用户名: 密码: 验证码:
土壤水分与耕作方式对冬小麦水分利用特性和碳氮代谢及产量的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1耕作方式和土壤水分对小麦耗水特性和产量形成的影响
     以高产中筋小麦品种济麦22为试验材料,在山东省兖州市小孟镇史王村大田进行定位试验。2007~2008生长季设置5种耕作方式:条旋耕、深松+条旋耕、旋耕、深松+旋耕、翻耕,本试验于2008~2009和2009~2010小麦生长季在2007~2008生长季的试验区内设置同一处理,“深松+条旋耕”和“深松+旋耕”处理不再深松,分析土壤经一次深松耕作后对小麦籽粒产量和水分利用效率影响的后效,降低机械作业成本。设置5个水分处理:不灌水(W0),灌水后播种、越冬、拔节和开花期0~140 cm土层土壤相对含水量在2008~2009小麦生长季分别达到80%、80%、75%和75% (W1),80%、85%、75%和75% (W2),85%、80%、75%和75% (W3),85%、85%、75%和75% (W4);在2009~2010小麦生长季分别达到85%、85%、70%和75% (W’1),85%、90%、70%和75% (W’2),85%、85%、75%和75% (W’3),85%、90%、75%和75% (W’4)。研究耕作方式和土壤水分对小麦耗水特性和碳氮代谢及产量的影响。
     1.1耕作方式和土壤水分对小麦耗水特性的影响
     1.1.1不同土壤水分条件下耕作方式对小麦耗水特性的影响
     同一水分条件下,深松+条旋耕的总耗水量低于深松+旋耕,灌水量低于深松+旋耕和翻耕处理,土壤耗水量占总耗水量的比例高于翻耕、旋耕和条旋耕处理。深松+条旋耕处理播种至越冬阶段的耗水量与条旋耕无显著差异,低于其他耕作处理,在开花至成熟阶段的耗水量和耗水模系数均高于条旋耕、旋耕和翻耕。深松+条旋耕各生育时期的棵间蒸发量低于深松+旋耕和翻耕处理。表明在一年深松耕作基础上,连续两年条旋耕播种处理减少了灌水量,促进了小麦对土壤贮水的利用,农田耗水量、播种至越冬阶段的耗水量和棵间蒸发量较低,开花至成熟阶段的耗水模系数最高,有利于降低小麦生育前期的水分消耗,促进开花后对水分的利用。
     1.1.2不同耕作方式条件下土壤水分对小麦耗水特性的影响
     同一耕作方式下,全生育期不灌水处理总耗水量最低,其总耗水量来源于降水量和土壤耗水量的比例最高,棵间蒸发量和拔节至成熟阶段的耗水量低于灌水处理,表明W0处理减少了小麦生育期水分向大气中的耗散,有利于小麦对土壤水分的利用。
     灌水处理之间比较,W3和W’3的总耗水量、灌水量及其占总耗水量的比例分别低于W4和W’4处理,土壤耗水量占总耗水量的比例与W2和W’2无显著差异,高于W4和W’4处理,其开花至成熟阶段的耗水量及其耗水模系数最高。表明在本试验条件下,播种期0~140 cm土层土壤相对含水量为85%,越冬期不灌水,拔节和开花期0~140 cm土层土壤相对含水量分别为75%和75%的W3和W’3处理的总耗水量、越冬至拔节阶段的棵间蒸发量和耗水模系数低于越冬期灌水处理,其土壤耗水量较高,开花至成熟阶段的耗水量及其耗水模系数最高,有利于小麦开花后对水分的利用。
     1.2耕作方式和土壤水分对小麦生理特性和干物质积累与分配的影响
     1.2.1不同土壤水分条件下耕作方式对小麦生理特性和干物质积累与分配的影响
     同一水分条件下,深松+条旋耕和深松+旋耕在灌浆中后期的旗叶水势高于其他处理,其旗叶光合速率和叶片水分利用效率在灌浆中后期高于翻耕处理且两者无显著差异,条旋耕和旋耕在灌浆中后期的旗叶光合速率和叶片水分利用效率低于翻耕处理。深松+条旋耕在灌浆初期和中期的旗叶SPS活性和蔗糖含量显著高于翻耕处理;灌浆后期的旗叶蔗糖含量低于深松+旋耕和翻耕处理,有利于灌浆阶段旗叶中蔗糖的积累及向籽粒中的转运。深松+条旋耕和深松+旋耕处理开花后干物质积累量、成熟期籽粒的干物质分配比例和开花后干物质同化量对籽粒的贡献率高于条旋耕、旋耕和翻耕处理,翻耕的茎秆+叶鞘+叶片的干物质分配比例高于深松+条旋耕和深松+旋耕处理。以上结果表明,在一年深松耕作基础上,连续两年条旋耕播种处理提高了开花后干物质的积累能力,增加了籽粒中来自开花后干物质的比例,这是深松+条旋耕处理获得高产的生理基础。
     1.2.2不同耕作方式条件下土壤水分对小麦生理特性和干物质积累与分配的影响
     同一耕作方式下,全生育期不灌水处理在开花后的旗叶光合速率、蒸腾速率、Fv/Fm、ΦPSII、SPS活性、干物质积累量均低于灌水处理,籽粒干物质分配比例最高。表明干旱条件下,小麦的物质生产能力降低,促进了成熟期干物质向籽粒中的分配。
     灌水处理之间比较,W3、W4和W’3、W’4的旗叶光合速率在灌浆中后期均高于其他处理,W3和W’3的旗叶蒸腾速率在灌浆后期低于W4和W’4处理。W3和W’3处理在开花期和成熟期的干物质积累量较高,籽粒干物质分配比例高于W4和W’4,开花后干物质同化量对籽粒的贡献率与W4和W’4无显著差异均高于其他处理。2008~2009生长季,W3和W4在灌浆中后期的旗叶水势和根系活力高于W2和W1处理,其开花至花后21天旗叶的SPS活性和蔗糖含量最高,W3的花后28天的旗叶蔗糖含量低于W4处理,有利于蔗糖向籽粒中的转运。以上结果表明,播种期0~140 cm土层土壤相对含水量为85%,越冬期不灌水,拔节和开花期0~140 cm土层土壤相对含水量分别为75%和75%的W3和W’3处理有利于小麦开花后保持较高的物质生产能力,延缓了旗叶的衰老,提高花后光合产物向籽粒中的转运。
     1.3耕作方式和土壤水分对小麦植株氮素吸收、转运和分配的影响
     1.3.1不同土壤水分条件下耕作方式对小麦植株氮素吸收、转运和分配的影响
     同一水分条件下,深松+条旋耕和深松+旋耕在开花和成熟期的植株氮素积累量、成熟期籽粒的氮素积累量和分配比例均高于条旋耕和旋耕处理,茎鞘+叶片的分配比例低于上述处理,有利于小麦植株氮素的积累及其向籽粒中的分配。成熟期,深松+条旋耕的0~80 cm各土层的土壤硝态氮含量低于条旋耕、旋耕和翻耕处理,在120~140 cm各土层低于深松+旋耕。以上结果表明,在一年深松耕作基础上,连续两年条旋耕播种处理有利于小麦营养器官氮素在开花期和成熟期的积累,减少了开花前营养器官氮素向籽粒中的转运,其成熟期土壤硝态氮在深层土壤的积累量低于深松+旋耕处理,获得高的氮素吸收效率和氮肥生产效率。
     1.3.2不同耕作方式条件下土壤水分对小麦植株氮素吸收、转运和分配的影响同一耕作方式下,全生育期不灌水处理植株氮素在开花期和成熟期的积累量、成熟期穗轴+颖壳和茎鞘+叶片氮素积累量均低于灌水处理,营养器官氮素向籽粒中的转移率及其对籽粒的贡献率高于灌水处理。成熟期,全生育期不灌水的0~60 cm土层土壤的硝态氮含量高于灌水处理,140~200 cm土层土壤的硝态氮含量低于灌水处理。
     灌水处理之间比较,开花期和成熟期的植株氮素积累量随灌水量的增加而增加,营养器官氮素向籽粒中的转移率及其对籽粒的贡献率降低。在条旋耕条件下,W3和W2的氮素在籽粒中的分配比例低于W1,高于W4处理;在深松+条旋耕、旋耕和翻耕条件下,W3和W1的氮素在籽粒中的分配比例高于W2和W4处理;在深松+旋耕条件下,W3的氮素在籽粒中的分配比例高于W4、W2和W1处理。W3处理上层土壤的硝态氮含量低于W1和W2,W4处理在100~140 cm土层出现积累峰。以上结果表明,播种期0~140 cm土层土壤相对含水量为85%,越冬期不灌水,拔节和开花期0~140 cm土层土壤相对含水量分别为75%和75%的处理有利于小麦开花和成熟期植株氮素积累量的增加和成熟期氮素向籽粒中的转运,该处理促进了小麦对40~120 cm以上土层土壤氮素的吸收利用,硝态氮向140~180 cm土层土壤淋溶量低于W4处理,有利于氮素吸收效率和氮肥生产效率的提高。
     1.4耕作方式和土壤水分对小麦籽粒产量、品质和水分利用效率的影响
     1.4.1不同土壤水分条件下耕作方式对小麦籽粒产量、品质和水分利用效率的影响
     同一水分条件下,深松+条旋耕和深松+旋耕处理的籽粒产量最高且两者无显著差异,深松+条旋耕的水分利用效率和灌溉效益高于其他处理。翻耕的籽粒产量在不灌水条件下与旋耕无显著差异高于条旋耕处理;在灌水条件下高于旋耕和条旋耕处理。深松+条旋耕的蛋白质含量、湿面筋含量、面团形成时间和面团稳定时间高于翻耕处理。以上结果表明,在一年深松耕作基础上,连续两年条旋耕播种处理有利于籽粒产量和水分利用效率的同步提高,其蛋白质含量、湿面筋含量、面团形成时间和面团稳定时间较高。1.4.2不同耕作方式条件下土壤水分对小麦籽粒产量、品质和水分利用效率的影响同一耕作方式下,全生育期不灌水的籽粒产量低于灌水处理。W0的水分利用效率在条旋耕条件下高于W3和W’3处理;在旋耕条件下与W3和W’3处理无显著差异;在深松+条旋耕、深松+旋耕和翻耕条件下低于W3和W’3处理。W0的蛋白质含量、湿面筋含量、面团形成时间和面团稳定时间高于灌水处理。
     灌水处理之间比较,W3和W’3的籽粒产量与W4和W’4处理无显著差异高于其他处理,水分利用效率分别高于W2、W4和W’2、W’4处理,两处理的灌溉效益最高。W4的面团稳定时间、蛋白质含量和湿面筋含量最低。以上结果表明,播种期0~140 cm土层土壤相对含水量为85%,越冬期不灌水,拔节和开花期0~140 cm土层土壤相对含水量分别为75%和75%的处理灌溉效益和籽粒产量最高,获得较高水分利用效率,其面团稳定时间、蛋白质含量和湿面筋含量高于W4处理。
     在一年深松耕作基础上,连续两年采用条旋耕播种方式下播种期0~140 cm土层土壤相对含水量为85%,越冬期不灌水,拔节和开花期0~140 cm土层土壤相对含水量分别为75%和75%的处理是本试验条件下节水高产的最优处理。
     2灌水方式对小麦耗水特性和产量形成的影响
     以高产中筋小麦品种济麦22为试验材料,于2009~2010小麦生长季在山东省兖州市小孟镇史王村大田进行试验。以不灌水处理为对照(I0),设置微喷管喷灌和浇灌两种灌水方式,拔节期和开花期0~140 cm土层达到的目标相对含水量分别为70%和70%(I1和I2),75%和75%(I3和I4),研究了不同灌水方式对小麦耗水特性和产量形成的影响。
     2.1灌水方式对小麦耗水特性的影响
     不灌水的土壤耗水量占总耗水量的比例显著高于灌水处理,拔节至开花和开花至成熟阶段的耗水模系数最低。灌水处理之间比较,随拔节和开花期土壤相对含水量的提高,总耗水量和拔节至开花阶段的耗水量和耗水模系数增加,灌水量及其占总耗水量的比例提高。喷灌处理土壤耗水量占总耗水量的比例、开花至成熟阶段的耗水模系数和60~140 cm土层土壤贮水的消耗量高于浇灌处理,其开花和灌浆期的棵间蒸发量低于浇灌处理。表明喷灌处理减少了小麦生育期的灌水量,提高了60~140 cm土层土壤贮水的消耗和开花至成熟阶段的耗水量,有利于小麦开花后对水分的利用,降低开花后的棵间蒸发损失。
     2.2灌水方式对小麦光合速率和干物质积累与分配的影响
     不灌水处理的光合速率在开花后均低于灌水处理,其开花后干物质积累量和开花后干物质积累量对籽粒的贡献率最低。灌水处理间比较,随着土壤相对含水量的增加,小麦开花后干物质积累量及其对籽粒的贡献率提高。喷灌处理灌浆后期旗叶光合速率、开花后干物质积累量和开花后干物质积累量对籽粒的贡献率高于浇灌处理。表明喷灌处理有利于小麦开花后干物质的积累及其向籽粒中的转运。
     2.3灌水方式对小麦植株氮素积累与分配的影响
     不灌水处理在开花和成熟期的氮素积累量、营养器官氮素向籽粒中的转移量和转移率均低于灌水处理。灌水处理间比较,随着土壤相对含水量的增加,开花和成熟期的氮素积累量提高,营养器官氮素向籽粒中转移率和营养器官氮素转移量对籽粒的贡献率降低。喷灌处理成熟期氮素积累量、营养器官氮素向籽粒中转移量和转移率高于浇灌处理。
     2.4灌水方式对小麦籽粒产量、水分和氮素利用效率的影响
     不灌水处理的农田耗水量、籽粒产量和氮素吸收效率均低于灌水处理,氮素利用效率高于灌水处理,水分利用效率与I1无显著差异,低于其他灌水处理。灌水处理间比较,随着土壤相对含水量的增加,籽粒产量、水分利用效率和氮素吸收效率提高,氮素收获指数降低。在拔节期和开花期土壤相对含水量分别为75%和75%条件下,喷灌处理有利于籽粒产量、水分和氮素利用效率的提高,是本试验条件下的最优灌溉处理。
1 Effects of tillage and soil moisture on water consumption characteristics and yield formation of wheat
     The field fixed position experiment was conducted with high-yield medium-gluten winter wheat cultivar Jimai 22 in Shiwang village (35.41°N, 116.41°E), Yanzhou, Shandong, China. The five tillage practice treatments which were strip rotary tillage (SR), strip rotary tillage after subsoiling (SRS), rotary tillage (R), rotary tillage after subsoiling (RS) and plowing tillage (P) respectively, were designed and conducted on the same experimental plots during 2007~2010 growth seasons. However, SRS and RS were no longer subsoiling during 2008~2009 and 2009~2010 wheat growth seasons. This paper analyzes the results of two wheat growth seasons from 2008 to 2010, in order to verify the effects of the subsoiling during the first year on grain yield and water use efficiency. The soil moisture treatments were no irrigation (W0), in 2008~2009, 80% of relative soil moisture content in 0~140 cm soil layers at sowing, 80% at prewintering, 75% at jointing and 75% at anthesis (W1); 80% at sowing, 85% at prewintering, 75% at jointing and 75% at anthesis (W2); 85% at sowing, 80% at prewintering, 75% at jointing and 75% at anthesis (W3); 85% at sowing, 85% at prewintering, 75% at jointing and 75% at anthesis (W4);in 2009~2010, 85% at sowing, 85% at prewintering, 70% at jointing and 75% at anthesis (W’1); 85% at sowing, 90% at prewintering, 70% at jointing and 75% at anthesis (W’2); 85% at sowing, 85% at prewintering, 75% at jointing and 75% at anthesis (W’3); 85% at sowing, 90% at prewintering, 75% at jointing and 75% at anthesis (W’4). The object of this study was to discover the effects of tillage practice and soil moisture on water consumption characteristics, carbon and nitrogen metabolism and grain yield in wheat. The results were as follows:
     1.1 Effects of tillage and soil moisture on water consumption characteristics
     1.1.1 Effects of tillage on water consumption characteristics in different soil moisture The total amount of water consumption in SRS was lower than that in RS treatment, the irrigation amount was lower than that in RS and P treatments, but the ratio of the amount of soil water consumption to the amount of total water consumption was higher than that in P, SR and R treatments. SRS treatment had lower soil evaporation at every stage in wheat growth season, the amount of water consumption during sowing - prewintering was lower than that in P, RS and R treatment, and there was no significant difference between SRS and SR treatment. The amount and the percentage of water consumption during anthesis - maturity in SRS treatment were higher than those in P, SR and R treatments. The results suggested that the SRS treatment which was strip rotary in 2008~2010 after once subsoiling in 2007~2008 decreased the amount of irrigation but increased the amount of soil water consumption. The amount of water consumption during sowing - prewintering and soil evaporation were lower, the amount of water consumption during anthesis - maturity was greatest, which was benefit for wheat to decrease water consumption at early stage, and increase water absorption after anthesis.
     1.1.2 Effects of soil moisture on water consumption characteristics under different tillage practices
     The total amount of water consumption in W0 treatment was the lowest, the ratio of precipitation and the ratio of the amount of soil consumption to total amount of water consumption in W0 treatment were greatest. The soil evaporation and the amount of water consumption during jointing - maturity in W0 treatment were lower than those in the other treatments. The results indicate that W0 treatment decreased soil evaporation, and promoted the use of stored soil water by wheat.
     In W3 and W’3 treatments, the amount and percentage of water consumption during anthesis - maturity were greatest, the amount of irrigation and its ratio to total amount of water consumption and the total amount of water consumption were lower than those in W4 and W’4 treatments. However, the ratio of the amount of soil water consumption to the total amount of water consumption was higher than that in W4 and W’4 treatments, and there was no significant difference between W3 and W2, and W’3 and W’2 treatments. It suggested that W3 and W’3 treatments which the relative soil moisture content in 0~140 cm soil layers was 85% at sowing, no irrigation at prewintering, 75% at jointing and 75% at anthesis stage achieved lower total water consumption, consumption percentage and soil evaporation during prewintering - jointing, compared to those in the treatments which were irrigated at the prewintering stage. The amount of water consumption during anthesis - maturity in W3 and W’3 treatments was greatest. It was encouraged to higher water absorption by the wheat after anthesis.
     1.2 Effects of tillage and soil moisture on physiological characteristics and the accumulation and distribution of dry matter in wheat
     1.2.1 Effects of tillage on physiological characteristics and the accumulation and distribution of dry matter in different soil moisture The flag leaf water potential, photosynthetic rate and leaf water use efficiency in SRS and
     RS treatments were greatest during middle and late grain filling stage, which was followed by those in P treatment, but those in SR treatment were the lowest. The sucrose phosphate synthase activity and sucrose content of flag leaf in SRS treatment were higher than those in P treatment at early and middle grain filling stages. However sucrose content was lower than that in RS and P treatments at late grain filling stage, which in turn improved the accumulation of sucrose in grain and the translocation of sucrose from flag leaf to grain. The accumulation of dry matter after anthesis and its contribution ratio to grain, and dry matter distribution in grain at maturity in SRS and RS treatments were higher than those in the other treatments. Dry matter distribution in stem+sheath+leaf in P treatment at maturity was higher than that in SRS and RS treatments. The results suggested that the SRS treatment which was strip rotary in 2008~2010 after once subsoiling in 2007~2008 improved the accumulation of dry matter after anthesis and its distribution ratio to grain, which was the physiological basis of high-yield in the SRS treatment.
     1.2.2 Effects of soil moisture on physiological characteristics and dry matter accumulation and distribution under different tillage practices
     The photosynthetic rate, transpiration rate, Fv/Fm,ΦPSII, SPS activity and the amount of dry matter accumulation in the W0 treatment were lower than those in the irrigated treatments, while its dry matter distribution ratio in grain was greatest. In this way, the production of dry matter was decreased and the distribution of dry matter to grain at maturity was encouraged in drought conditions.
     The photosynthetic rate during the middle and late grain filling stages in the W3, W4 and W’3, W’4 treatments were greatest. The transpiration rate at the late grain filling stage in the W3 and W’3 treatments was lower than that in the W4 and W’4 treatments. The amount of dry matter accumulation after anthesis and its contribution ratio to the grain, and dry matter distribution to grain in the W3 and W’3 treatments were higher than those in the W4 and W’4 treatments. In 2008~2009 growth season, the flag leaf water potential, root activity, SPS activity and sucrose content during 7 d - 28 d after anthesis in the W3 and W4 treatments were higher than those in the W1 and W2 treatments. However, the sucrose content at 28 d after anthesis in the W3 treatment was lower than that in the W4 treatment, which were facilitated to the translocation of sucrose from flag leaf to grain. The results indicated that the W3 and W’3 treatments where the relative soil moisture content in 0~140 cm soil layers was 85% at sowing, no irrigation at prewintering, 75% at jointing and 75% at anthesis stage were beneficial for maintaining the ability to produce a high level of dry matter, delaying flag leaf senescence, and improving dry matter translocation to grain after anthesis. 1.3 Effects of tillage and soil moisture on nitrogen accumulation, translocation and distribution in wheat
     1.3.1 Effects of tillage on nitrogen accumulation, translocation and distribution in different soil moisture
     The amount of nitrogen accumulation at anthesis and maturity, the amount of grain nitrogen accumulation and the distribution ratio of grain nitrogen in the SRS and the RS treatments were higher than those in the SR and the R treatments. However, the nitrogen translocation efficiency from vegetative organs to grain and its contribution proportion in the SRS and the RS treatments were lower than those in the SR and the R treatments. At maturity, the content of NO3––N in 0~80 cm soil layers in the SRS treatment was lower than that in the SR, R and P treatments, and was also lower than that in 120~140 cm soil layers in RS treatment. The results suggested that the SRS treatment which was strip rotary in 2008~2010 after once subsoiling in 2007~2008 encouraged higher nitrogen accumulation at anthesis and maturity, and increased nitrogen uptake efficiency and nitrogen production efficiency, decrease nitrogen translocation from vegetative organs to grain, while the nitrate nitrogen residual in deep soil layers was lower than that in the RS treatment.
     1.3.2 Effects of soil moisture on nitrogen accumulation, translocation and distribution under different tillage practices
     The amount of nitrogen accumulation in the plant after anthesis and that in spike axis+glume and sheath+stem+leaf at maturity in the W0 treatment were lower than those in the treatments with irrigation, the efficiency of nitrogen translocation from vegetative organs to grain and its contribution proportion were higher than those in the treatments with irrigation. At maturity, the content of NO3––N in 0~60 cm soil layers was higher, but in 140~200 cm soil layers it was lower than in the treatments with irrigation.
     With the amount of irrigation increased, the amount of nitrogen accumulation in the wheat plant at anthesis and maturity increased, but the efficiency of nitrogen translocation from vegetative organs to grain and its contribution proportion decreased. Under the conditions of the SR treatment, the ratio of nitrogen distribution in grain in the W3 and the W2 treatments were lower than that in the W1 treatment, but higher than that in the W4 treatment. The ratio of nitrogen distribution in grain in the W3 and the W1 treatments were higher than that in the W2 and the W4 treatments under the conditions of the SRS, R and P treatments. That in the W3 treatment was higher than that in the W4, W2 and W1 treatments under the conditions of the RS treatment. The NO3––N content in the W3 treatment was lower than that in the W1 and the W2 treatments. The nitrate nitrogen residual in 100~140 cm soil layers in the W4 treatment was greatest. The results indicated that the W3 treatment which the relative soil moisture content of 0~140 cm soil layers was 85% at sowing, no irrigation at prewintering, 75% at jointing and 75% at anthesis was beneficial to increase the amount of nitrogen accumulation in the plant at anthesis and maturity and the efficiency of nitrogen translocation from vegetative organs to grain. The W3 treatment improved the utilization of soil nitrogen in the 40~120 cm soil layers, the efficiency of nitrogen uptake and the efficiency of nitrogen production, decreased the content of NO3––N in the 140~180 cm soil layers, compared to that in the W4 treatment.
     1.4 Effects of tillage and soil moisture on grain yield, quality and water use efficiency in wheat
     1.4.1 Effects of tillage on grain yield, quality and water use efficiency in different soil moisture
     The water use efficiency and irrigation benefit were greatest in the SRS treatment. There was no significant difference on grain yield between the SRS and the RS treatments. However, the grain yield of the SRS and the RS treatments was higher than that of the other treatments. There was no significant difference on grain yield between the P treatment and the R treatment when there was no irrigation, but the grain yield of the P treatment was higher than that of the R treatment under irrigation condition. The grain yield of the SR treatment was the lowest of all the treatments. The protein content, wet gluten content, dough development time and the dough stability time of the SRS and the RS treatments were higher than those of the P treatment. The results suggested that the SRS treatment which was strip rotary in 2008~2010 after once subsoiling in 2007~2008 was favorable to increase the grain yield and water use efficiency at the same time. The grain quality of the SRS treatment was also superior to that of the P treatment.
     1.4.2 Effects of soil moisture on grain yield, quality and water use efficiency under different tillage practices
     The grain yield of the W0 treatment was lower than that of the treatments with irrigation. However, the protein content, wet gluten content, dough development time and dough stability time of the W0 treatment were higher than that of the treatments with irrigation. Compared with the W3 and the W’3 treatments, water use efficiency of the W0 treatment was higher in the SR system, but was lower in the SRS, RS and P systems, and there was no significant difference in the R system.
     The irrigation benefit of W3 and W’3 treatments was highest. There was no significant difference on grain yield between the W3 and W4, and W’3 and W’4 treatments, but higher than the other treatments. The water use efficiency of the W3 treatment was higher than that of the W2 and the W4 treatments, as well, the water use efficiency of the W’3 treatment was higher than that of the W’2 and the W’4 treatments. The W4 treatment with the most irrigation achieved the lowest protein content, wet gluten content, dough development time and dough stability time. The results indicated that the W3 treatment which the relative soil moisture content of 0~140 cm soil layers was 85% at sowing, no irrigation at prewintering, 75% at jointing and 75% at anthesis stage achieved the greatest irrigation benefit and grain yield, and higher water use efficiency. The protein content, wet gluten content, dough development time and dough stability time of the W3 treatment were higher than those of the W4 treatment.
     Therefore, we recommend that the most appropriate treatment for high-yielding and water-saving production of wheat was the SRS– W3 and SRS– W’3 treatments with strip rotary for two years after once subsoiling, and 85% of relative soil moisture content in the 0~140 cm soil layers at sowing, no irrigation at prewintering, 75% of relative soil moisture content in the 0~140 cm soil layers at jointing and 75% of relative soil moisture content in the 0~140 cm soil layers at anthesis.
     2 Effects of irrigation methods on water consumption characteristics and yield formation of wheat
     The field experiment was conducted with high-yield and medium-gluten winter wheat cultivar Jimai 22 in Shiwang village (35.41°N, 116.41°E), Yanzhou, Shandong, China in 2009~2010 growing season. The control treatment expressed as I0 irrigated no water, and two irrigation methods were designed,i. e., border flooding irrigation (I1 and I3);sprinkler irrigation (I2 and I4). Two relative soil moisture contents in each irrigation regime were designed to investigate the effects of irrigation methods and soil moisture on water consumption characteristics and grain yield in wheat.
     2.1 Effects of irrigation methods on water consumption characteristics
     The percentage of water consumption during jointing - maturity of the I0 treatment was significantly lower than that of the irrigated treatments, while the ratio of the amount of soil water to the amount of the total water consumption in the I0 treatment was higher than that in the irrigated treatments. The amount of total water consumption, the amount and the percentage of the water consumption during jointing - anthesis and the ratio of the amount of irrigation to the total amount of water consumption increased with the relative moisture content at jointing and anthesis stage increased. The ratio of the amount of soil water consumption to the total amount of water consumption, the percentage of the water consumption during anthesis - maturity and the amount of soil water consumption from the 60~140 cm soil layers in the sprinkler irrigation treatments were higher than those in the border flooding irrigation treatments. However the soil evaporation at anthesis and grain filling stage in the sprinkler irrigation treatments were lower than those in the border flooding irrigation treatments. The results indicated that the sprinkler irrigation reduced the amount of irrigation, increased the amount of the soil water consumption from the 60~140 cm soil layers and the amount of soil water consumption during anthesis - maturity, which was favorable to increase the water absorption by wheat after anthesis, and decrease soil evaporation.
     2.2 Effects of irrigation methods on photosynthetic rate and the accumulation and distribution of dry matter
     The photosynthetic rate after anthesis in the I0 treatment was significantly lower than that in the irrigated treatments. The amount of dry matter accumulation after anthesis and the contribution of dry matter assimilated after anthesis to grain were the lowest. The amount of dry matter accumulation after anthesis and its contribution to grain increased with the relative moisture content at jointing and anthesis stage increased. The photosynthetic rate at late grain filling stage, the amount of dry matter accumulation after anthesis and its contribution to grain in sprinkler irrigation treatments were higher than those in border flooding irrigation treatments. The results suggested that sprinkler irrigation encouraged an increase in the amount of dry matter accumulation and its translocation to grain after anthesis.
     2.3 Effects of irrigation methods on nitrogen accumulation and distribution
     The amount of nitrogen accumulation in plant at anthesis and maturity, the amount and the efficiency of nitrogen translocation from vegetative organs to grain in the I0 treatment were significantly lower than those in the irrigated treatments. However the ratio of nitrogen distributed to grain in the I0 treatment was greatest. The amount of nitrogen accumulation at anthesis and maturity increased, but the ratio of nitrogen translocated to grain and the contribution proportion of translocated nitrogen decreased when the relative moisture content at jointing and anthesis was increased. The amount of nitrogen accumulation at maturity, the amount and the efficiency of nitrogen translocation from vegetative organs to grain in sprinkler irrigation treatments were higher than those in the border flooding irrigation treatments.
     2.4 Effects of irrigation methods on grain yield, water and nitrogen use efficiency
     The amount of water consumption, grain yield and nitrogen uptake efficiency were the lowest but nitrogen use efficiency was greatest in I0 treatment. There was no significant difference in water use efficiency between the I0 treatment and the I1 treatment. However, the water use efficiency of the I0 and the I1 treatments was lower than that of the other treatments. The grain yield, water use efficiency and nitrogen uptake efficiency increased while the nitrogen harvest index decreased with the relative moisture content increased. Considering the balance of grain yield, water and nitrogen use efficiency, the appropriate treatment under these research conditions was the I4 treatment with sprinkler irrigation, and 75% of the relative soil moisture content in the 0~140 cm soil layers at jointing and anthesis.
引文
安顺清,朱自玺,吴乃元,焦仪珍.黄淮海中部地区作物水分胁迫和干旱研究结果[J]. 中国农业科学, 1991, 24(2): 13-18.
    蔡焕杰,康绍忠,张振华,柴红敏,胡笑涛,王健.作物调亏灌溉的适宜时间与调亏程度的研究[J].农业工程学报, 2000, 16(3): 24-27.
    曹翠玲,李生秀.水分胁迫和氮素有限亏缺对小麦拔节期某些生理特性的影响[J].土壤通报, 2003, 34(6): 505-509.
    曹广才,王绍中.小麦品质生态[M].北京:中国科学技术出版社, 1994, 89-92.
    陈乐梅,马林,刘建喜,石书兵,郭飞,库再拉,蔺胜权.免耕覆盖对春小麦灌浆期干物质积累特性及最终产量的影响[J].干旱地区农业研究, 2006, 24(6): 21-24.
    陈四龙,陈素英,孙宏勇,张喜英,裴冬.耕作方式对冬小麦棵间蒸发及水分利用效率的影响[J].土壤通报, 2006, 37(4): 817-820.
    陈晓远,罗远培.土壤水分变动对冬小麦干物质分配及产量的影响[J].中国农业大学学报, 2001, 6(1): 96-103.
    陈子明,袁锋明,姚造华,周春生,傅高明,宋永林,李小平.北京潮土NO3––N在土壤中的移动特点及其淋失动态[J].植物营养与肥料学报, 1995, 1(2): 71-79.
    程献云,秦海英,王宪章,刘东亮.灌水量对耗水量及小麦产量的影响[J].作物杂志, 2002, 2: 18-19.
    褚鹏飞,于振文,王东,张永丽.耕作方式对小麦耗水特性和籽粒产量的影响[J].中国农业科学, 2010, 43(19): 3954-3964.
    褚鹏飞.耕作方式和土壤水分对小麦耗水特性和产量形成的影响及其生理基础[D].山东农业大学,2010.
    崔欢虎,张松令,闫翠萍,靖华,马爱萍.黄土高原旱地小麦最佳土壤库容深度模拟研究[J].水土保持学报, 2003, 17(4): 110-112.
    崔世明.耕作方式和土壤水分对小麦产量和水分利用特性的影响及其生理基础[D].山东农业大学, 2009.
    戴廷波,赵辉,荆奇,姜东,曹卫星.灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响[J].生态学报, 2006, 26(11): 3670- 3676.
    单长卷.土壤干旱对冬小麦水分生理和生物量分配的影响[J].麦类作物学报, 2006, 26(2): 127-129.
    丁昆仑, Hann M J.耕作措施对土壤特性及作物产量的影响[J].农业工程学报, 2000, 16(3): 49-52.
    杜兵,李问盈,邓健,廖植樨.保护性耕作表土作业的田间试验研究[J].中国农业大学学报, 2000, 5(4): 65-67.
    杜太生,康绍忠,王振昌,王锋,杨秀英,苏兴礼.隔沟交替灌溉对棉花生长、产量和水分利用效率的调控效应[J].作物学报, 2007, 33(12): 1982-1990.
    樊小林,李玲,何文勤,尚浩博,汪沛洪.氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应[J].植物营养与肥料学报, 1998, 4(2): 131-137.
    樊引琴,蔡焕杰,王健.冬小麦田棵间蒸发的试验研究[J].灌溉排水,2000, 19(4): 1-4.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响[J].应用生态学报, 2005, 16(10): 1883-1888.
    范雪梅,姜东,戴廷波,荆奇,曹卫星.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响[J].植物生态学报, 2006, 30(1): 71-77.
    方保停,郭天财,王晨阳,何盛莲,王书丽,王志敏.两种土壤贮水条件下灌水对豫麦50籽粒品质性状及产量的调控效应[J].麦类作物学报, 2006, 26( 3): 111-116.
    方保停,郭天财,王晨阳,何盛莲.限水灌溉对冬小麦灌浆期旗叶叶绿素荧光动力学参数及产量的影响[J].干旱地区农业研究, 2007, 25(1): 116-119. 房全孝,陈雨海,李全起,于舜章,罗毅,于强,欧阳竹.土壤水分对冬小麦生长后期光能利用及水分利用效率的影响[J].作物学报, 2006, 32(6): 861-866.
    房全孝,陈雨海,李全起,于舜章,余松烈,董庆余,罗毅,于强,欧阳竹.灌溉对冬小麦灌浆期光合产物供应和转化及有关酶活性的影响[J].作物学报, 2004, 30(11): 1113-1118.
    房全孝,陈雨海.节水灌溉条件下冬小麦耗水规律及其生态基础研究[J].华北农学报, 2003, 18(3): 18-22.
    冯兆忠,王效科,段晓男,冯宗炜.不同氮水平对春小麦光合速率日变化的影响[J].生态学杂志, 2003, 22(4): 90-92.
    付国占,李潮海,王俊忠,王振林,曹鸿鸣,焦念元,王小东.残茬覆盖与耕作方式对夏玉米叶片衰老代谢和籽粒产量的影响[J].西北植物学报, 2005, 25(1): 155-160.
    高鹭,陈素英,胡春胜.喷灌条件下冬小麦的水肥利用特征研究[J].灌溉排水学报, 2005, 24(5): 25-28.
    高延军,张喜英,陈素英,孙宏勇,裴冬,陈四龙.冬小麦品种间水分利用效率的差异及其影响因子分析[J].灌溉排水学报, 2004, 23(5): 45-49.
    郭清毅,黄高宝.保护性耕作对旱地麦-豆双序列轮作农田土壤水分及利用效率的影响[J].水上保持学报, 2005, 19(3): 165-169.
    郭相平,康绍忠,索丽生.苗期调亏处理对玉米根系生长影响的试验研究[J].灌溉排水, 2001, 20(1): 25-27.
    韩占江.土壤水分对小麦耗水特性和碳氮代谢及产量的影响[D].山东农业大学, 2010.
    何照范.粮油籽粒品质及其分析技术[M].北京:中国农业出版社, 1985.
    侯连涛,焦念元,韩宾,江晓东,李增嘉.不同覆盖方式对土壤水分分布的影响[J].灌溉排水学报, 2007, 2: 47-50.
    胡梦芸,张正斌,徐萍,董宝娣,李魏强,李景娟.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究[J].作物学报, 2007, 33(11): 1884-1891.
    黄明,李友军,吴金芝,陈明灿,孙敬克.深松覆盖对土壤性状及冬小麦产量的影响[J]. 河南科技大学学报:自然科学版, 2006, 27(2): 74-77.
    黄明,吴金芝,李友军,姚宇卿,张灿军,蔡典雄,金轲.不同耕作方式对旱作冬小麦旗叶衰老和籽粒产量的影响[J].应用生态学报, 2009, 20(6): 1355-1361.
    黄朝文,仇晓军,姜宝全.小麦深施尿素按需水规律进行喷灌节水增产研究[J].黑龙江水利科技, 2002, 2: 118-119.
    黄玉鸾,张继林,孙元敏,陆桂玉,潘汶,韦绕生.不同耕作方式机条播小麦的生长发育特性[J].江苏农业科学, 1991, 5: 5-8.
    黄占斌,山仑.不同供水下作物水分利用率和光合速率日变化的时段性及其机理研究[J]. 华北农学报, 1999, 14(1): 47-52.
    江晓东,迟淑筠,李增嘉,吕美容,王芸,史桂萍,迟岩慧,郑延海.不同土壤耕作模式对冬小麦籽粒品质的影响[J].农业工程学报, 2007, 23(7): 54-57.
    江晓东,李增嘉,侯连涛,王芸,王雪,颜红.少免耕对灌溉农田冬小麦夏玉米作物水、肥利用的影响[J].农业工程学报, 2005, 21(7): 20-24.
    江晓东,王芸,侯连涛,李增嘉,王雪,郭志华.少免耕模式对冬小麦生育后期光合特性的影响[J].农业工程学报, 2006, 22(5): 66-69.
    江永红,宇振荣,马永良.秸秆还田对农田生态系统及作物生长的影响[J].土壤通报, 2001, 32(5): 209-213.
    姜东,谢祝捷,曹卫星,戴廷波,荆奇.花后干旱和渍水对冬小麦光合特性和物质运转的影响[J].作物学报, 2004, 30(2): 175-182.
    居辉,周殿玺.不同时期低额灌概的冬小麦耗水规律研究[J].耕作与栽培, 1998, 2: 20-23.
    居辉,兰霞,李建民,周殿玺,苏宝林.不同灌溉制度下冬小麦产量效应与耗水特征研究[J].中国农业大学学报, 2000, 5(5): 23-29.
    居辉,王璞,周殿玺,兰林旺.不同灌溉时期的冬小麦土壤水分变化动态[J].麦类作物学报, 2005, 25(3): 76-80.
    巨晓棠,刘学军,邹国元,王朝辉,张福锁.冬小麦/夏玉米轮作体系中氮素的损失途径分析[J].中国农业科学, 2002, 35(12): 1493-1499.
    康绍忠,胡笑涛,蔡焕杰,冯绍元.现代农业与生态节水的理论创新及研究重点[J].水利学报, 2004, 12(12): 1-7.
    兰林旺,周殿玺.小麦节水高产研究[M].北京:北京农业大学出版社, 1995.
    兰涛,姜东,谢祝捷,戴廷波,荆奇,曹卫星.花后土壤干旱和渍水对不同专用小麦籽粒品质的影响[J].水土保持学报, 2004, 18(1): 193-196.
    李彩霞,马三力.小麦的需水规律[J].农业与技术, 2005, 25(4): 68-69.
    李朝霞,赵世杰,孟庆伟,邹琦.高粒叶比小麦群体生理基础研究进展[J].麦类作物学报, 2002, 22(4): 79-83.
    李成有,张仁陟,蔡立群,黄高宝.不同保护性耕作措施下旱作春小麦和豌豆叶水势及其影响因素的研究[J].甘肃农业大学学报, 2010, 45(1): 88-93.
    李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000.
    李金才,魏凤珍.氮素营养对小麦产量和籽粒蛋白质含量及组分的影响[J].中国粮油学
    报, 2001, 16(2): 6-8. 李玲玲,黄高宝,张仁险,晋小军.不同保护性耕作措施对旱作农田土壤水分的影响[J]. 生态学报, 2005, 25(9): 94-96.
    李全起,陈雨海,于舜章,吴巍,周勋波,董庆裕,余松烈.灌溉条件下秸秆覆盖麦田耗水特性研究[J].水土保持学报, 2005, 19(2): 130-132, 141.
    李少昆,王克如,冯聚凯,谢瑞芝,高世菊.简报玉米秸秆还田与不同耕作方式下影响小麦出苗的因素[J].作物学报, 2006,32(3): 463-465.
    李世娟,周殿玺,兰林旺.不同水分和氮肥水平对冬小麦吸收肥料氮的影响[J].核农学报, 2002, 16(5): 315-319.
    李守谦,谢忠奎,兰念军,雷波,马忠明.干旱地区春小麦耗水量和节水措施的探讨[J]. 高原气象, 1993, 12(2): 209-216.
    李雁鸣,张立言,李振国.春季肥水运筹对冬小麦籽粒产量和品质的影响[J].河北农业大学学报, 1996, 19(1): 1-6.
    李迎春,张超英,庞启华,任茂琼.干旱胁迫下小麦在不同生育时期的耐旱性研究[J].西南农业学报, 2008, 21(3): 621-624.
    李友军,黄明,吴金芝,姚宇卿,吕军杰.不同耕作方式对豫西旱区坡耕地水肥利用与流失的影响[J].水土保持学报, 2006, 20(2): 42-45.
    李友军,吴金芝,黄明,姚宇卿,张灿军,蔡典雄,金轲.不同耕作方式对小麦旗叶光合特性和水分利用效率的影响[J].农业工程学报, 2006, 22(12): 44-48.
    李玉山,韩仕峰,史竹叶.渭北源区农田水分供需特征和低定额灌溉研究[J].中国农业科学, 1985, 4: 42-48.
    李运生,王菱,刘士平,王吉顺.土壤-根系界面水分调控措施对冬小麦根系和产量的影响[J].生态学报, 2002, 22(10): 1680-1687.
    梁金凤,齐庆振,贾小红,宫少俊,黄元仿.不同耕作方式对土壤性质与玉米生长的影响研究[J].生态环境学报, 2010, 19(4): 945-950.
    廖永松,黄季焜.黄淮海流域片种植结构变化对灌溉需水的影响与预测分析[J].中国水利水电科学研究院学报, 2004, 2(3): 184-188.
    刘布春,梅旭荣,李玉中,杨有禄.农业水资源安全的定义及其内涵和外延[J].中国农业科学, 2006, 39(5): 947-951.
    刘凤英.中国水资源可持续利用的研究[J].江苏理工大学学报(社会科学版). 2001, 1.
    刘海军,龚时宏,王广兴.喷灌条件下冬小麦生长及耗水规律的研究[J].灌溉排水,2000, 19(1): 26-29.
    刘世平,庄恒扬,单玉华,陈后庆,陆建飞.轮耕对土壤供氮和小麦吸氮状况的影响[J]. 江苏农学院学报, 1998, 19(2): 49-52.
    刘文,彭小波.我国的农业水资源安全分析[J].农业经济, 2006.
    刘彦军.灌水量灌水时间对麦田耗水量及小麦产量的影响[J].河北农业科学, 2003, 7(2): 6-11.
    刘增进,李宝萍,李远华,崔运来.冬小麦水分利用效率与最优灌溉制度的研究[J].农业工程学报, 2004, 20(4): 58-63.
    卢布,王璞,周殿玺,王树安,于国建,王润正,鲁来清,李续厚.深松对一年二作冬小麦夏玉米的作用[J].中国农村科技, 2004, 5: 23-23.
    吕凤荣,季书勤,赵淑章.灌水次数和时期对小麦产量的影响[J].河南农业科学, 2000, 10: 5-6.
    吕金印,山仑,高俊凤,覃凤云,杨淑慎.干旱对小麦灌浆期旗叶光合等生理特性的影响[J].干早地区农业研究, 2003, 21(2): 77-81.
    吕美蓉,李增嘉,张涛,宁堂原,赵建波,李洪杰.少免耕与秸秆还田对极端土壤水分及冬小麦产量的影响[J].农业工程学报, 2010, 26(1): 41-46.
    马东辉,赵长星,王月福,吴钢,林琪.施氮量和花后土壤含水量对小麦旗叶光合特性和产量的影响[J].生态学报, 2008, 28(10): 4896-4901.
    马瑞昆,贾秀领,蹇家利,王学臣.前期控水条件下冬小麦的根系和群体光合作用特点[J].麦类作物学报, 2001, 21(2): 88-91.
    马香玲,高计生.干旱地区小麦节水高产优质栽培技术[J].灌溉排水, 1998, 17(1): 18-21.
    马新明,王小纯,王志强.氮素形态对不同专用型小麦生育后期光合特性及穗部性状的影响[J].生态学报, 2003, 23(1): 2587-2593.
    孟凡德,马林,石书兵,郭飞,刘兴强,朱军,毛吉贤,刘正兴.不同耕作条件下春小麦干物质积累动态及其相关性状的研究[J].麦类作物学报, 2007, 27(4): 693-698.
    孟庆秋,谢佳贵,胡会军,王晓春,王秀芳,吴巍.土壤深松对玉米产量及其构成因素的影响[J].吉林农业科学, 2000, 25(2): 25-28.
    南京农学院等主编.作物栽培学(上册) [M].上海科学技术出版社, 1979, 173-239.
    牛西午,冯永平,董孟雄,董忠义.“简易微喷灌技术”及其在旱塬麦田应用研究初报[J]. 水土保持通报, 1999, 19(1): 28-32.
    潘庆民,于振文,王月福,余松烈.追氮时期对小麦旗叶中蔗糖合成与籽粒中蔗糖降解的影响[J].中国农业科学, 2002, 35(7): 771-776.
    彭琳,彭祥林,卢宗藩.娄土旱地土壤硝态氮季节性变化与夏季休闲的培肥增产作用[J].土壤学报, 1981, 18(3): 212-222.
    彭文英.免耕措施对土壤水分及利用效率的影响[J].土壤通报, 2007, 38(2): 379-383.
    秦红灵,高旺盛,马月存,马丽,尹春梅.两年免耕后深松对土壤水分的影响[J].中国农业科学, 2008, 41(1): 78-85.
    苘辉民.旱地冬小麦生育后期有关光合特性及光合产物分配规律研究[J].核农学报, 1999, 13(4): 206-213.
    全国农业技术推广服务中心.土壤分析技术规范(第二版)[M].北京:中国农业出版社, 2006, 47-49.
    任巍,姚克敏,于强,欧阳竹,王菱.水分调控对冬小麦同化物分配与水分利用效率的影响研究[J].中国生态农业学报, 2003, 11(4): 92-94.
    山东农业大学编著.作物栽培学[M].北京:中国农业出版社, 1995, 61-63.
    山仑,康绍忠,吴普特.中国节水农业[M].北京:北京农业出版社,2004: 229-230.
    石岩,林琪,位东斌,李忠军,李华.不同灌水处理冬小麦耗水规律与节水灌溉方案确立[J].干旱地区农业研究, 1996, 14(4): 7-11, 33.
    史文娟,胡笑涛,康绍忠.干旱缺水条件下作物调亏灌溉技术研究状况与展望[J].干旱地区农业研究, 1998, 2(6): 84-88.
    孙宏勇,刘昌明,张永强,张喜英.微型蒸发器测定土壤蒸发的试验研究[J].水利学报, 2004, (8): 114-118.
    孙彦坤,梁荣欣,张洪泽.春小麦耗水规律研究[J].东北农业大学学报, 1997, 28(4): 340-344.
    王靖,林琪,倪永君,刘义国.不同保护性耕作模式对冬小麦籽粒品质的影响[J].麦类作物学报, 2009, 29(5): 881-884.
    王彩绒,田霄鸿,李生秀.沟垄覆膜集雨栽培对冬小麦水分利用效率及产量的影响[J]. 中国农业科学, 2004, 37(2): 208-214.
    王朝辉,王兵,李生秀.缺水与补水对小麦氮素吸收及土壤残留氮的影响[J].应用生态学报, 2004, 15(8): 1339-1343.
    王晨阳,郭天财,彭羽,朱云集,马冬云,张灿军.花后灌水对小麦籽粒品质性状及产量的影响[J].作物学报, 2004, 30(10): 1031-1035.
    王晨阳,马元喜.不同土壤水分条件下小麦根系生态生理效应的研究[J].华北农学报, 1992, 7(4): 1-8.
    王德梅,于振文.灌溉量和灌溉时期对小麦耗水特性和产量的影响[J].应用生态学报, 2008, 19(9): 1965-1970.
    王德梅.高产小麦耗水特性和产量形成生理基础的研究[D].山东农业大学, 2010.
    王家仁,郭风洪,孙茂真,崔若亮,郭春荣,边萍,付光永.冬小麦调亏灌溉节水高效技术指标试验初报[J].灌溉排水学报, 2004, 23(1): 36-40.
    王绍中,季书勤,刘发魁,张玲,邓克己.小麦品质生态及品质区划研究II生态因子与小
    麦品质的关系[J].河南农业科学, 1995, 11: 3-6. 王声斌,张起刚,彭根元.灌溉水平对冬小麦氮素吸收及氮素平衡的影响[J].核农学报, 2002, 16(5): 310-314.
    王士红,荆奇,戴廷波,姜东,曹卫星.不同年代冬小麦品种旗叶光合特性和产量的演变特征[J].应用生态学报, 2008, 19(6): 1255-1260.
    王淑芬,张喜英,裴冬.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J].农业工程学报, 2006, 22(2): 27-32.
    王树安,李建民,周殿玺,李绪厚.灌溉制度对冬小麦耗水与物质积累的影响[C].冬小麦水肥高效利用栽培技术原理,北京:中国农业大学出版社, 2000, 39-43.
    王育红,姚宇卿,吕军杰.豫西旱地冬小麦农田耗水特征及调控措施的研究[J].中国农学通报, 2001, 17(5): 27-29.
    王月福,于振文,潘庆民,李素美.水分处理与耐旱性不同的小麦光合特性及物质运转[J].麦类作物学报, 1998, 18(3): 44-47.
    王在阳.小麦需水规律及节水灌溉初探[J].陕西农业科学, 1992, 1: 38-40. 王振林,贺明荣,傅金民,田奇卓,尹燕枰,曹鸿鸣.源库调节对灌溉与旱地小麦开花后
    光合产物生产和分配的影响[J].作物学报, 1999, 25(2): 162-168. 王志敏,王璞,李绪厚,李建民,鲁来清.冬小麦节水省肥高产简化栽培理论与技术[J]. 中国农业科技导报, 2006, 8(5): 38-44.
    魏虹,林魁,李凤民,张荣,原保忠.有限灌溉对半干旱区春小麦根系发育的影响[J].植物生态学报, 2000, 24(1): 106-110.
    吴大付,杨文平.黄淮海平原节水农作制的水氮耦合效应分析[J].河南职业技术师范学院学报, 2004, 32(4): 27-29.
    吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应[J].华北农学报, 2000, 15(1): 92-96.
    吴金芝,黄明,李友军,陈明灿,姚宇卿,郭大勇,黄海霞.不同耕作方式对冬小麦光合作用产量和水分利用效率的影响[J].干旱地区农业研究, 2008, 26(5): 17-21.
    吴金芝,黄明,李友军,陈明灿,付国占.灌溉对弱筋小麦豫麦50籽粒淀粉积累及其相关酶活性的影响[J].麦类作物学报, 2009, 29(5): 872-877.
    吴凯,唐登银,谢贤群.黄淮海平原水量变化对农业生产力的影响及对策[J].中国生态农业学报, 2001, 9(1): 40-42.
    吴克宁,赵彦锋,吕巧灵,李玲.潮土区灌浆水和施磷对冬小麦光合作用和产量的影响[J].植物营养与肥料学报, 2002, 8(4): 428-434.
    肖俊夫,刘战东,段爱旺,刘祖贵,刘浩.不同土壤水分条件下冬小麦根系分布规律及其耗水特性研究[J].中国农村水利水电, 2007, 8: 18-21.
    肖颖.水分胁迫对小麦旗叶光合特性的影响[J].河北农业大学学报, 2002, 25(4): 7-10.
    徐国伟,谈桂露,王志琴,刘立军,杨建昌.秸秆还田与实地氮肥管理对直播水稻产量、品质及氮肥利用的影响[J].中国农业科学, 2009, 42(8): 2736-2746.
    徐学选,穆光民.小麦水肥产量效应研究进展[J].干旱地区农业研究, 1999, 17(3): 6-12.
    许旭旦,诸涵素.叶面喷施腐植酸对小麦临界期干旱的生理调节作用的初步研究[J].植物生理学报, 1983, 9(4): 367.
    许振柱,李长荣,陈平,于振文,余松烈.土壤干旱对冬小麦生理特性和干物质积累的影响[J].干旱地区农业研究, 2000, 18(1): 113-118.
    许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响[J].作物学报, 2003, 29(4): 595-600.
    杨晓亚,于振文,许振柱.灌水量和灌水时期对小麦耗水特性和氮素积累分配的影响[J]. 生态学报, 2009, 29(2): 846-853.
    杨永华,林培龙,臧春华.山东省水资源战略发展研究及实证分析[J].水科学与工程技术, 2007, 5: 4-7.
    杨云马,贾树龙,孟春香,孙颜铭.不同耕作及秸秆还田条件下冬小麦养分利用率研究[J].华北农学报, 2010, 25(增刊): 202-204.
    姚素梅,康跃虎,刘海军,冯金朝,王君.喷灌和地面灌溉条件下冬小麦的生长过程差异分析[J].干旱地区农业研究, 2005b, 23(5): 143-147.
    姚素梅,康跃虎,刘海军,冯金朝,王君.喷灌与地面灌溉条件下冬小麦光合作用的日变化研究[J].农业工程学报, 2005a, 21(11): 16-19.
    姚素梅,康跃虎,刘海军.喷灌与地面灌溉冬小麦干物质积累、分配和运转的比较研究[J].干旱地区农业研究, 2008, 26(6): 51-56.
    姚素梅,康跃虎,刘海军.喷灌与地面灌溉冬小麦根系生长和分布的比较研究[J].水资源与水工程学报, 2010, 21(4): 1-5, 14.
    殷复伟,郭相圣,张国华,贾曦,吴红燕.旱地小麦节水高效技术[J].山东农业科学, 2006, 2: 93, 103.
    于利鹏,黄冠华,刘海军,王相平,王明强.喷灌冬小麦耗水与棵间蒸发试验[J].中国农业科学, 2009, 42(9): 3179-3186.
    于振文,岳寿松,沈成国,张炜,余松烈.高产低定额灌溉对冬小麦旗叶衰老的影响[J]. 作物学报, 1995, 4(7): 503-508.
    於新建.植物生理学实验手册[M].上海植物生理学会编.科学技术出版社, 1985.
    俞双恩,朱兆通,戴振伟.我国节水型灌溉农业综述[J].水利水电科技进展, 1997, 1(2): 25-28.
    袁光耀.农田灌溉中几个需要探讨的问题[J].灌溉排水, 1994, 13(4): 19-21.
    翟丙年,李生秀.水氮配合对冬小麦产量和品质的影响[J].植物营养与肥料学报, 2003, 9(1): 26-32.
    张斌,张桃林,赵其国.干旱季节不同耕作制度下作物-红壤水势关系及其对干旱胁迫响应[J].土壤学报, 1999, 36(1): 101-110.
    张鸣,张仁陟,蔡立群.不同耕作措施下春小麦和豌豆叶水势变化及其与环境因子的关系[J].应用生态学报, 2008, 19(7): 1467-1474.
    张海林,陈阜,秦耀东,朱文珊.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报, 2002, 18(2): 36-40.
    张海林,高旺盛,陈阜.保护性耕作研究现状、发展趋势及对策[J].中国农业大学学报, 2005, 10(1): 16-20.
    张立新,李立科.渭北旱塬不同降水年型冬小麦施肥技术的研究[J].干旱地区农业研究, 1998, 16(4): 15-20.
    张利.旱地冬小麦耗水规律研究[J].河北农业大学学报, 1994, 17(增刊): 136-139.
    张其德,刘合芹,张建华,李建民.限水灌溉对冬小麦旗叶某些光合特性的影响[J].作物学报, 2000, 26(6): 869-873.
    张秋英,李发东,张依章,欧国强,刘孟雨.水分对冬小麦产量及水分利用效率的影响[J].西南农业大学学报(自然科学版), 2005, 27(6): 809-812.
    张胜爱,马吉利,崔爱珍,郝秀钗,郭程瑾.不同耕作方式对冬小麦产量及水分利用状况的影响[J].中国农学通报, 2006, 22(1): 110-113.
    张新华,袁文兵.山东省低山丘陵区冬小麦节水灌溉模式的研究[J].节水灌溉, 1995, 2: 45-52.
    张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响[J].灌溉排水学报, 2003, 22(2): 1-4.
    张忠学,吴文良.冬小麦节水增产灌溉模式试验研究[J].灌溉排水, 2001, 20(3): 20-24.
    赵辉,戴廷波,姜东,荆奇,曹卫星.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响[J].应用生态学报, 2007, 18(2): 333-388.
    赵秉强.小麦玉米两熟制农田轮耕的研究[D].山东农业大学, 1991.
    赵广才,常旭虹,刘利华,杨玉双,李振华,周双月,郭庆侠,刘月洁.不同灌水处理对强筋小麦籽粒产量和蛋白质组分含量的影响[J].作物学报, 2007, 33(11): 1828-1833.
    赵广才,何中虎,刘利华,杨玉双,张艳,李振华,张文彪.肥水调控对强筋小麦中优9507品质与产量协同提高的研究[J].中国农业科学, 2004, 37(3): 351-356.
    赵广才,何中虎,田奇卓,刘利华,李振华,张文彪,张全良.农艺措施对中优9507小麦蛋白组分和加工品质的调节效应[J].作物学报, 2003, 29( 3): 408-412.
    赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报, 2006, 32(4): 484-490.
    周凌云.封丘地区小麦耗水量与水分利用率研究[J].应用生态学报, 1995, 6(增刊): 57-61.
    周乃健,苗果园,郑王义.晋南丘陵旱地小麦不同降水模拟条件下土壤水分变化规律的研究[J].山西师大学报(自然科学版), 1996, 10(1): 58-63.
    周兴祥,高焕文,刘晓峰.华北平原一年两熟保护性耕作体系试验研究[J].农业工程学报, 2001, 17 (6): 81-84.
    周勋波,孙淑娟,陈雨海,李全起,杨国敏.冬小麦种群不同分布方式下水分特征与产量构成关系[J].水土保持学报, 2007, 21(1): 119-122.
    朱新开,郭文善,封超年,彭永欣,凌启鸿.不同类型专用小麦氮素吸收积累差异研究[J].植物营养与肥料学报, 2005, 11(2): 148-154. 朱兆良.中国土壤氮素肥力与农业中的氮素管理.中国土壤肥力.北京:科学出版社, 1999.
    朱自玺,赵国强,邓天宏,方文松,付祥军.秸秆覆盖麦田水分动态及水分利用效率研究[J].生态农业研究, 2003, 8(1): 34-37.
    Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat [J]. Plant Growth Regulation, 2001, 35: 81-91.
    Baumhardt R L, Jones O R. Residue. management and tillage effects on soil–water storage and grain yield of dryland wheat and sorgh for a clay loam in Texas [J]. Soil and Tillage Research, 2002, 68: 71-82.
    Blackman P G, Davies W J. Root to shoot communication in maize plants of the effects of soil drying [J].J Exp Bot, 1985, 36:39-48.
    Borghei A M, Taghinejad J, Minaei S, Karimi M, Varnamkhasti M G. Effect of subsoiling on soil bulk density, penetration resistance and cotton yield in northwest of Iran[J]. Int J Agri Biol, 2008, 10: 120-123.
    Clothier B, Green S. Rootzone processes and the efficient use of irrigation water[J]. Agricultural Water M anagement, 1994, 25: 1-12.
    Dale E M, Housley T L. Sucrose synthase activity in developing wheat endosperms differing in maximum weight[J]. Plant Physiology, 1986, 82:7-10.
    De Vita P, Di Paolo E, Fecondo G, Di Fonzo N, Pisante M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy[J]. Soil Till Res, 2007, 92: 69-78.
    Denyer K, Johnson P, Zeemam S, Smith A M. The control of amylose synthesis[J]. J. Plant Physiol., 2001, 158(4) :479-487.
    Denyer K. Identification of multiple isoforms of soluble and granule bound Starch Syntheses in developing Wheat endosperm [J]. Planta,1995, 196:256-265.
    Doorenbos J, Praitt W O. Crop water requirement. FAO Irrigation and Drainage paper. FAO, 1977, 24.
    Dou Z, Fox R H, Toth J D. Seasonal soil nitrate dynamics in corn as affected by tillage and nitrogen-source[J]. Soil Science of America Journal, 1995, 59(3): 858-864.
    Douglas C,Tsung M K,Frederick C. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of Maize[J]. Plant Physiology,1988,86:1013-1019.
    Duivenboodew N V, Pala M, Studer C, Bielders C L, Beukes D J[J]. Cropping systems and crop complementarity in dryland agriculture to increase soil water use efficiency: a review[J].Netherlands Journal of Agricultural Science,2000,48:213-236.
    Echeverria E. Intracellular localization of sucrose phosphate in storagecells[J]. Physio Plant, 1995, 95: 559-562.
    Edwards W M, Shipitalo M J, Owens L B,Dick W A. Factors affecting preferential flow of water and atrazine through earthworm burrows under continuous no-till corn[J]. Journal of Environmental Quality, 1993, 22:25-241.
    Fawcett R, Tiemey D, Christensen B. Impact of conservation tillage on reducing run off of pesticides into suiface water[J].Soil Water Consery 1994, 49:49-56.
    Flexas J, Galmes J, Ribas-Carbo M, Medrano H. The effects of drought in plant respiration [M]. Plant Respiration: from Cell to Ecosystem. Kluwer Academic Publishers, 2005. Flowers M,Weisz R,Heiniger R,Osmond D,Crozior C. In-season optimization and
    site-specific nitrogen management for soft red winter wheat[J].Agronomy Journal,2004,96: 124-134.
    Foulkes M J, Scott R K, Sylvester-Bradley R. The ability of wheat cultivars to withstand drought in UK conditions: formation of grain yield [J]. The Journal of Agriculture Science, 2002, 138: 153-169.
    Geigenberger P, Stitt M. Sucrose synthase catalysesaueadilyre versiblere action in vivoin developing potatotubers and other planttissues[J]. Planta, 1993, 189: 329-339.
    Ghuman B S, Sur H S. Tillage and residue management effects on soil properties and yields of rainfed maize and wheat in a subhumid subtropical climate[J]. Soil Till Res, 2001, 58: 1-10.
    Hao X, Chang C, Conner R L, Bergen P. Effect of minimum tillage and crop sequence on crop yield and quality under irrigation in a southern Alberta clay loam soil[J]. Soil Till Res, 2001, 59: 45-55. Hilld,D. Advances in Irrigation. Academic Press.1983.
    Holland J M. The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence[J]. Agric Ecosyst Environ, 2004, 103: 1-25. Hou Y L, O’Brien L, Zhong G R. Study on the dynamic changes of the distribution and accumulation of nitrogen in different plant parts of wheat [J]. Acta Agron. Sin., 2002, 27(4): 493-499.
    Jenner C F, Ugalde T D, Aspinall D. The physiology of starch and protein deposition in the endosperm of wheat [J]. Australian Journal of Plant Physiology, 1991, 18: 211-226.
    Kang Y H,Wang Q G,Liu H J.Winter wheat canopy interception and its influence factors under sprinkler irrigation[J]. Agricultural Water Management,2005,74:189-199.
    Katupitiya A, Eisenhauer D E, Ferguson R B, Spalding R F, Roeth F W, Bobier M W. Long-term tillage and crop rotation effects on residual nitrate in the crop root zone and nitrate accumulation in the intermediate vadose zone [J]. Transactions of the ASEA, 1997,40(5):1321-1327.
    Keeling P L, Wood J R, Tyson R H, Bridges I G. Starch biosynthesis in developing wheat grain. Evidence against the direction involvement of trios phosphate in the metabolic pathway [J]. Plant Physiol,1988,87:311-319.
    Kirkegaard J A, Munns R, James R A, Gardner P A, Angus J F. Reduced growth and yield of wheat with conservation cropping II: soil biological factors limit growth under direct drilling[J]. Australian Journal of Agriculture Research.1995,46:75-88.
    Kuchenbuch R O, Barber S A. Yearly variation of root distribution with depth in relation to nutrient uptake and corn yield[J].Communications in Soil Science and Plant Analysis, 1987,18: 225-263.
    Leszek, Malicki, Janusz Nowicki, Zhigniew Szwejkowki. Soil and crop responses to soil tillage systems:a Polish perspective[J]. Soil and Tillage Research.,1997,43:65-80.
    Li F M, Liu X L, Guo A H. Effects of early soil moisture distribution on the dry matter partition between root and shoot of winter wheat [J]. Agricultural Water Management, 2001, 49: 163-171.
    Liu H J, Kang Y H. Effect of sprinkler irrigation on microclimate in the winter wheat field in the North China Plain[J].Agricultural Water Management,2006,84(1):3-19.
    Liu X J, Ju X T, Zhang F S, Pan J R, Christie P. Nitrogen dynamics and budgets in a winter wheat–maize cropping system in the North China plain [J]. Field Crops Research, 2003, 83: 111-124.
    Lorenzini G. Air temperature effect on spray evaporation in sprinkler irrigation [J]. Irrigation and Drainage, 2002,51(4): 301-309.
    Matthews A M, Armstrong A C, Leeds–Harrison P B. Development and testing of a model for predicting tillage effects on nitrate leaching from cracked clay soils [J]. Soil and Tillage Research, 2000, 53: 245-254.
    Panda R K, Behera S K, Kashyap P S. Effective management of irrigation water for wheat under stressed conditions [J]. Agricultural Water Management, 2003, 63: 37-56.
    Pandey R K, Maranville, J W, Admou A. Deficit irrigation and nitrogen effects on maize in a Sahelian envrionment I.Grain yield and yield components[J] . Agric Water Manage., 2000, 46: 1-13.
    Payero J O,Tarkalson D D,Irmak S, Davison D,Petersen J L. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate[J]. Agricultural water
    management, 2008, 95: 895-908. Rasse D P, Smucker A. Root recolonization of previous root channels in corn and alfalfa rotations[J]. Plant and Soi1, 1998, 204: 203- 212.
    Rehman S, Khalil S K, Rehman A, Amanullah, Khan A Z, Shah N H. Micro-watershed enhances rain water use efficiency, phenology and productivityof wheat under rainfed condition[J]. Soil Tillage Research, 2009, 104: 82-87.
    Richards R A, Rebetzke G J, Condon A G, Herwaarden A F. Breeding opportunities for increasing the efficiency of water use and crop yield in temperate cereals[J].Crop Science, 2002, 42: 111-121.
    Riley H C F, Bleken M A, Abrahamsen S, Bergjord A K, Bakken A K. Effects of alternative tillage systems on soil quality and yield of spring cereals on silty clay loam and sandy loam soils in the cool, wet climate of central Norway[J]. Soil Till Res, 2005, 80: 79-93.
    Scartazza A, Lauteri M, Guido M C, Brugnoli E. Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought [J]. Australian Journal of Plant Physiology, 1998, 25: 489-498.
    Schenk M K. Regulation of nitrogen uptake on the whole plant level [J]. Plant Soil, 1996, 181: 131-137.
    Schmidt C P, Belford R K. Increasing the depth of soil disturbance increases yields of direct drilled wheat on the sand plain soil of Western Australia[J].Experimental Agriculture, 1994, 34: 777-781.
    Seligman N G, Sinclair T R. Global environment change and simulated forage quality of wheat II: Water and nitrogen stress [J]. Field Crops Res., 1995, 40: 29-37.
    Shah N H, Paulsen G M. Interaction of drought and high temperature on photosynthesis and grain–filling of wheat [J]. Plant and Soil, 2003, 257: 219-226.
    Sharma B R, Chaudhary T N. Wheat root growth, grain yield and water uptake as influenced by water regime and depth of nitrogen placement in a sand soil[J]. Agriculture Water Management,1983,6: 365-373.
    Sharpley A N, Smith S J. Wheat tillage and water quality in the southern plains[J].Soil Tillage Research,1994, 30:33-48.
    Sijtsma C H, Camphell A J, Mclaughlin N B. Comparative tillage costs for crop rotation utilizing minimum tillage on a farm scale [J]. Soil and Tillage Research, 1998, 49: 223-231.
    Sinclair T R, Pinter P J, Kimball B A, Adamsen F J, LaMorte R L,Wall G W, Hunsaker D J, Adam N, Brooks T J, Garcia R L, Thompson T, Leavitt S, Matthias A. Leaf nitrogen concentration of wheat subjected to elevated [CO2] and either water or N deficits[J]. Agriculture, Ecosystems & Environment, 2000,79:53-60.
    Singh B, Chanasyk D S, Mcgill W B. Soil water regime under barley with long-term tillage-residue systems[J]. Soil Till Res, 1998, 45: 59-74.
    Smith J L. Cycling of nitrogen through microbial activity.in:Hatfield J L (eds).Soil Biology:Effects on Soil Quality.CRC Press lnc.,1994:91-120.
    Somerville C,Briscoe J. Genetic engineering and water[J]. Science,2001,292:2217.
    Stevens W B, Hoeft R G, Mulvaney R L. Fate of nitrogen-15 in a long–term nitrogen rate studyⅡ.Nitrogen uptake efficiency[J].Agronomy Journal, 2005,97: 1046-1053.
    Su Z Y, Zhang J S, Wu W L, Cai D X, Lu J J, Jiang G H, Huang J, Gao J, Hartmann R, Gabriels D. Effects of conservation tillage practices on winter wheat water–use efficiency and crop yield on the Loess Plateau, China [J]. Agricultural Water Management, 2007, 87(3): 307-314.
    Subrahmanyam D, Subash N, Haris A, Sikka A K. Influence of water stress on leaf photosynthetic characteristics in wheat cultivars differing in their susceptibility to drought
    [J]. Photosynthetica, 2006, 44 (1): 125-129.
    Sun H Y, Liu C M, Zhang X Y, Shen Y J, Zhang Y Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain [J]. Agricultural Water Management, 2006, 85: 211-218.
    Sun Z Q,Kang Y H,Liu H J.Studies on soil water and nitrate distribution under sprinkler irrigation conditions[C]//.Proceedings of the 2004 CIGR International Conference,Beijing, 2004.
    Tambussi E A, Nogues S, Araus J L. Ear of durum wheat under water stress: water relations and photosynthetic metabolism [J]. Planta, 2005, 221: 446-458.
    Tan C S, Drury C F, Soultani M, Wesenbeeck I J, Ng H Y F, Gaynor J D, Welacky T W. Effect of controlled drainage and tillage on soil structure and tile drainage nitrate loss at the field scale [J]. Water Science and Technology, 1998, 35(4): 103-110.
    Tolk J A, Howell T A, Evett S R. Effect of mulch irrigation and soil type on water use and yield of maize[J]. Soil & Tillage Research, 1999, 50:137-147.
    Tong Y A, Emteryd O, Lu D Q, Grip H. Effect of organic manure and chemical fertilizer on nitrogen uptake and nitrate leaching in a Eum-orthic anthrosols profile[J]. Nutr. Cycl. Agroecosyst., 1997, 48(3): 225-229.
    Tsai-Mei Ou-Lee, Setter T L. Enzymes of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch[J].Plant
    Physiology,1985,79:852-855. Wang X-B, Cai D X, Hoogmoed W B, Oenema O, Perdok U D. Potential effect of conservation tillage on sustainable land use: a review of global long-term studies[J]. Pedosphere, 2006, 16(5): 587-595.
    Wardlaw I F, Willenbrink J. Carbonhydrate storage and mobilization by the culm of wheat between heading and grain maturity:The relation to sucrose synthase and sucrose-phosphate synthase[J].Austrila Journal of Plant Physiology, 1994, 21: 251-271.
    Xie Z J, Jiang D, Cao W X, Dai T Bo, Jing Q. Effects of post–anthesis soil water status on the activities of key regulatory enzymes of starch and protein accumulation in wheat grains [J]. Journal of Plant Physiology and Molecular Biology, 2003, 29: 309-316. Xu Z Z,Yu Z W,Wang D,Zhang Y L. Nitrogen accumulation and translocation for winter wheat under different irrigation regimes[J]. Journal of Agronomy & Crop Science, 2005, 191:439-449.
    Yamamori M, Quynh N T. Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat[J] . Theor Appl Genet, 2000, 100 (1):32-38.
    Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling [J]. Agronomy Journal, 2001, 93: 196-206.
    Yang J C,Zhang J H,Huang Z L,Zhu Q S,Wang L. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat[J].Crop Science,2000, 40:1645-1655.
    Yao S M, Kang Y H, Liu H J. Effects of sprinkler irrigation on photosynthes is features of winter wheat[A]. Huang G H,Pereira L S. Proceedings of the 2004 CIGR International Conference[C]. Beijng: China Agriculture Press, 2004.454-459.
    Zhang B C, Li F M, Huang G B, Cheng Z Y, Zhang Y H.Yield performance of spring wheat improved by regulated deficit irrigation in an arid area[J].Agricultural.Water Management,2006,79:28-42.
    Zhang C H, Jiang D, Liu F L, Cai J, Dai T B, Cao W X. Starch granules size distribution in superior and inferior grains of wheat is related to enzyme activities and their gene expressions during grain filling[J]. Journal of Cereal Science,2010,51: 226-233.
    Zhang J, Sui X, Li B, Li J, Zhou D, An improved water-use efficiency of winterwheat grown under reduced irrigation[J]. Field Crops Research,1998,59: 91-98.
    Zhang X Y, Pei D, Li Z, Li J, Wang Y. Management of supplemental irrigation of winter wheat for maximum profit [R]. Deficit Irrigation Practices, FAO Water Reports, 2002, 22: 57-66.
    Zhao X C, Batey I L, Sharp P J. A Single genetic locus associated with starch granule proteins and noodle quality in wheat[J]. Journal of Cereal Science, 1998, 27:7-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700