用户名: 密码: 验证码:
水电站引水渠道弯道式排冰数值模拟与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国新疆等高寒地区,冬季严寒且漫长,引水渠道冰情严重,冰害问题是关系到引水式水电站能否正常运行及生态安全的关键问题。由于试验研究较费时费力,而且无法提供流场的详细信息。因此,有必要对引水渠道内的水流流态和浮冰浓度分布进行研究,从而比较精确的确定引水渠道输排冰布置的设计尺寸和排冰效果,以期为引水渠道输排冰布置的设计和运行管理提供参考依据。
     在国内外已有的研究基础上,本文建立了三维Euler两相流模型。模型中将浮冰作为拟流体,采用改进的高雷诺数k -ε湍流模型,并在固相的湍流模拟中引入响应函数。该模型充分考虑了固液两相间相互作用的影响,即计入了相间曳力、横向升力、虚拟质量力和分散相体积分数以及分散相与连续相间密度差的影响。
     采用有限体积法中的PISO算法对引水渠道内水流输运浮冰的三维流动过程进行了计算,并通过与Blanckaert的实验结果进行比较,验证了数值模拟求解的正确性。模拟结果表明:
     (1)由于弯道横向环流的作用使得引水弯道内的表层水流流向凹岸,同时输运浮冰向凹岸聚集。在弯道设置取水口后,利用弯道水流的特性,获取表层含冰量较大的水流,使其进入取水口后的排冰闸,从而顺利实现输排冰。
     (2)当弯道排冰闸轴线与引水渠道中心线平行布置时,排冰闸轴线与引水渠道中心线平行间距a=0.25B(B为引水渠道水面宽度,B=21.6m)为合理的平行间距,此时模拟得到的冰水比K=0.237。
     (3)非平行布置时的排冰效果要优于平行布置,排冰闸轴线与弯道切线夹角α=10°为非平行布置的最佳排冰方向,此时排冰量Qi可达到5.32 m 3 /s ,冰水比K为0.292。
     (4)通过对不同排冰闸布置形式的对比及结构的改造,得到了最优的排冰方案,排冰闸采用该方案布置后基本不需要设置导冰筏,并节省了工程造价,且能够顺利地实现输排冰,从而保证了引水式水电站冬季的安全运行及生态环境的保护。
In high altitude and cold regions such as XinJiang, the winter is cold and long, and diversion channel ice regime is serious. Ice damage goes against safe operation of diversion hydropower stations. Traditionally, the design of ice transmission layout is based on experiment, which will squander time and vigor, and cannot supply detailed information of the flow field. Therefore, it is necessary to study the flow field and the distribution of drift ice concentration in the diversion channel. Based on the simulation results, the size and ice-transmission efficiency could be determined more accurately. It provides useful information for the design and operation management of the ice-transmission arrangement.
     A three-dimensional Euler two-phase flow model is built. The drift ice is treated as pseudo fluid in the model, which is coupled with particular high Reynolds number form of the k -εmodel, and the response function is introduced into the turbulence model of solid phase. The influence of interaction between liquid and solid, that is to say, the influence of interphase drag force, lifting force perpendicular to the relative velocity, virtual mass force, as well as the volume fraction of suspended solids and density difference effects between liquid and solid, has been considered.
     The PISO algorithm of the finite volume method is used to compute the three-dimensional mathematics model. Good agreement is obtained between present Computational Fluid Dynamics (CFD) predictions and the published experimental data of Blanckaert. The simulated results are as follows:
     (1) The surface flow in the bend channel tends to concave bank due to the transverse circulation. The drift ice moves towards concave bank along with the surface flow. Water intake is built at concave bank of the bend channel. According to characters of bend flow, the surface flow with high ice content is obtained. Then the water flows to ice gate behind the water intake, reaching the purpose of water diversion and ice removal.
     (2) When the arrangement between the axis of ice gate and the centerline of diversion channel is parallel, the parallel distance a=0.25B(B is the width of the diversion channel ) is reasonable, and the ice-water ratio K=0.237.
     (3) The non-parallel arrangement has a better ice removal efficiency than of parallel. The best angleαbetween an ice gate axis and a bend tangent is simulated as 10°. The ice removal efficiency is highest in this condition. The ice removal amount Qi reaches 5.32 m 3 /s , and the ice-water ratio K is 0.292.
     (4) The optimum scheme is obtained by layout pattern comparison and structure reformations. The ice-diversion raft is not necessary, which will save construction cost. The simulation results provide valuable guidance for construction and management of diversion hydropower stations.
引文
[1]侯杰,周著,惠遇甲.新疆引水式水电站输排冰的试验研究[J].新疆农业大学学报,1997,20(1):67-72.
    [2]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.
    [3]武锦涛.利用CFD可以获得更多的益处[J].化学反应工程与工艺,2003,19(2):140-141.
    [4] Vriend De. A mathematical model of steady flow in curved shallow channels[J]. Journal of Hydraulic Research, 1977, 15(1): 7-53.
    [5] Leschziner M A, Rodi W. Calculation of strongly curved open channel flow[J]. Journal of Hydraulic Engineering, ASCE, 1979, 105(10): 78-81.
    [6] Moser D, Mion P. The effects of curvature in wal1-bounded turbulent flows[J]. Journal of Fluid Mechanics, 1986, (162): 479-516.
    [7]董耀华.弯道水流的基本特性及数值模拟[J].长江科学院院报,1996,13(1):25-29.
    [8]王少平,蒋莉.用RNGk ?ε模式数值模拟180°弯道内的湍流分离流动[J].力学学报,1996,10(5):257-263.
    [9]蒋莉,王少平.应用RNGk ?ε湍流模式数值模拟90°弯曲槽道内的湍流流动[J].水动力学研究与进展,1998,13(1):8-13.
    [10]华祖林.拟合曲线坐标下弯曲河段水流三维数学模型[J].水利学报,2000,(1):1-8.
    [11]彭凯.矩形连续弯道内流场简化计算数学模型[J].重庆建筑大学学报,2003,25(1):25-32.
    [12]刘子龙,王船海.长江口三维水流模拟[J].河海大学学报,1999,24(5):108-110.
    [13]夏云峰,薛鸿超.一种简便的非交错曲线网格三维水流数值模拟[J].水动力学研究与进展,2002,(10):638-646.
    [14]李艳红,周华君.弯曲河流三维数值模型[J].水动力学研究与进展,2004,19,(增刊):856-864.
    [15] Shiono, Scott C F. Predictions of solute transport in a compound channel using turbulence models[J]. Journal of Hydraulic Research, 2003, 41(3): 247-258.
    [16]邵学军,王虹,陈智.螺旋状下降的复式断面明渠中紊动结构与次生流动的数值模拟[J].中国科学(E辑:技术科学),2004,34(1):64-78.
    [17]周勤,伍超,赵元弘等.“S”型溢洪道水流特性试验与数值模拟研究[J].水力发电学报,2005,24(3):78-82.
    [18]杨海波.自由面弯道水流三维数值模拟与试验研究[D].四川:四川大学,2007.
    [19] VanRijn L C. Mathematical modeling of suspended sediment in nonuniform flows[J]. Journal of Hydraulic Engineering, ASCE, 1989, 112(6): 433-455.
    [20] Fernette R, Dhatt G, Tanguy J M. A three dimensional finite element sediment transport model[C]//Proceedings of 5th International Symposium on River Sedimentation. Germany: The University of Karlsuhe, 1992: 365-374.
    [21] McAnally, Leter J W. Two and three-D modeling systems for sedimentation[C]//Proceeding of the 3rd International Symposium on River Sedimentation. USA: The University of Mississippi, 1986.
    [22] Chen R F. Modeling of estuary hydrodynamics-a mixture art and science[C]//Proceedings of 3rd International Symposium on River Sedimentation. USA: The University of Mississippi, 1986.
    [23] Shimizu Y, Yamaguchi H, Itakura T. Three-dimensional computation of flow and bed deformation[J]. Journal of Hydraulic Engineering, 1990, 116(9): 46-61.
    [24] Prinos P. Compound open flow with suspended sediments[C]//Advances in Hydro-Science and Engineering. USA: The University of Mississippi, 1993: 1206~1414.
    [25] S Y Wang, Y Jia. Computational modeling and hydro-science research[C]//Advances in Hydro-Science and Engineering. USA: The University of Mississippi, 1995: 2147~2157.
    [26] W M Wu, Rodi W, Wenka T. 3D numerical model for suspended sediment transport in open channels[J]. Journal of Hydraulic Engineering, ASCE, 2000, 126(1): 4-15.
    [27]王智娟.弯道水沙三维数值模拟[D].四川:四川大学,2007.
    [28]孙东坡.弯道横向流动与输沙的探讨[J].华北水利水电学院学报,1992,(3):60-68.
    [29]吴修广,沈永明,王敏等.曲线坐标下平面二维污染物扩散输移的代数应力湍流模型[J].中国工程科学,2005,7(7):60-64.
    [30]何莎,杨骏六.有限分析法对实验室连续弯道岸边排污的模拟[J].西南民族学院学报(自然科学版),2006,32(2):57-61.
    [31]江帆,陈维平,陈敏等.弯曲性分叉河道中污染物扩散性的初步研究[J].水资源保护,2006,22(4):30-32.
    [32]李超,王剑楠,史杰.明渠冬季安全输水措施研究[J].人民黄河,2008,30(9):65-66.
    [33] Wasantha A M, Hung Tao Shen. Mathematical model for rvier ice processes[J]. Journal of Hydraulic Engineering, ASCE, 1991, 117(7): 851-867.
    [34] Hicks F E, Steffler P M, Gerard R. Finite element modeling of Surge Propagation and an application to the Hay River[J]. Canadian Journal of Civil Engineering, 1992, 19(3): 454-462.
    [35] Beltaos S. Numerical computation of river ice jams[J]. Canadian Journal of Civil Engineering, 1993, 20(1): 88-89.
    [36] D S Wang, H T Shen, Randy D. Simulation and analysis of Upper Niagara River ice-jam conditions[J]. Journal of Cold Regions Engineering, 1995, 9(3): 119-134.
    [37] Healy D, Hicks F. Comparison of ICEJAM and RIVJAM ice jam profile models[J]. Journal of Cold Regions Engineering, 1999, 13(4): 180-198.
    [38] Shunan Lu, H T Shen, Randy D. Numerical study of ice jam dynamics in Upper Niagara River[J]. Journal of Cold Regions Engineering, 1999, 13(2): 78-102.
    [39] Zufelt J E, Ettema R. Fully coupled model of ice-jam dynamics[J]. Journal of Cold Regions Engineering, 2000, 14(1): 24-41.
    [40] Jasek M, Muste M, Ettema R. Estimation of Yukon River discharge during an ice jam near Dawson City[J]. Canadian Journal of Civil Engineering, 2001, (28): 856-864.
    [41] Massie D D, White K D, Daly S F. Application of neural networks to predict ice jam occurrence[J]. Cold Regions Seience and Technology, 2002, 35(2): 115-122.
    [42] Mark A Hopkins, Andrew M Ththil1. Ice boom simulation and experiments[J]. Journal of Cold Regions Engineering, 2002, 16(1): 138-155.
    [43]靳国厚,高霈生,吕斌秀.明渠冰情预报的数学模型[J].水利学报,1997,(10):1-9.
    [44]董耀华,杨国录.大清河系观测河段及南水北调中线方案冰情计算分析[J].长江科学院院报,1999,16(6):13-17.
    [45]张学成,可素娟,潘启民等.黄河冰盖厚度演变数学模型[J].冰川冻土,2002,5(2):203-205.
    [46]蔡琳,卢杜田.水库防凌调度数学模型的研制与开发[J].水利学报,2002,(6):67-71.
    [47]杨开林,刘之平,李桂芬等.河道冰塞的模拟[J].水利水电技术,2002,33(10):40-47.
    [48]吴剑疆,茅泽育,王爱民等.河道水内冰演变的数值计算[J].清华大学学报,2003,43(5):702-705.
    [49]茅泽育,吴剑疆,张磊等.天然河道冰塞演变发展的数值模拟[J].水科学进展,2003,14(6):700-705.
    [50]茅泽育,张磊,王永填等.采用适体坐标变化方法数值模拟天然河道河冰过程[J].冰川冻士,2003,25(2):214-219.
    [51]路明,孙西欢,李彦军等.湍流数值模拟方法及其特点分析[J].河北建筑科技学院学报,2006,23(2):106-110.
    [52]谭羽非.大涡模拟及其在室内空气流动换热中的应用[J].暖通空凋,2003,33(1):99-102.
    [53] Smagorinsky J. General circulation experiments with primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99-l65.
    [54] Germano M, Pomelli U, Moin P, et a1. A dynamic subgrid-scale eddy viscosity model[J]. Physics of Fluids, 1991, 3A(7): 1760-l765.
    [55] Ghosal S, Lund T S, Moin P, et a1. A dynamic localization model for large-eddy simulation of turbulent flow[J]. Journal of Fluid Mechanics, 1995, 286: 229-255.
    [56] Zang Y, Street R L, Koseff J R. A dynamic mixed subgrid-scale model and its application to turbulent recirculating flow[J]. Physics of Fluids, 1993, 5(12): 3186-3193.
    [57]李家春,谢正铜.植被层湍流的大涡模拟[J].力学学报,1999,3l(4):406-414.
    [58]崔桂香,周海兵,张兆顺等.新型大涡数值模拟亚格子模型及应用[J].计算物理,2004,21(3):289-293.
    [59]胡元,周力行,张健.旋流和无旋突扩流动的LES和RANS模拟[J].工程热物理学报,2005,26(2):339-342.
    [60]周力行.悬浮体两相流动和燃烧数值模拟现状及发展[J].化工学报,1988,39(4):495-500.
    [61]周力行.湍流气粒多相流数值模拟理论的最近进展[J].燃烧科学与技术,1995,1(1):10-15.
    [62] Ishii M. Two-fluid model for two phase flow[J].Multiphase Science and Technology, 1990, 5: 59-63.
    [63] Gosman A D, Issa R I, Lekakou C et al. Multidimensional modelling of turbulent two-phase flows in stirred vessels[J]. AIChE Journal, 1992, 38(12): 1946-1956.
    [64] Auton T R, Hunt J C R, Prud’homme M. The force exerted on a body in inviscid unsteady non-uniform rotational flow[J]. Journal of Fluid Mechanics, 1988, 197(12): 241-257.
    [65] Schiller L, Naumann A.über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung[J]. VDI Zeitschr, 1933, 77(12): 318-320.
    [66] Lance M, Bateille J. Turbulence in the liquid and phase of a uniform bubbly air-water flow[J]. Journal of Fluid Mechanics, 1991, 222: 95-118.
    [67] Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer Methods in Appllied Mechanics and Engineering, 1974, 3(2): 269-289.
    [68] Rodi W. Influence of buoyancy and rotation on equations for the turbulent length scale[C]//Proceedings of 2nd Symposium on Turbulent Shear Flows. London: Imperial College of Science and Technology, 1979: 1037-1042.
    [69] El Tahry, S H. k -εequation for compressible reciprocating engine flows[J]. Journal of Energy, 1983, 7(4): 345-353.
    [70] Schlichting H. Boundary layer theory[M]. New York: McGraw-Hill, 1968.
    [71] Rodi W. Turbulence models and their application in hydraulics. Experimental and mathematical fluid dynamics[M]. Delft: IAHR-Section on Fundamentals of DivisionⅡ, 1980.
    [72] Patankar S V. Numerical heat transfer and fluid flow[M]. Washington: Hemisphere Publishing Corporation, 1980.
    [73] Warsi Z V A. Conservation form of the Navier-Stokes equations in general nonsteady coordinates[J]. AIAA Journal, 1981, 19(2): 240-242.
    [74] Richtmeyer R D, Morton K W. Difference methods forinitial-value problems[M]. New York: Krieger Publishing Company, 1994.
    [75] Lai K Y M. Numerical analysis of fluid transport phenomena[D]. London: University of London, 1983.
    [76] Leschziner M A. Practical evaluation of three finite difference schemes for the computation of steady-state recirculating flows[J]. Computer Methods in Appllied Mechanics and Engineering, 1980, 23(3): 293-312.
    [77] Wilkes N S, Thompson C P. An evaluation of higher-order upwind differencing for elliptic flow problems[C]//Proceedings of the 3rd International Conference. Swansea Wales: Pineridge Press, 1983: 248-257.
    [78] Hirsch Charles. Numerical Computation of Internal and External Flows[M]. New York: John Wiley, 1990.
    [79] Schmidt D P, Corradini M L, Rutland C J. A numerical study of cavitating flow through various nozzle shapes[J]. Transactions of the SAE, 1997, 106(3): 1644-1673.
    [80] Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International Journal of Heat and Mass Transfer, 1972, 15(10): 1787-1806.
    [81] Issa R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1986, 62(1): 40-65.
    [82]徐桂英.闸前梯形断面90°弯道水流垂线纵向流速分布的试验研究[J].中国农村水利水电,1997(1):42-43.
    [83]张鹤.分流在弯道水流水力特性影响的试验研究[D].沈阳:沈阳农业大学,2007.
    [84] Blanckaert K, Grag W H. Mean flow and turbulence in open channel bend[J]. Journal of Hydraulic Engineering, ASCE, 2001, 127(10): 835-847.
    [85]中华人民共和国水利部.SL 211-2006水工建筑物抗冻设计规范[S].北京:2002.
    [86]李炜.水力计算手册[M].北京:中国水利水电出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700