用户名: 密码: 验证码:
高围压下磨料水射流切割的模糊建模和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海洋开发和水下工程技术的迅速发展中,深水磨料水射流切割技术(高围压环境条件下磨料水射流切割技术)的应用在国外已比较成熟,而在国内尚处于实验研究阶段。
     本文对围压环境条件下,磨料水射流的切割机理和模型进行了比较系统的分析研究;针对高围压环境条件,建立了磨料水射流切割的ANFIS模糊模型结构;同时利用自行设计的高围压环境条件模拟实验装置设备,系统分析研究了高围压环境条件下磨料水射流切割性能与各参数变量的关系和规律,以及不同围压对磨料水射流切割性能的影响。
     通过理论分析和实验研究,得出如下主要结论:
     ① 对于液固两相流动,紊流扩散作用不但表现为其质点之间的动量交换,而且还表现为液相与固相介质之间的动量传递,是固相介质获得动能的主要机制。
     围压环境条件下,由于衰减系数ξ的存在,使得射流在围压环境条件下的轴线速度呈指数衰减,而衰减系数ξ是由围压下环境介质对射流的阻力引起的。
     在高围压环境条件下的射流轴心动压力明显要比在非围压下的衰减快得多;高围压环境条件下的靶距对动压损失是一个非常重要的因素。
     ② 磨料水射流切割是一种流态磨削切割过程,磨料水射流随切割深度增加而出现偏转和分离,靶体物料被切割断面上部为平滑切割区,下部为变形冲蚀磨削区。断面形貌受切割过程参数变量影响呈周期循环变化。
     ③ 基于ANFIS的模糊建模软件平台,在高围压环境条件磨料水射流模拟实验装置得出的已知数据基础上,根据选定的输入与输出主变参数变量和获取的样本数据,建立了高围压环境条件下磨料水射流切割模型结构。
     通过验证模糊模型输出与实验值的对比,可以看到基于ANFIS的模糊模型结构输出能够较好地拟和表征实验数据的规律和趋势。本模糊模型结构是在高围压环境条件模拟实验装置的大量实验数据基础上,并根据比较实际的参数变量设定需求而建立的基于ANFIS切割模糊模型结构,与传统的回归经验模型相比,具有较高的准确性、可靠性和容错性。
     ④ 磨料水射流在高围压环境条件下,随着靶距喷嘴直径比S/d的增加,切割深度H呈分段减小趋势,即存在一个有效靶距喷嘴直径比Sv/d。而且,随着围压的增加,磨料水射流的总体切割能力也呈比较大的下降趋势。
    
    重庆大学博士学位论文
     ⑤磨料水射流在高围压环境条件下重复切割时,开始的几次(4一8次)
    切割起主要作用。但无论是磨料水射流或是纯水射流,围压下或是非围压下,
    切割次数n对切割深度H的影响规律基本上都是相同的。
     ⑥磨料水射流在高围压环境条件下,兼顾切割效率和切割效果,最佳
    的射流横移速度v应在4一7m耐s之间选取比较合适。
     ⑦磨料水射流在高围压环境条件下,随着磨料浓度m。的增加,磨料水
    射流的冲击切割能力得到增强,切割深度H也随之增大。围压Pe越高,切割
    深度H随着磨料浓度二。增加的幅度,相对来说就要小得多。这一点尤其对
    海洋深水工程中磨料水射流切割技术的应用非常重要。
     ⑧在高围压环境条件下,磨料水射流的系统压力(即喷嘴喷射压力)直
    接反映了磨料水射流的初始喷射速度。当磨料水射流的系统压力超过了该门
    限压力后,切割深度H随着系统压力p的升高而呈明显的线性升高的关系。
     ⑨磨料水射流在高围压环境条件下,靶距喷嘴直径比s/d小于有效靶距
    喷嘴直径比Sv/d时,随着围压的增加,切割深度衰减较快;而在靶距喷嘴直
    径比£心超过有效靶距喷嘴直径比Sv/d后,随着围压p。的增大,切割深度H
    减小的幅度变缓,且切割深度H也普遍小得多。
     本文研究的创新之处:一是系统分析研究了高围压环境条件下磨料水射
    流切割性能与各参数的关系和规律,以及不同围压对磨料水射流切割性能的
    影响;二是针对高围压环境条件,建立了磨料水射流切割的ANFIS模糊模型结
    构,从而对于实际磨料水射流装置设备的工艺参数优化选择、材料加工规律
    的数值计算机仿真模拟,以及在磨料水射流装置设备的智能化控制系统的研
    究方面,提供了广阔的应用前景。
Though with the rapid development of Marine exploitation and underwater engineering technology, AWJ cutting technology under high confining pressure has been applied widely overseas, it is still in the stage of experiment research in domestic country.
    This paper has systemically researched mechanism and model of AWJ under high confining pressure, and set up the ANFIS fussy system modeling structure of AWJ under high confining pressure, and analyzed the rule and relation of cutting performance and the parameters of AWJ under high confining pressure by using self-designed experimental devices to simulate high confining pressure, and the effect of different confining pressure on performance of AWJ. According to theory analysis and experiment research, we gamed the following main conclusions:
    (1) For liquid-solid two-phase flow, its turbulence diffusion effect includes the exchange of particles' momentum and exchange liquid-phase and solid-phase mediums' momentum that is main way by which solid-phase medium gain kinetic energy.
    Under the confining pressure, axial velocity of water jet velocity decreases exponentially with time because of the existence of attenuation coefficient ' , and attenuation coefficient is caused by the resistance of environmental medium between nozzle and material under confining pressure.
    Axial dynamic pressure of water jet under high confining pressure decreases faster than that does under no confining pressure; the stand-off distance under high confining pressure is a key factor to the loss of fluctuating pressure.
    (2)AWJ is a type of fluid-grinding cutting process, AWJ deflects and fractures when kerfs depth increasing, upside of the stand-off object's cutting surface is the section of smooth cutting grinding, downside is the section of grind by eroding formation. The appearance of cutting surface is affected by parameters of cutting process periodically.
    (3)) Based on the ANFIS fussy modeling platform and experiment data simulating AWJ under high confining pressure, according to the selected input and output properties, modeling structure of AWJ under high confining pressure is established.
    Comparing the fussy output and the data of experiment, it is found out that the fussy output based on ANFIS can reflect the rule and trend of experiment data. The fussy model based on ANFIS is based on lots of data experiment simulating AWJ under high confining pressure, and is established according to factual parameter's enactment, the
    
    
    
    strategy has more veracity, reliability and fault-tolerance than the traditional experiential and regressive model.
    (4) Under high confining pressure, kerfs depth H decreases by segment with the increase of ratio of stand-off distance to diameter of nozzle (Sv/d), which shows the existence of a valid ratio of stand-off distance to diameter of nozzle (Sv/d). And with increase of confining pressure, the performance of AWJ deceases obviously.
    (5) AWJ's initial several (4-8) cutting processes predominately, when cutting repeatedly under high confining pressure.
    (6) AWJ's most optimal transversal velocity (v) is between 4 and 7 mm/s, considering both efficiency and effect of cutting, under high confining pressure.
    (7) AWJ's impact cutting performance and kerfs depth (H) increase along with increase of density of abrasive (ma) under high confining pressure. Amplitude of kerfs depth (H) along with increase of density of abrasive (ma) is much more less correspondingly than when confining pressure (pe) is very high. It is very important to the application of AWJ in Marine deepwater engineering.
    (8) Under high confining pressure, AWJ's systemic pressure (nozzle's jet pressure) reflects the initial jet velocity of AWJ directly. When AWJ's systemic pressure excesses threshold pressure, kerfs depth increases along with increase of AWJ's systemic pressure linearly.
    (9) When ratio of stand-off distance to diameter of nozzle (Sv/d) is less than valid ratio of stand-off distance to diameter of nozzle, AWJ's kerfs depth attenuates along with increase of confining pressure ra
引文
[1] 沈忠厚.水射流理论与技术.石油大学出版社,1998.3
    [2] 程大中.迅速发展中的高压水射流新技术.高压水射流,No.1,1987
    [3] 崔谟慎等.高压水射流技术.煤炭工业出版社,1993.10
    [4] ThomasJ.Labus, Proceedings of the 6th American Water Jet Conference, Water Jet Technology Association, 1991
    [5] Erdmana Jesnitzer.F, Cleaning, drilling and cutting by an interrupted jets, Proc.5th. Intern.symp.on jet cutting technogy, 1980
    [6] Erdmana Jesnitzer. F, Cleaning, Drilling and cutting by an interrupted jets, Proc. 5th Intern. symp, on jet cutting technology, 1980
    [7] Mazurkiewicz M. An analysis of one possibility for pulsating a high pressure water jet, Proc. 2nd U.S. water jet conference, 1983
    [8] Wylie E. B., Pipeline dynamics and the pulsed jet, Proc. 1st Intern. Symp. on jet cutting technology, 1972
    [9] Danel F. Guilloud J.C., A high speed concentrated drop stream generator, Proc. 2nd.Intern. symp. on jet cutting technology, 1974
    [10] Nebeker E.B., Percussive water for rock cutting, Proc. 3rd. Intern. on jet cutting technology, 1976
    [11] Chahine C. L., Cleaning and cutting with self-resonating pulsed water jets, Proc. 2nd. U.S. Symp. on jet cutting technology, 1980
    [12] Sami S., Andeerson C., Helmhotz oscillator for the self modulation of a jet, Proc. 7th. Intern. Symp. on jet cutting technology, 1984
    [13] Cooly W.C., Rock breakage bypulsed with high pressure water jets, Proc. 3rd Intern. Symp. on jet cutting technology, 1976
    [14] Edney B.E., Experimental studies of pulsed water jets, Proc. 3rd Intern. on jet cutting technology, 1976
    [15] D.G. Edwbnds, A study of Piston-water in an impulsive water cannon, Proc. 7th Intern. Symp. on water jet Technology, 1984
    [16] Labus. M. J., Pulsed fluid jet technology, Proc. 1st Asia. Conference on recent in jetting technology, Singapore, 1991
    [17] Phtter L. L., The blowdown water cannon: a new method for powering the cumulating nozzle. Prpc. 8th Intern. Symp. on JWT, 1986
    
    
    [18] R.E. Konl, Rock tunneling with high speed water jet utilizing cavitating damage, ASME, No.65, 1969
    [19] J.C.F. Pereira and J.M.M. Sousa, Experimental and numerical Investigation of flow oscillations in a Rectangular cavity, Journal of fluids engineering(1995), vol 117
    [20] Zhenfang L. And Tang Chuanlin, Pulsed jet nozzle for oil well jetting drilling, proceeding of the 7th American water jet conference, 1993
    [21] Tang Chuanlin, Li Xiaohong and Liao Zhengfang, The study of Oscillation jet Nozzle with flow-control oscillator, Proceeding of the 9th American water jet conference, 1977
    [22] 廖振方.自激振荡射流喷嘴装置的研究.高压水射流,1986(4)
    [23] 廖振方.自激振荡射流喷嘴的理论研究及应用.高压水射流,1993(11)
    [24] 孙家骏.水射流切割技术.中国矿业大学出版社.1992.3
    [25] 薛胜雄.高压水射流技术及应用.机械工业出版社,1997
    [26] 薛胜雄等.1999年美国水射流技术扫描.流体机械,Vol.28 No.6,2000
    [27] 薛胜雄.2001年美国水射流技术扫描.流体机械,Vol.30 No.1,2002
    [28] 刘本立等.前混合磨料射流技术研究新进展.高压水射流,1992
    [29] 郭楚文.前混合磨料射流加速机理的研究.高压水射流,1990.3
    [30] 王瑞和.油气井工程高压水射流技术研究.石油大学出版社,1998
    [31] 尤明庆.磨料射流混合机理的研究.高压水射流,1987.3
    [32] 艾池等.围压下射流动压力分布规律的实验研究.石油钻探技术,Dec.1995
    [33] 张德斌等.围压作用下自振空化射流脉动特性实验研究.中国安全科学学报,Oct.1999
    [34] 汪志明等.深井条件下超高压射流钻头水动力学特性研究.石油大学学报,No.4,2002
    [35] 胡寿根等.冲蚀试样性能分析及水下高围压射流试验研究.机械工程学报,No.6,2000
    [36] 胡寿根.淹没水射流冲蚀性能试验研究.机械工程学报,No.3,1997
    [37] 胡寿根等.水下切割环境的实现及射流冲蚀性能试验研究.机械工程学报,No.3,1999
    [38] 胡寿根等.空化水射流研究现状及其应用.华东工业大学学报,No.1,1996
    [39] 宁原林等.水下高围压磨料射流模拟装置的设计及试验.流体机械.No.3,2002
    [40] 宁原林等.水下高围压磨料射流装置及冲蚀性能的研究.水动力学研究与进展,Apr.2002.Vol.17,No.2
    [41] 宁原林等.水下高围压磨料射流模拟装置的设计及试验.流体机械,No.3,2002
    [42] 高激飞等.淹没磨料射流研究进展及冲击特性试验研究.力学季刊,No.4,2002
    [43] 丁胜等.水下高围压射流模拟装置的工程设计及测试分析.上海理工大学学报,No.4,1998
    [44] 宋拥政等.高压水磨料射流切割的力学特性与模型.锻压机械,No.3,1995
    [45] 宋拥政.水切割技术在美国的发展与应用,国外锻压,No.4,1993
    
    
    [46] 张怀亮.前混式磨料水射流切割机的设计与研究.流体机械,No.8,2001
    [47] Philip K. Rockwell. WATER JET TRENCHING IN SUBMERGED CLAYS. Mechanical Engineer Proceedings of the First U S. WATER JET CONFERENCE. Golden, Colorado. 1981. Colorado School of Mines Press. P195~206
    [48] DANEK LIWSZYC. Ultra High Pressure-Applied Technologies in Rubber Sub Sea Jet Nozzles. 6th Pacific Rim International Conference on Water Jetting Technology, 9-11 October 2000, Sydney Australia. CMTE, 2000. P79-82.
    [49] Dougals C.Echert, Michael C.McDonald and David O.Monserud. Underwater cutting by abrasive-waterjet. 1562-1566
    [50] Erdmana Jesnitzer. F, Cleaning, drilling and cutting by an interrupted jets, Proc.5th. Intern.symp.on jet cutting technogy, 1980
    [51] L.M. Hlavág, I.M. Hlavágová. Quick method for determination of the velocity profile of the axial symmetrical supersonic liquid jet. 10th American Waterjet Conference, August 14-17, 1999
    [52] V.E., Tunneling, Fracturing, Drilling and Mining with high water jets utilizing cavitation damage, Proc. 1st Intern. Symp. on JCT, 1972
    [53] E.F. Jesnitzer, A study of the effects of nozzle configuration on the performance of submerged water jets, Proc. 4th Inter. Symp. On JCT 1978
    [54] A.F. Conn, The fluid dynamics of submerged cavitating jet cutting, Proc. 8th Intern. Symp. on JCT, 1980
    [55] Katsuga Yanaida, Water jet cavitation of submerged horn sharp nozzles, Proc. 3rd U.S. water jet conference, 1985
    [56] Vijay M.M., A study of the practice of cavitating water jets, Proc. 11th Intern. Symp. on JCT, 1992
    [57] Yoshiski YaltAV, Suitable region of high-speed submerged water jets for cutting and penning, JSmE, 1995
    [58] R.H. Hollinger, Precision cutting with a low pressure coherent abrasive suspension jet, Proc. 5th U.S. Symp. on JCT, 1989
    [59] Dorman, Abrasive jet cutting development for specialist industrial applications, Proc. 7th Intern. Symp. on JCT 1986
    [60] G.A. Savanick, an abrasive jet device for cutting deep serfs in hard rock, Proc. 3rd U.S. conference on JCT, 1985
    [61] D.C.H, Parametric study of abrasive water jet processes by piercing experiments, Proc. 8th Intern. Syap. on JCT, 1986
    
    
    [62] R.M., DIAlet-A new abrasive water jet cutting technique, Proc. 8th Intern. Symp. on JCT, 1986
    [63] B.L. Liu, Experiment of the premixed abrasive jet to cut metal plate, Proc. 9th Intern. Symp. on JCT, 1988
    [64] William K. Blake, Mechanics of flow-induced Sound and vibration, 1986
    [65] L.M. Hlavág, I.M.Hlavágová.Quick Method for Determination of the Velocity Profile of the Axial Symmetrical Supersonic Liquid Jet. 10th American Waterjet Conference, August 14-17, 1999
    [66] L.M. Hlavág, I.M.Hlavágová. Research of Waterjet Interaction with Submerged Rock Materials. 2001 WJTA American Waterjet Conference, August 18-21, 2001
    [67] M.Hashish. Characteristics of Surfaces Machined With Abrasive-Waterjets. Transactions of ASME, 354/Vol. 113, JULY 1991
    [68] M.Hashish. A Modeling Study of Metal Cutting With Abrasive Waterjets. Transactions of ASME, 88/Vol. 106, JANUARY 1984
    [69] M.Hashish. A Model for Abrasive-Waterjet(AWJ) Machining Transactions of ASME, 154/Vol. 111, APRIL 1989
    [70] M.哈希斯.磨料水射流切割的数学模型.高压水射流,1986.7
    [71] 楼顺天等.基于MATLAB的模糊系统.西安电子科技大学出版社,2001.5
    [72] 吴晓莉等.基于MATLAB的辅助模糊系统设计.西安电子科技大学出版社,2002.8
    [73] 尚涛等.工程计算可视化与MATLAB实现.武汉大学出版社,2002
    [74] 楼顺天等.MATLAB5.X程序设计语言.西安电子科技大学出版社,2000
    [75] 李士勇.模糊控制·神经控制和智能控制论.哈尔滨工业大学出版社,1998
    [76] 刘增良.模糊技术与应用选编.北京航空航天大学出版社,1997
    [77] 张兆礼等.现代图像处理技术及Matlab实现.人们邮电出版社,2001
    [78] 王士同.模糊系统、模糊神经网络及应用程序设计.上海科学技术文献出版社,1998.12
    [79] 李晓红.水射流辅助切割破碎法.矿山技术,1990.6
    [80] 李晓红.水射流切割破碎法.矿山技术,1990.4
    [81] 李晓红等.自激振荡磨料射流原理及切割实验研究.流体机械,Vol.27.No.12,1999
    [82] 李晓红等.淹没和非淹没状态下脉冲磨料射流切割实验研究,第十一次全国高压水射流技术研讨会学术会议论文集,P29~P33
    [83] H.Domann & E. Aust, Experimental research on jet cutting for subsea applications. Proceedings of the 10th International Symposium On Jet Cutting Technology, BHR Group,
    
    1990, Ch 34, 489-498
    [84] C.von Minden, H. Domann & E. Aust, Robot guided waterjet cleaning for subsea applications. Proceedings of the 10th International Symposium On Jet Cutting Technology, BHR Group, 1990, Ch 35, 499-512
    [85] H.Haferkamp, H. Louis & G. Meier, Deep sea application of abrasive waterjets: feasibilities and limitations. Proceedings of the 10th International Symposium On Jet Cutting Technology, BHR Group, 1990, Ch 36, 513-523
    [86] R.J. Surle, Hyperbaric abrasive waterjet cutting trials for offshore industial application. Proceedings of the 10th International Symposium On Jet Cutting Technology, BHR Group, 1990, Ch 37, 525-545
    [87] 杨清文.淹没和非淹没状态下前混合磨料射流的动力特性及切割特性.重庆大学博士学位论文,1998
    [88] 卢义玉.磨料在振荡流中的混合机理及脉冲磨料水射流的切割特性研究.重庆大学博士学位论文,2000
    [89] 王建生.自激振荡脉冲磨料射流的基本理论与切割特性.重庆大学博士后研究工作报告,2000
    [90] 杨林.自激振荡脉冲磨料射流的动态特性研究.重庆大学博士学位论文,2001
    [91] 雷向阳.高围压下前混合磨料射流的切割机理及实验研究.重庆大学硕士学位论文,2003
    [92] 廖勇等.高围压水射流切割实验装置的设计.流体机械,No.12,2002
    [93] 廖勇等.自激振荡脉冲磨料水射流的实验研究.流体机械,No.4,2003
    [94] 卢义玉等.脉冲磨料射流主要参数对切割性能的影响,重庆大学学报,No.5,2002
    [95] 雷向阳等.自激振荡频率对磨料在脉冲磨料射流中分别的影响.矿山机械,No.2,2003
    [96] 卢义玉等.多功能数控水刀装置的研究.矿山机械,No.8,2002
    [97] Lu Yiyu, Li Xiaohong, Liao Yong, Lei Xiangyang. Experiments on Deflecting & Oscillating Waterjet. Journal of Chongqing University, Vol. 1.No. 1.June 2002
    [98] X.H.Li, Y.Liao, X.Y.Lei, Y.Y.Lei, Y.Y.Lu and B.Q.Jiao. Numerically Controlled Water Cutter and its Applications in the Machining of Natural Rock Materials. Key Engineering Materials Vol.250 (2003) pp.274-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700