO2photocatalyst.Desalination,244(1):144~152
    Khalil L, Mourad W, Rophael M.1998. Photocatalytic reduction of environmental pollutant Cr(VI) oversome semiconductors under UV/visible light illumination. Applied Catalysis B: Environmental,17(3):267~273
    Knobeloch L, Salna B, Hogan A, Postle J, Anderson H.2000. Blue babies and nitrate contaminated wellwater. Environmental Health Perspectives,108(7):675
    Kolpin D W.1997. Agricultural chemicals in groundwater of the midwestern United States: relations toland use. Journal of Environmental Quality,26(4):1025~1037
    Kominami H, Furusho A, Murakami S, Inoue H, Kera Y, Ohtani B.2001. Effective photocatalytic reductionof nitrate to ammonia in an aqueous suspension of metal-loaded titanium (IV) oxide particles in thepresence of oxalic acid. Catalysis Letters,76(1-2):31~34
    Kominami H, Nakaseko T, Shimada Y, Furusho A, Inoue H, Murakami S, Kera Y, Ohtani B.2005.Selective photocatalytic reduction of nitrate to nitrogen molecules in an aqueous suspension ofmetal-loaded titanium (IV) oxide particles. Chemical Communications,(23):2933~2935
    Kominami H, Gekko H, Hashimoto K.2010. Photocatalytic disproportionation of nitrite to dinitrogen andnitrate in an aqueous suspension of metal-loaded titanium dioxide nanoparticles. Physical ChemistryChemical Physics,12(47):15423~15427
    Koppenol W, Rush J.1987. Reduction potential of the carbon dioxide/carbon dioxide radical anion: acomparison with other C1radicals. Journal of Physical Chemistry,91(16):4429~4430
    Korgel B A, Monbouquette H G.1997. Quantum confinement effects enable photocatalyzed nitratereduction at neutral pH using CdS nanocrystals. The Journal of Physical Chemistry B,101(25):5010~5017
    Kormann C, Bahnemann D W, Hoffmann M R.1991. Photolysis of chloroform and otherorganic-molecules in aqueous TiO2suspensions. Environmental Science&Technology,25(3):494~500
    Kreitler C W, Browning L A.1983. Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers:natural sources versus human pollution. Journal of hydrology,61(1):285~301
    Ku Y, Jung I L.2001. Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with thepresence of titanium dioxide. Water Research,35(1):135~142
    Kudo A, Domen K, Maruya K, Onishi T.1987. Photocatalytic reduction of NO3-to form NH3over Pt-TiO2.Chemistry Letters,(6):1019~1022
    Kudo A, Domen K, Maruya K, Onishi T.1992. Reduction of nitrate ions into nitrite and ammonia oversome photocatalysts. Journal of Catalysis;(United States),135(1)
    Kurt M, Dunn I, Bourne J.1987. Biological denitrification of drinking water using autotrophic organismswith H2in a fluidized-bed biofilm reactor. Biotechnology and bioengineering,29(4):493~501
    Kurt O.1984. Trends in nitrate pollution of groundwater in Denmark. Nordic Hydrology,15(4-5):177~184
    Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y.2007. Mesoporous Au/TiO2nanocomposites with enhancedphotocatalytic activity. Journal of the American Chemical Society,129(15):4538~4539
    Li L, Xu Z, Liu F, Shao Y, Wang J, Wan H, Zheng S.2010. Photocatalytic nitrate reduction over Pt-Cu/TiO2catalysts with benzene as hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry,212(2-3):113~121
    Li Y X, Wasgestian F.1998. Photocatalytic reduction of nitrate ions on TiO2by oxalic acid. Journal ofPhotochemistry and Photobiology A: Chemistry,112(2-3):255~259
    Lin W Y, Rajeshwar K.1997. Photocatalytic Removal of Nickel from Aqueous Solutions UsingUltraviolet-Irradiated TiO2. Journal of the Electrochemical Society,144(8):2751~2756
    Liu L, Dong X, Yang F.2008. Photocatalytic removal of nitrate from water using Fe0/TiO2, pp.3657~3660,IEEE
    Liu S, Qu Z, Han X, Sun C.2004. A mechanism for enhanced photocatalytic activity of silver-loadedtitanium dioxide. Catalysis Today,93:877~884
    Maila Y A, El~Nahal IAl~Agha M.2004. Seasonal variations and mechanisms of groundwater nitratepollution in the Gaza Strip. Environmental Geology,47(1):84~90
    Martin S T, Herrmann H, Hoffmann M R.1994. Time-resolved microwave conductivity. Part2.—Quantum-sized TiO2and the effect of adsorbates and light intensity on charge-carrier dynamics. J.Chem. Soc., Faraday Trans.,90(21):3323~3330
    Martin S T, Lee A T, Hoffmann M R.1995. Chemical mechanism of inorganic oxidants in the TiO2/UVprocess: increased rates of degradation of chlorinated hydrocarbons. Environmental Science&Technology,29(10):2567~2573
    Matthews R W.1986. Photo-oxidation of organic material in aqueous suspensions of titanium dioxide.Water Research,20(5):569~578
    McAdam E J, Judd S J.2008. Biological treatment of ion exchange brine regenerant for reuse: A review.Separation and Purification Technology,62(2):264~272
    Mills A, Davies R H, Worsley D.1993. Water purification by semiconductor photocatalysis. Chem Soc Rev,22(6):417~425
    Mirvish S S.1985. Gastric-cancer and salivary nitrate and nitrity. Nature,315(6019):461~462
    Mori T, Suzuki J, Fujimoto K, Watanabe M, Hasegawa Y.1999. Reductive decomposition of nitrate ion tonitrogen in water on a unique hollandite photocatalyst. Applied Catalysis B-Environmental,23(4):283~289
    Mori T, Suzuki J, Fujimoto K, Watanabe M, Hasegawa Y.2000. Photocatalytic reduction of nitrate in wateron meso-porous hollandite catalyst: a new pathway on removal of nitrate in water. Journal of Sol-GelScience and Technology,19(1~3):505~510
    Mozia S.2010. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review.Separation and Purification Technology,73(2):71~91
    Mukherjee B, Weaver J W.2010. Aggregation and Charge Behavior of Metallic and NonmetallicNanoparticles in the Presence of Competing Similarly-Charged Inorganic Ions. Environmental Science&Technology,44(9):3332~3338
    Nakato Y, Shioji M, Tsubomura H.1982. Photoeffects on the potentials of thin metal films on an-TiO2crystal wafer. The mechanism of semiconductor photocatalysts. Chemical Physics Letters,90(6):453~456
    Oenema O, Boers P, Van Eerdt M, Fraters B, Van der Meer H, Roest C, Schr der J, Willems W.1998.Leaching of nitrate from agriculture to groundwater: the effect of policies and measures in theNetherlands. Environmental pollution,102(1):471~478
    Pacheco A J, Cabrera S A.1997. Groundwater contamination by nitrates in the Yucatan Peninsula, Mexico.Hydrogeology Journal,5(2):47~53
    Paidar M, Bouzek K, Jelinek L, Matejka Z.2004. A combination of ion exchange and electrochemicalreduction for nitrate removal from drinking water Part II: Electrochemical treatment of a spentregenerant solution. Water Environment Research,76(7):2691~2698
    Park S, Kim H J, Kim J S, Yoo K, Lee J C, Anderson W, Lee J H.2007. Photocatalytic reduction of nitratein wastewater using ZnO nanopowder synthesized by solution combustion method. Journal ofNanoscience and Nanotechnology,7(11):4069~4072
    Pelizzetti E, Carlin V, Minero C, Gr tzel M.1991. Enhancement of the rate of photocatalytic degradationon TiO2of2-chlorophenol,2,7-dichlorodibenzodioxin and atrazine by inorganic oxidizing species.New journal of chemistry,15(5):351~359
    Perissinotti L L, Brusa M A, Grela M A.2001. Yield of carboxyl anion radicals in the photocatalyticdegradation of formate over TiO2particles. Langmuir,17(26):8422~8427
    Petersen C, Th gersen J, Jensen S K, Keiding S R.2006. Investigation of the primary photodynamics of theaqueous formate anion. The Journal of Physical Chemistry A,110(10):3383~3387
    Petriconi G L, Gori E G, Papée H M.1969a. Change of aqueous sodium nitrate under natural and artificialultraviolet radiation. Pure and Applied Geophysics,72(1):291~298
    Petriconi G L, Gori E G, Papée H M.1969b. Effect of chloride concentration on the decomposition ofaqueous sodium nitrate by sunlight. Pure and Applied Geophysics,72(1):299~306
    Prüsse U, Vorlop K D.2001. Supported bimetallic palladium catalysts for water-phase nitrate reduction.Journal of Molecular Catalysis A: Chemical,173(1):313~328
    Prairie M R, Evans L R, Stange B M, Martinez S L.1993. An investigation of titanium dioxidephotocatalysis for the treatment of water contaminated with metals and organic chemicals.Environmental Science&Technology,27(9):1776~1782
    Pruden A L, Ollis D F.1983. Degradation of chloroform by photoassisted heterogeneous catalysis in diluteaqueous suspensions of titanium dioxide. Environmental Science&Technology,17(10):628~631.
    Ranjit K, Krishnamoorthy R, Viswanathan B.1994. Photocatalytic reduction of nitrite and nitrate on ZnS.Journal of Photochemistry and Photobiology A: Chemistry,81(1):55~58
    Ranjit K, Krishnamoorthy R, Varadarajan T, Viswanathan B.1995. Photocatalytic reduction of nitrite onCdS. Journal of Photochemistry and Photobiology A: Chemistry,86(1):185~189
    Ranjit K T, Viswanathan B.1997. Photocatalytic reduction of nitrite and nitrate ions to ammonia onM/TiO2catalysts. Journal of Photochemistry and Photobiology A: Chemistry,108(1):73~78
    Reddy A G S, Niranjan Kumar K, Subba Rao D, Sambashiva Rao S.2009. Assessment of nitratecontamination due to groundwater pollution in north eastern part of Anantapur District, AP India.Environmental monitoring and assessment,148(1):463~476
    Refsgaard J, Thorsen M, Jensen J B, Kleeschulte S, Hansen S.1999. Large scale modelling of groundwatercontamination from nitrate leaching. Journal of hydrology,221(3):117~140
    Rivers C, Barrett M, Hiscock K, Dennis P, Feast N, Lerner D.1996. Use of nitrogen isotopes to identifynitrogen contamination of the Sherwood Sandstone aquifer beneath the city of Nottingham, UnitedKingdom. Hydrogeology Journal,4(1):90~102
    Ruangchainikom C, Liao C H, Anotai J, Lee M T.2006. Characteristics of nitrate reduction by zero valentiron powder in the recirculated and CO2bubbled system. Water Research,40(2):195~204
    Sá J, Vinek H.2005. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst. AppliedCatalysis B: Environmental,57(4):247~256
    Sa J, Aguera C A, Gross S, Anderson J A.2009. Photocatalytic nitrate reduction over metal modified TiO2.Applied Catalysis B: Environmental,85(3~4):192~200
    Schwarz H A.1981. Free radicals generated by radiolysis of aqueous solutions. Journal of ChemicalEducation,58(2):101
    Shih Y H, Liu W S, Su Y F.2012. Aggregation of stabilized TiO2nanoparticle suspensions in the presenceof inorganic ions. Environ Toxicol Chem,31(8):1693~1698
    Soares M I MAbeliovich A.1998. Wheat straw as substrate for water denitrification. Water Research,32(12):3790-3794.
    Soares M I M.2000. Biological denitrification of groundwater. Water Air and Soil Pollution,123(1~4):183~193
    Soares O, órf o J, Ruiz-Martínez J, Silvestre-Albero J, Sepúlveda-Escribano A, Pereira M.2010.Pd–Cu/AC and Pt–Cu/AC catalysts for nitrate reduction with hydrogen: Influence of calcination andreduction temperatures. Chemical Engineering Journal,165(1):78~88
    Spalding R F, Exner M E.1993. Occurrence of nitrate in groundwater: a review. Journal of EnvironmentalQuality,22(3):392~402
    Su C, Puls R W.2004. Nitrate reduction by zerovalent iron: Effects of formate, oxalate, citrate, chloride,sulfate, borate, and phosphate. Environmental Science&Technology,38(9):2715~2720
    Sun B, Vorontsov A V, Smirniotis P G.2003. Role of platinum deposited on TiO2in phenol photocatalyticoxidation. Langmuir,19(8):3151~3156
    Suthar S, Bishnoi P, Singh S, Mutiyar P K, Nema A K, Patil N S.2009. Nitrate contamination ingroundwater of some rural areas of Rajasthan, India. Journal of Hazardous Materials,171(1):189~199
    Tawkaew S, Fujishiro Y, Yin S, Sato T.2001. Synthesis of cadmium sulfide pillared layered compoundsand photocatalytic reduction of nitrate under visible light irradiation. Colloids and Surfaces A:Physicochemical and Engineering Aspects,179(2):139~144
    Testa J J, Grela M A, Litter M I.2004. Heterogeneous photocatalytic reduction of chromium (VI) over TiO2particles in the presence of oxalate: Involvement of Cr(V) species. Environmental Science&Technology,38(5):1589~1594
    Van Maanen J, van Dijk A, Mulder K, de Baets M H, Menheere P C A, van der Heide D, Mertens P L J M,Kleinjans J.1994. Consumption of drinking water with high nitrate levels causes hypertrophy of thethyroid. Toxicology letters,72(1):365~374
    Volokita M, Belkin S, Abeliovich A, Soares M I M.1996. Biological denitrification of drinking water usingnewspaper. Water Research,30(4):965-971.
    Vorlop K D, Tacke T.1989. Erste Schritte auf dem Weg zur edelmetallkatalysierten Nitrat-undNitrit-Entfernung aus Trinkwasser. Chemie Ingenieur Technik,61(10):836~837
    Wakida F T, Lerner D N.2005. Non-agricultural sources of groundwater nitrate: a review and case study.Water Research,39(1):3~16
    Wang N, Xu Y, Zhu L, Shen X, Tang H.2009. Reconsideration to the deactivation of TiO2catalyst duringsimultaneous photocatalytic reduction of Cr(VI) and oxidation of salicylic acid. Journal ofPhotochemistry and Photobiology A: Chemistry,201(2):121~127
    Wankel S D, Kendall C, Francis C A, Paytan A.2006. Nitrogen sources and cycling in the San FranciscoBay Estuary: A nitrate dual isotopic composition approach. Limnology and oceanography:1654~1664
    Ward M D, White J R, Bard A J.1983. Electrochemical investigation of the energetics of particulatetitanium dioxide photocatalysts. The methyl viologen-acetate system. Journal of the AmericanChemical Society,105(1):27~31
    Ward M H, Mark S D, Cantor K P, Weisenburger D D, Correa-Villase or A, Zahm S H.1996. Drinkingwater nitrate and the risk of non-Hodgkin's lymphoma. Epidemiology:465~471
    Ward M H, Kilfoy B A, Weyer P J, Anderson K E, Folsom A R, Cerhan J R.2010. Nitrate intake and therisk of thyroid cancer and thyroid disease. Epidemiology (Cambridge, Mass.),21(3):389
    Westerhoff P.2003. Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe0). Journal ofEnvironmental Engineering,129(1):10~16
    Westerhoff P, James J.2003. Nitrate removal in zero-valent iron packed columns. Water Research,37(8):1818~1830
    Zhang F, Guan N, Li Y, Zhang X, Chen J, Zeng H.2003. Control of morphology of silver clusters coated ontitanium dioxide during photocatalysis. Langmuir,19(20):8230~8234
    Zhang F, Chen J, Zhang X, Gao W, Jin R, Guan N, Li Y.2004. Synthesis of titania-supported platinumcatalyst: the effect of pH on morphology control and valence state during photodeposition. Langmuir,20(21):9329~9334
    Zhang F, Pi Y, Cui J, Yang Y, Zhang X, Guan N.2007. Unexpected selective photocatalytic reduction ofnitrite to nitrogen on silver-doped titanium dioxide. The Journal of Physical Chemistry C,111(9):3756~3761
    Zhang F X, Jin R C, Chen J X, Shao C Z, Gao W L, Li L D, Guan N J.2005. High photocatalytic activityand selectivity for nitrogen in nitrate reduction on Ag/TiO2catalyst with fine silver clusters. Journal ofCatalysis,232(2):424~431
    Zhang W, Tian Z, Zhang N, Li X.1996. Nitrate pollution of groundwater in northern China. Agriculture,Ecosystems&Environment,59(3):223~231
    Zhang Z, Beard B.1999. Agglomeration of Pt particles in the presence of chlorides. Applied Catalysis A:General,188(1):229~240
    Zhao X, Liu H, Shen Y, Qu J.2011. Photocatalytic reduction of bromate at C60modified Bi2MoO6undervisible light irradiation. Applied Catalysis B: Environmental,106(1):63~68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700