用户名: 密码: 验证码:
栽培管理措施和环境胁迫对柳枝稷生长特性和生物质品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能源被认为是一种理想的可再生替代能源,而草本能源植物作为重要的生物质资源,成为了世界各国研究的热点。目前国外的研究认为栽培管理措施对草本能源植物生物质生产和生物质品质有很大影响,而国内尚未有系统的研究。本文主要研究了灌溉、施肥、种植密度、收获时间等栽培管理措施和不同环境胁迫对草本能源植物柳枝稷生物质生产和生物质品质的影响,主要结论如下:
     1.不同栽培管理措施下,第三生长季柳枝稷的生物质产量达到了最大生产潜力。同一生长季,随着生育期的推迟,生物质产量表现为先增长到最大值然后逐渐降低的趋势;生物质品质则得到了逐渐的改善,显著降低了生物质含水量、灰分含量、钾、氯等不利于燃烧的矿质元素含量,提高了木质纤维素含量;同时随着氮、磷、钾含量的降低,节约了肥料的投入,降低了生物质原料成本。
     2.本文对柳枝稷生物质品质进行了系统研究,通过层次分析法,对不同栽培管理措施下影响生物质高产和品质的指标进行综合评价,得出11月底收获时柳枝稷高产且优质的栽培管理组合为不灌溉(自然降水)、不施肥、种植密度为0.8m×0.8m;最优品质的栽培管理组合为不灌溉、施氮量为112.8kg·ha~(-1)、种植密度为0.8m×0.6m。
     3.营养生长期柳枝稷有较强的抗旱性和抗盐性。土壤相对含水量低于40%时仍能保证生长。不同盐分类型对其生长的抑制程度从大到小为:NaCl>Na_2SO_4>NaHCO_3,而NaCl、Na_2SO_4和NaHCO_3可适宜浓度分别为0.40%、0.80%和0.80%。
     4.不同的土壤水分垂直分布对柳枝稷的水分利用效率有显著差异,且形成了相应的根系分布特征。以0~180cm土层均水分条件较好为对照,第一和第二生长季,在0-180cm土层缺水条件下,通过一定的表层灌水,柳枝稷的水分利用效率最高,有效的促进了根系的向下生长;在0~120cm土层缺水,而120~180cm土层水分条件较好时,柳枝稷的水分利用效率次之,促进了根系的向下生长,而根系生物量显著的降低。但是第二生长季的根冠比与对照没有显著差异。
     5.柳枝稷的根系分布和生物质品质对不同的盐分类型的响应特征有明显差异。不同盐分类型根系生物量的大小顺序为:NaCl>Na_2SO_4>NaHCO_3,根系的生物量重心分别为23cm、38cm、18cm,而对照为50cm。在NaCl条件下,生物质中灰分含量显著提高;在Na_2SO_4条件下,生物质中硫含量显著提高,纤维素含量显著降低,生物质品质均有所降低;在NaHCO_3条件下,生物质中钾含量显著降低,这有利于生物质品质的提高。
Biomass energy is considered to be an ideal renewable alternative energy, and herbaceous energy crops as an important biomass resources, became research hot spot all over the world. According to foreign researchers reports, agronomic practices had significant influences on biomass production and biomass quality of herbaceous crops, however, these had not been systematically discussed. Experiments were carried out by this study on the effect of agronomic practices such as irrigation, fertilization, planting density, harvest time, and environmental stress on biomass production and biomass quality of switchgrass. The main conclusions are as follows:
     1. Under different agronomic practices, biomass production of switchgrass reached the maximum production potential in the third growing season. In the second growing season, with the proceeding of the growth period, biomass yield showed a gradually reducing trend after the maximum and biomass quality was improved as significantly reduced ash, water and undesirable components such as K and Cl in biomass, increased lignocelluloses contents; the nutrient element content such as nitrogen, phosphorus, potassium were also declined which could save fertilizer inputs and lower the biomass production costs.
     2. The biomass quality of switchgrass were studied systematically by using analytic hierarchy process and the indices of biomass high yield and quality were synthetically evaluated. It is concluded that the best agronomic practice combination for high yield and high quality was harvesting by the end of November, no irrigation (rainfed), no extra fertilization, and planting density of 0.8m x 0.8m; the best agronomic practice combination for optimal quality was no irrigation, nitrogen application rate of 112.8kg·ha~(-1), and planting density of 0.8m x 0.6m.
     3. Switchgrass in vegetative period had relatively strong drought resistance and salt resistance. When soil relative water content was under 40%, it still could grow normally. The impact of different saline types on the growth of switchgrass in sequence from serious to light was as NaCl>Na_2SO_4>NaHCO_3; the appropriate concentrations of soil NaCl, Na2SO4 and NaHCO3 for normal switchgrass growth were 0.40%,0.60%, 0.80%, respectively.
     4. There were significant differences between the water using efficiency of switchgrass under different soil water spatial distribution pattern and the corresponding root distribution characteristics showed up. Taking good soil water conditions in 0-180cm soil layers as CK, during the first and second growing seasons, when less available soil water occurred in soil layers of 0-180cm, the surface irrigation condition resulted in the highest water using efficiency of switchgrass and effectively promoted the root growth downwards; when less available soil water occurred in soil layers of 0-120cm and good water condition in 120-180cm soil layer, the water using efficiency of switchgrass were second and root growth downwards was promoted but the root biomass was significantly reduced. However, the root-shoot ratio of switchgrass was not significantly different among different water spatial distribution pattern in comparison with CK in the second growing season.
     5. The responses of switchgrass root distribution characteristics and biomass quality to saline types were significantly different. The impact of saline type on root biomass in sequence from serious to light was as NaCl>Na_2SO_4 >NaHCO_3, the corresponding gravity center of root biomass were 38cm, 23cm, and 18cm respectively while 50cm for CK. Under NaCl condition, the ash content in biomass was increased significantly; under Na2SO4 conditione, the biomass sulfur content was increased and fiber content significantly decreased, i.e. the biomass quality was reduced; under NaHCO_3 condition, the biomass potassium content was significantly decreased indicating a significant improvement of biomass quality.
引文
1武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源的影响[D].北京:中国农科院,2005
    2孙凤莲,王雅鹏.中国与欧盟发展生物质能的政策比较研究[J].世界农业,2007,(10):4-7
    3王欧.中国生物质能源开发利用现状及发展政策与未来趋势[J].中国农村经济,2007,(7):10-15
    4张无敌.生物质能源转换技术与前景[J].新能源,2000,22(1):16-20
    5吴创之.欧洲生物质能利用的研究现状及特点[J].新能源,1999,21(3):30-35
    6贺亮.生物质转型优化能源技术的开发与利用[J].新能源,1996,18(1):8-14
    7 John C, Paul F, Michael B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions[J].Global Change Biology,2004,10:509-518
    8 Jungmeier G, Spitzer J. Greenhouse gas emissions of bioenergy from agriculture compared to fossil energy for heat and electricity supply[A]. Nutrient Cycling in Agroecosystem,Kluwer Academic Publishers,2001,(60):267-273
    9蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80
    10肖军,段菁春,王华,等.生物质利用现状[J].安全与环境工程,2003,10(9):11-14
    11李改莲,王远红,杨继涛,等.中国生物质的利用状况及展望[J].河南农业大学学报,2004,38:100-104
    12中国科学院可持续发展战略研究组. 2009中国可持续发展战略报告——探索中国特色的低碳道路[M].北京:科学出版社,2009
    13云锦凤.低碳经济与草业发展的新机遇[J].中国草地学报,2010,32(3):1-3
    14胡建忠.沙棘作为农村能源植物开发的可行性分析[J].国际沙棘研究与开发,2004,4(2): 36-42
    15刘培荃,杨世诚.植物燃料的研究现状及其发展[J].潍坊教育学院学报,1997,24(2):37-39
    16谢光辉,郭兴强,王鑫,等.能源作物资源现状与发展前景[J].资源科学,2007,29(5): 74-80
    17 Lewandowskia I,Scurlockb J M O,Lindvallc E,et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy,2003,25(4):335-361
    18解新明,周峰,赵燕慧,等.多年生能源禾草的产能和生态效益[J].生态学报,2008,28(5):2329-2342
    19 Venendaal R,Jorgensen U,Forsters C A. European energycrops: a synthesis[J].Biomass and Bioenergy,1997,13(3):147-185
    20 Lewandowskia I,Scurlock J M O,Lindvall E,et al. The development and current status of perennial rhizomatous rasses as energy crops in the US and Europe[J]. Biomass and Bioenergy,2003,25(4):335-361
    21 Graham R L,English B C,Noon C E. A geographic information system based modeling system, for evaluating the cost of delivered energy crop feedstock[J]. Biomass and Bioenergy,2000,18(4):309-329
    22 Szado P,Varhegyi G,et al. Thermogravimetric/mass spectrometric characteriza- tion of two energy crops,Around donax and Miscanthus sinensis[J]. Journal of Analytical and Applied Pyrolysis,1996,36(2):179-190
    23周善元.21世纪的新能源-生物质能[J].江西能源,2001,(4):34-37
    24马欢,刘伟伟,张无敌,等.燃料乙醇的研究进展及存在问题[J].能源工程,2006,(2):29-33
    25 McLaughlin S B,Walsh M E. Evaluating environmental consequences of producing herbaceous crops for bioenergy[J]. Biomass and Bioenergy,1998,14(4):317-324
    26 David J P,John H F. The biology and agronomy of switchgrass for biofuels[J]. Critical Reviews in Plant Sciences,2005,24(5/6):423-459
    27徐炳成,山仑,黄瑾,等.柳枝稷和白羊草苗期水分利用与根冠比的比较[J].草业学报,2003,12(4):73-77
    28黄黔.我国的生态建设与生态现代化[J].草业学报,2008,17(2):128
    29李代琼,刘国彬,黄谨,等.安塞黄土丘陵区柳枝稷的引种及生物生态学特性试验研究.土壤侵蚀与水土保持学报,1999,5(增刊):125-128
    30乐园,李龙生.秸秆类生物质燃烧特性的研究.能源工程[J],2006,(4):30-33
    31吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003
    32迟姚玲,丁福臣,易玉峰,等.生物质能的开发利用.北京石油化工学院学报,2008,16(2):11-14
    33骆仲泱,周劲松,王树荣,等.中国生物质能利用技术评价[J].中国能源,2004,26(9):39-42
    34孙伟,李兴国.国产生物质锅炉现状调查报告[J].林业科技情报,2008,40 (2):92-93
    35张大雷.生物质成型燃料开发现状及应用前景[J].现代农业,2007,(12):98-103
    36何宝华,彭祚登.生物质直接燃烧利用现状[J].江西林业科技,2007,(3):50-53
    37刘圣勇,刘小二,王森.不同形态生物质燃烧技术现状和展望[J].新能源产业,2007,(4):23-28
    38孙军.生物质高效洁净燃烧技术研究与应用[A].北京:林木机械装备与循环经济论坛论文集[C],2008,1-5
    39林维纪.生物质固化成型技术及其展望[J].新能源,1999,21(4):39-42
    40刘军.新疆农业村能源实用技术[M].新疆人民出版社,2000
    41吴根,白丽梅,于洋,等.生物质转化能源技术的发展现状及趋势探讨[J].环境科学与管理,2008,33(1):166-168
    42浮爱青,焦红光,谌伦建,等.生物质型煤燃烧特性概述[J].洁净煤技术,2006,12(2): 63-66
    43马文超,陈冠益,颜蓓蓓,等.生物质燃烧技术综述[J].生物质化学工程,2007,41(1): 43-48
    44汪小憨,赵黛青,曾小军.煤与生物质液排渣混烧特性的数值模拟[J].过程工程学报,2008,8(2):314-320
    45邹玲,孙军,武俊峰.农林废弃物生物质燃烧特性的研究[J].木材加工机械,2006,(5):21-24,41
    46宋国庆,王志珣.生物质与煤混燃研究分析[J].应用能源技术,2008,(4):19-21
    47杨高峰,樊峰鸣.我国生物质成型燃料产业实证分析[J].河南科学,2007,25(6):1036-1039
    48肖军,段菁春,王华,等.生物质利用现状[J].安全与环境工程,2003,10(1):11-14
    49陈祎,罗永浩,陆方,等.生物质热解机理研究进展[J].工业加热,2006,35(5):4-8
    50吕当振,姚洪,王泉斌,等.纤维素、木质素含量对生物质热解气化特性影响的实验研究[J].工程热物理学报,2008,29(10):1771-1774
    51岳金方,应浩,左春丽.生物质加压气化技术的研究与应用现状[J].可再生能源,2006,(6):29-32
    52顾红艳.浅析生物质热解气化的经济社会和环境效益[J].商场现代化,2008,(5): 240-241
    53袁振宏.欧洲生物质发电技术掠影[J].可再生能源,2004,(4):65
    54袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005
    55栾云松,王如汉.关于生物质气化集中供气规范化问题的探讨[J].湖南农机,2008,(1):137-13
    56应浩,蒋剑春.生物质能源转化技术与应用(Ⅳ)-生物质热解气化技术研究和应用[J].生物质化学工程,2007,41(6):47-55
    57曾晶,张卫兵.我国农村生物质能源利用研究-沼气发酵与生物质直接燃烧的技术经济效果对比分析[J].贵州大学学报(社会科学版),2008,26(5):24-2
    58 Yin Lin,Shuzo Tanaka. Ethanol fermentation from biomass resources: current state and prospects,Appl Microbiol Biotechnol. New York: Springer-Verlag,2005
    59张无敌,字尚斌,周长平.生物质能-未来能源的希望[J].能源研究与利用,1995,(4):3-6
    60陈辉,陆善祥.生物质制燃料乙醇[J].石油化工,2007,36(2):107-117
    61徐芬芬,叶利民,王爱斌.我国的淀粉、糖类和纤维植物资源及其用于乙醇发酵的探讨[J].中国林副特产,2006,6(3):63-65
    62段黎萍.对燃料乙醇的生产过程能量效率的估算[J].化工进展,2007,26(7):970-973
    63董晓宇.利用柳枝稷制取燃料乙醇的初步研究[D].北京:首都师范大学,2008
    64吴真,林鹿,庞春生,等.生物质资源的分解及发酵利用[J].江西农业学报,2007,19(7):102-105
    65阴春梅,刘忠,齐宏升.生物质发酵生产乙醇的研究进展[J].酿酒科技,2007,(1): 87-90
    66田沈,徐鑫,孟繁燕,等.木质纤维素乙醇发酵研究进展[J].农业工程学报,2006,22(增刊1):229-232
    67施雪华,余敏,曲有鹏,等.利用木质纤维素类生物质生产燃料酒精[J].酿酒,2008,35(6):64-68
    68张巧珍,师晋生,叶京生.新能源的开发与利用[J].化工装备与技术,2003,24(3): 58-60
    69杨世琦,王道龙,杨正礼.国外能源作物研究进展与焦点问题[J].中国农业科技导报,2009,11(1):13-18
    70孙利源.生物质能利用技术比较与分析[J].能源研究与信息,2004,20(2):68-73
    71 Selhan K,Thallada B,Akinori,et al. Comparative studies of oil compositions produced from sawdust,rice husk,lignin and cellulose by hydrothermal treatment[J]. Fuel,2005,84:875-884
    72朱锡锋,陆强,郑冀鲁,等.生物质热解与生物油的特性研究[J].太阳能学报,2006,27(12):1285-1289
    73崔天,李亮,龙恩深.生物质热解液化的回顾与展望[J].林业机械与木工设备,2006,34(9):4-6
    74 Jim Core. New Method Simplifies Biodiesel Production[J]. Agricultural Research,2005,53(4):13
    75刘荣厚,王华.生物质快速热裂解反应温度对生物油产率及特性的影响[J].农业工程学报,2006,22(6):138-143
    76张无敌.生物质能源转换技术与前景[J].新能源,2000, 22(1): 16-20
    77吴创之.欧洲生物质能利用的研究现状及特点[J].新能源, 1999, 21(3): 30-35
    78刘吉利,朱万斌,谢光辉,等.能源作物柳枝稷研究进展[J].草地学报, 2009, 18(3): 232-240
    79郑蜿.国内外生物质能源的发展态势及云南发展该项能源的可能性[J].西部林业科学,2006,35(2): 132-136
    80戎志梅.从战略高度认识开发生物质能产业的重要意义[J].精细化工原料及中间体,2006,(7): 7-10
    81 Karpenstein-Machan M.Sustainable cultivation concepts for domestic energy production from biomass (Special issue on bioenergy ) [J]. Critical Reviews in Plant Sciences, 2001,20(1):1-14
    82刘培荃,杨世诚.植物燃料的研究现状及其发展[J].潍坊教育学院学报, 1997, 24(2): 37-39
    83吴创之,周肇秋,马隆龙,等.生物质发电技术分析比较[J].可再生能源,2008,26(3): 34-37
    84 McLaughlin S B,Walsh M E. Evaluating environmental consequences of producing herbaceous crops for bioenergy[J]. Biomass and Bioenergy,1998,14(4):317-324
    85田宜水.中国第二代生物燃料资源发展潜力分析[J].研究与探讨,2010,32(7):17-20
    86 Tilman D,Socolow R,Foley J A,et al. Beneficial biofuels-the food,energy,and environment trilemma[J],Science,2009,325(5938):270-271
    87 Lemus R,Charles Brummer E,Moore K J. Biomass yield and quality of 20 switchgrass populations in southern Iowa,USA[J].Biomass and Bioenergy,2002,(23):433-442
    88 Sanderson M A,Reed R L,McLaughlin S B,et al. Switchgrass as a sustainable bioenergy crop[J]. Bioresource Technology,1996,56(1):83-93
    89左海涛,李继伟,郭斌,等.盐分和土壤含水量对营养生长期柳枝稷的影响[J].草地学报,2009,17(6):760-766
    90 Boylan D,Bush V,Bransby D I. Switchgrass cofiring: pilot scale and field evaluation[J]. Biomass and Bioenergy,2000,19:411-417
    91 McLaughlin S B,Kszos L A. Development of switchgrass (Panicum virgatum)as a bioenergy feedstock in the United States. Biomass and Bioenergy,2005,28(6): 515-535
    92 Lewandowskia I,Scurlock J M O,Lindvall E,et al. the development and current status of perennial rhizomatous grasses as energy crops in the US and Europe [J]. Biomass and Bioenergy,2003,25:335-361
    93 Tillman D A. Biomass cofiring: the technology,the experience,the combustion consequences[J]. Biomass and Bioenergy,2000,19(6):385-394
    94 Ma Z,Wood C W,Bransby D I. Carbon dynamics subsequent to establishment of switchgrass[J]. Biomass and Bioenergy,2000,18(2):93-104
    95 Mclaughlin S B,Walsh M E. Evaluating environmental consequences of producing herbaceous crops for bioenergy[J]. Biomass and Bioenergy,1998,14(4):317-324
    96 Sanderson M A,Reed R L,Mclaughlin S B , et al. Switchgrass as a sustainable bioenergy crop[J]. Bioresource Technology,1996,56(1): 83-93
    97能源牧草堪当未来生物能源之大[J].草业学报,2008,17(3):1-5
    98 Lewandowski I,Scurlockb J M O,Lindvall E,et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy,2003,25(4):335-361
    99 Prine G M,Stricker J A,McConnell W V. Opportunities for bioenergy development in lower south USA//Proceeding of 3rd Biomass Conference of the Americas[J]. Montreal,Canada,1997:227-235
    100云雅如,赵烨.我国北方农牧交错地区发展能源植物柳枝程的可行性分析[A].见:农业生物环境与能源工程论坛[C]. 2008.148-152
    101 Comis D. Switching to Switchgrass Makes Sense[J]. Agricultural Research,2006,(6):1169-1178
    102 Elbersen H W,Christian D G,Bassam N E L. Switchgrass variety choice[J]. Europe Aspects of Applied Biology,2001,65:21-28
    103吴斌,胡勇,马璐,等.柳枝稷的生物学研究现状及其生物能源转化前景[J].氨基酸和生物资源,2007,29(2):8-10
    104谢光辉,卓岳,赵亚丽,等.欧美根茎能源植物研究现状及其在我国北方的资源潜力[J].中国农业大学学报,2008,13(6):11-18
    105 Anon. Indian grass (Sorghastrum nutans L. Nash)and switchgrass( Panicum vi- rgatum L.)[M]. Oklahoma: Agr. Res. Sta.,Forage Crops,1954,17
    106 Cassida K A,Muir J P,Hussey M A,et al. Biofuel Component Concentrations and Yields of Switchgrass in South Central U.S. Environments[J]. Crop Science,2005,45:682-692
    107 Porter C L. An analysis of variation between upland and lowland switchgrass,Panicum virgatum L.[J]. Central Oklahoma Ecology,1966,(47):980-992
    108 Christian DG. Switchgrass (Panicum virgatum L.). In: N. El Bassam(eds): Re- newable Energy-Potential energy crops for Europe and the Mediterranean region. REU technical Series[M]. Rome:FAO,1996:130-134
    109 Boston J. Bioenergy Crop Breeding And Production Research In The Southeast Final Report For 1996 To 2001.University of Georgia[J]. Athens,Georgia,2002,(9):1121-1187
    110 William L S,Gerald A J. Biomass and nitrogen accumulation in switchgrass: Effects of soil and environment[J]. Agronomy Journal,1995,87:663-669
    111 Staley T E,Stout W L,Jung G A. Nitrogen use by tall fescue and switchgrass on acidic soils of varying water holding capacity[J]. Agrinomy Journal,1991,83:732-738
    112 Ma Z,Wood C W ,Bransby D I. Carbon dynamics subsequent to establishment of switchgrass[J]. Biomass and Bioenergy,2000,18(2):93-104
    113 Lee D K,Doolittle J J,Owens V N. Soil carbon dioxide fluxes in established switchgrass land managed for biomass production[J]. Soil Biology and Biochemis- try,2007,39(1):178-186
    114 Anderson B E,Moore KJ. Native Warm-season Grasses: Research Trends and Issues[M]. Iowa: Soil Science Society of America,Inc.2000
    115 Hall K E,George G R,Riedl R R. Herbage dry matter yields of switchgrass,big bluestem and indiangrass with N fertilization[J]. Agronomy Journal,1982,74(1):47-51
    116 Muir J P,Sanderson M A,Ocumpaugh W R,et al. Biomass production of’Alamo’switchgrass in response to nitrogen,phosphorus,and row spacing[J]. Agronomy Journal,2001,93(5):896-901
    117 Bentivenga S P,Hetrick B D. Relationship between mycorrhizal activity,burning,and plant productivity in tallgrass prairie[J]. Canidian Journal of Botany,1991,69:2597-2602
    118 Clark R. Differences among mycorrhizal fungi for uptake per root length of switchgrass grown in acidic soil[J]. Journal of Plant Nutrition,2002,25(8): 1753-1772
    119 Nelson R G,Ascough J C II,Langemeier M R. Environmental and economic analysis of switchgrass production for water quality improvement in northeast Kansas[J]. Journal of Environ-mental Management,2006,79(4):336-347
    120杨新国.半干旱黄土丘陵沟壑区柳枝稷的生物质形成及其植物生态学机制研究[D].北京:中国农业大学,2008
    121胡松梅,龚泽修,蒋道松.生物能源植物柳枝稷简介.草业科学[J]. 2008,25(6):29-33
    122 Kim S,Dale B E. Global potential bioethanol production from wasted crops and crop residues[J]. Biomass and Bioenergy,2004,26(4):361-375
    123 Lewandowski I,Kicherer A. Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus×giganteus[J]. Eur- opean Journal of Agronomy,1997,6:163-177
    124 Hartmann H,Maier L,Bohm T. Quality of solid biofuels-database and field trials [A]. In: Overend R.P. and Chor-net E. (ed.) Proc. Biomass Conf. of the Americas,4th.Oakland,CA. 29 Aug.-2 Sept. 1999,1:273-279
    125 Nonhebel S. Energy yields in intensive and extensive biomass[J]. Biomass and Bioenergy, 2002,22:159-167
    126 Kramer K J,Moll H C, Nonhebel S. Total greenhouse gas emissions related to the Dutch crop production system[J]. Agriculture,Ecosystems & Environment,1999,72:9-16
    127 Conforti P,Giampietro M. Fossil energy use in agriculture: an international comparison[J]. Agriculture,Ecosystems & Environment,1997,65(2):31-43
    128 Schroll H. Energy-Row and ecological sustainability in Danish agriculture[J]. Agriculture,Ecosystems & Environment,1994,51:301-310
    129张无敌.生物质能源转换技术与前景[J].新能源,2000,22(1):16-20
    130吴创之.欧洲生物质能利用的研究现状及特点[J].新能源,1999,21(3):30-35
    131贺亮.生物质转型优化能源技术的开发与利用[J].新能源,1996,18(1):8-14
    132 John C,Paul F,Michael B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions [J]. Global Change Biology,2004,10:509-518
    133 Sanderson M A,Reed R L,Mclaughlin S B,et al. Switchgrass as a sustainable bioenergy crop[J]. Bioresource Technology,1996,56(1):83-93
    134 Heaton E A,Long S P, Voigr T B,et al. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen,temperature and water[J]. Biomass and Bioenergy,2004,27:21-30
    135 McLaughlin S B,Kszos L A. Development of switchgrass(Panicum virgatum)as a bioenergy feedstock in the United States[J]. Biomass and Bioenergy,2005,28(6): 515-535
    136 Lewandowskia I,Scurlock J M O,Lindvall E , Christou M. the development and current status of perennial rhizomatous grasses as energy crops in the US and Europe [J]. Biomass and Bioenergy,2003,25:335-361
    137 Tillman D A. Biomass cofiring: the technology,the experience,the combustion consequences[J]. Biomass and Bioenergy,2000,19(6):385-394
    138 Ercoli L,Mariotti M,et al. Effect of irrigation and nitrogen fertilization on biomass yield and efficiency use in crop production of Miscanthus[J]. Field Crops Research,1999,63:3-11
    139 Lewandowski I,Schmidt U. Nitrogen,energy and land use efficiencies of miscanthus,reed canary grass and triticale as determined by the boundary line approach[J]. Sustainable agriculture for food,Energy and industry,2005,11: 1419-1425
    140 Lewandowskia I,Scurlockb J M O,Lindvallc E,et al. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy,2003,25(4):335-361
    141 Curt M D,Fernandez J,Martinez M. Productivity and radiation use efficiency of sweet sorghum (Sorghum Bicolor (L.) Moench) CV. Keller in central Spain[J]. Biomass and Bioenergy,1998,14(2):169-178
    142 Zohrab S. Estimating Solar Radiation and Evapotranspiration Using Minimum Climatological Data[J]. Journal of Irrigation and Drainage Engineering,2000,126(4):265-267
    143 Clausen J C. Processing of fuel for combustion. Biomass for Heat Production Tech- nology[J],Problems and Approach to Problem Solving,1994,2:111-117
    144 Heaton E A,Long S P,Voigt T B,et al. Miscanthus for renewable energy generation: Europe Union Experience and Projections for Illinois[J]. Mitigation and Adapt- ation Strategies for Global Change,2004,9:433-451
    145 Struschka M. Holzverbrennung in feuerungsanlagen,Grundlagen-Emission-Entwie- klung schadstoffarmer Kacheliifen. Fortsehr Ber. VDI Reihe15(108).Dusseldorf: VDI-Veriag.1993
    146 Smil V,Nachman P,Long T V. Energy analysis and agriculture:An application to U.S. corn production[M]. Boulder:Westview press,1983
    147 Kaltschmitt M,Reinhardt G A,Steltzer T. Life cycle analysis of biofuels under different environmental aspects[J]. Biomass and Bioenergy,1997,12(2):121-134
    148 Mustafa Acaroglu, Semi Aksoy A. The cultivation and energy balance of Miscanthus×giganteus production in Turkey[J].Biomass and Bioenergy,2005, 29:42-48
    149韩中庚.数学建模方法及应用[M].北京:高等教育出版社,2005
    150姜启源,谢金星,叶俊.数学模型[M].北京:高等教育出版社,2003
    151 Lewandowski I,Kicherer A. Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus×giganteus[J]. European Journal of Agronomy,1997,6:163-177
    152舒卫萍,崔远来.层次分析法在灌区综合评价中的应用[J].中国农村水利水电,2005,(6):109-111
    153 Parrish D. J. and Wolf D. D. Managing switchgrass for sustainable biomass production. In: Proc. Symp. Liquid Fuels from Renewable Resources[M]. Nash- ville: Nashville Press,1992
    154 Mclaughlin S B,Kszos L A. Development of switchgrass(Panicum virgatum) as a bioenergy feedstock in the United States[J]. Biomass and Bioenergy,2005,28(6): 515-535
    155 Sanderson M A,Read J C, Reed R L. Harvest management of switchgrass for biomass feedstock and forage production[J]. Agronomy journal,1999,91:5-10
    156左海涛,李继伟,郭斌,等.盐分和土壤含水量对营养生长期柳枝稷的影响[J].草地学报,2009,17(6):760-766
    157 Kszos L A,McLaughlin S B,Walsh M E. Bioenergy from switchgrass: reducing production costs by improving yield and optimizing crop management. Bioenergy 2002,Bioenergy for the environment, 2002:22-26
    158 Schulte aufm,Erley G,Kaul H P,et al. Yield and nitrogen utilization efficiency of the pseudocereals amaranth,quinoa and buckwheat under differing nitrogen fertilization[J]. European Journal of Agronomy,2005,22(1):95-100
    159 Kenneth P V,John J B,Daniel T W,et al. Switchgrass biomass production in the Midwest USA: Harvest and nitrogen management[J]. Agronomy Journal,2002,94(3): 413-420
    160侯新村,范希峰,左海涛,等.氮肥对挖沙废弃地能源草生长特性与生物质产量的影响[J].草地学报,2010,18(2):268-273
    161 Mclaughlin S B. Forage crops as bioenergy fuel: evaluating the status and potent- ial. In: proceedings of XVIII International Grassland Congress[A],Winnipeg,Canada,1997
    162 Turn S Q,Kinoshita C M,Ishimura D M. Removal of inorganic constituent of bi- omass feedstocks by mechanical dewatering and leaching[J]. Biomass and Bioener- gy,1997,12(4):241-252
    163 Miles T R,Miles J R,Baxter L L,et al. Boiler deposits from firing biomass fuels[J]. Biomass and Bioenergy,1996,10(1):125-138
    164 Baxter L L,Miles T R,Miles Jr T R,et al. The behavior of inorganic material in biomass-fired power boilers:field and laboratory experiences[J]. Fuel pro- cessing technology,1998,54(1-3):47-78
    165 Adler P R,Sanderson M A,Boateng A A,et al. Biomass Yield and Biofuel Quality of Switchgrass Harvested in Fall or Spring[J]. Agronomy Journal,2006,98(6): 1518-1525
    166 Burvall J. Influence of harvest time and soil type on fuel quality in reed canary grass (phalaris arundinacea L.)[J]. Biomass and Bioenergy,1997,1(3):149-154
    167 Landstrom S,Lomakka L,Andersson S. Harvest in spring improves yield and quality of reed canary grass as a bioenergy crop[J]. Biomass and Bioenergy,1996,11(4): 333-341
    168 Xiong S J,Zhang Q G,Zhang D Y,et al. Influence of harvest time on fuel characteristics of five potential energy crops in northern China[J]. Bio- resource Technology,2008,99(3):479-485
    169 Jenkins B M,Baxter L L,Miles Jr T T,et al. Combustion properties of biomass. Proceedings of Biomass Usage for Utility and Industrial Power. Snowbird,Utah, USA,28 April-3 May,1996
    170 Javier H A,Antonio J M,Jose A,et al. Straw quality for its combustion in a straw-fired power plant[J]. Biomass and Bioenergy,2001,21(4):249-258
    171岳建芝,张杰,徐桂转,等.玉米秸秆主要成分及热值的测定与分析[J].河南农业科学,2006(9):30-32
    172 Lewandowski I,Clifton-BrownJC,ScurlockJM O,et al. Miscanthus: European experience with a novel energy crop [J]. Biomass and Bioenergy,2000,19:209-227
    173黄平.灌溉、施肥及种植密度对荻生长、生物质特性和产能效率的影响[D].北京:北京林业大学,2007
    174张无敌.生物质能源转换技术与前景[J].新能源,2000,22(1): 16-20
    175吴创之.欧洲生物质能利用的研究现状及特点[J].新能源,1999,21(3): 30-35
    176贺亮.生物质转型优化能源技术的开发与利用[J].新能源,1996,18(1): 8-14
    177 John C,Paul F,Michael B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions [J]. Global Change Biology,2004,10: 509-518
    178 Boylan D,Bush V, Bransby D I. Switchgrass cofiring: pilot scale and field evaluation [J].Biomass and Bioenergy,2000,19: 411- 417
    179 Lewandowskia I, Scurlock J M O,Lindvall E,Christou M. the development and current status of perennial rhizomatous grasses as energy crops in the US and Europe [J]. Biomass and Bioenergy,2003,25: 335-361
    180 Sanderson M A,Reed R L,Ocumpaugh W R,et al. Switchgrass cultivars and germplasm for biomass feedback production in Texas[J]. Bioresource Techno- logy,2000,67(3):209-219
    181徐恒刚.中国盐生植被及盐渍化生态治理[M].北京:中国农业技术出版社,2004,10-15
    182程广有,许文会,黄永秀,等.水稻品种耐盐碱性的研究[J].延边农学院学报,1995,17 (4):195-201
    183黄平,左海涛,韩烈保,等.拔节期水分胁迫对荻生长和生物质特性的影响[J].草地学报,2007,15(2):153-157
    184毕银丽,丁保健,全文智,等. VA菌根对白三叶吸收水分和养分的影响[J].草地学报,2001,2(9):154-158
    185陈晓远,高志红,刘晓英,等.水分胁迫对冬小麦根、冠生长关系及产量的影响[J].作物学报,2004,7(30):723-728
    186刘金祥,王铭铭,肖生鸿,等.干旱胁迫对香根草生长及光合生理主要特征的影响[J].四川草原,2005,(3):28-30
    187 Klemens J A. Biomass allocation and growth of tropical dry forest tree seedl-ings across light and soil gradients[D]. USA: The University of Pennsylvania,2003
    188 Ekanayake I J, O′Toole J C, Garrity D P,et al. Inheritance of root characters and their relations to drought resistance in rice[J]. Crop Science,1985,25 (26):927-933
    189 Hayman B T. The theory and analysis of diallel crosses[J]. Genetics. 1954,39: 789-809
    190 O’Toole J C,Soemartono. Evaluation of a simple technique for characterizing rice root systems in relation to drought resistance[J]. Euphytica. 1981,30: 283-290
    191孙传清,张文绪.水稻根系性状和叶片水势的遗传及其相关研究[J].中国农业科学,1995,28(1):42-48
    192柴丽娜,路苹,王金淑.干旱胁迫冬小麦幼苗根冠比的动态变化与品种抗旱性关系的研究[J].北京农学院学报,1996,11(2):19-23
    193张新中,章玉平.植物生理学[M].北京:化学工业出版社,2007:30,44
    194 Levitt J. Response of plants to environmental stress[M]. New York: A acdemic Press,1980,365 - 434.
    195武之新,徐宜男,刘凤泉.植物抗盐性研究及耐盐牧草的筛选概况[J].河北农业大学学报,1993,16(4):65-69
    196肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20 (5):818-825
    197杨福,梁正伟,王志春,等.水稻耐盐碱品种(系)筛选试验与省区域试验产量性状的比较[J].吉林农业大学学报,2007,29(6):596-600
    198 Cruz V,Cuartero J.Effects of salinity a several developmental stages of six genotypes of tomato (Lycopersicon spp.)[J]. Scientia Horticulturae,1999,78:83-125
    199黄立华,梁正伟,王志春,等.苏打盐碱胁迫对长穗冰草幼苗生长和K+、Na+含量的影响[J].中国草地学报2006,28(5):60-64
    200孙彤,杜震宇,张瑞珍,等.松嫩平原盐碱土盐碱胁迫对水稻分蘖及产量的影响[J].吉林农业大学学报,2006,28(16):597-600
    201马翠兰,刘星辉,杜志坚.盐胁迫对柚、福橘种子萌发和幼苗生长的影响[J].福建农林大学学报,2003,32(3):320-324
    202 Greenway H,Munns R. Mechanisms of salt tolerance in non-halophytes[J]. Ann. Rev. Plant Physial,1980,31:149-190
    203贾洪涛,高文,刘京贞,等.盐胁迫下Na+、K+和Cl-对碱蓬和玉米生理特性效应的比较研究[J].临沂师范学院学报,2002,24(3):46-49
    204 Levitt J. Responses of plants to environmental stress[C]. In: Water relation. Salt and Other Stresses, Vol.2,2nd edn. New York: Academic Press,1980
    205颜宏,赵伟,尹尚军,等.羊草对不同盐碱胁迫的生理响应[J].草业学报,2006,12:49-55
    206 Tuberosa R,Sanguineti M C,Landi P,et al. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two regimes[J]. Plant Molecular Biology,2002,48:697-712
    207魏道智,宁书菊,林文雄.小麦根系活力变化与叶片衰老的研究[J].应用生态学报, 2004,15(9):1565-1569
    208宋日,吴春胜,马丽艳,等.松嫩平原不同株型玉米品种根系分布特征比较研究[J].应用生态学报,2003,14(11):1911-1913
    209李从锋,刘鹏,王空军,等.玉米雄性不育系及其同型可育系根系的时空变化[J].应用生态学报,2008,19(10):2209-2214
    210郎有忠,胡健,杨建昌,等.抗旱型稻根系形态与机能的研究[J].扬州大学学报(农业与生命科学版),2003,24(4):58-61
    211刘胜群,宋凤斌.玉米不同耐旱性品种根系构型和动态建成研究[J].浙江大学学报(农业与生命科学版),2007,28(1):68-71
    212李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应[J].植物营养与肥料学报,2000,6(4):383-388
    213段舜山,谷文祥,张大勇,等.半干旱地区小麦群体的根系特征与抗旱性的关系[J].应用生态学报,1997,8(2):134-138
    214高世斌,冯质雷,李晚忱,等.干旱胁迫下玉米根系性状和产量的QTLs分析[J].作物学报,2005,31(6):718-722
    215郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1647
    216刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社,1999,194
    217李禄军,蒋志荣,车克钧,等.绿洲-荒漠交错带不同沙丘土壤水分时空动态变化规律[J].水土保持学报,2007,21(1):123-127
    218王辉,孙栋元,刘丽霞,等.干旱荒漠区沙蒿种群根系生态特征研究[J].水土保持学报,2007,21(1):99-102
    219徐恒刚.中国盐生植被及盐渍化生态治理[M].北京:中国农业技术出版社,2004,2-25
    220吴朝晖,周建群,青先国.水稻根系分布形态研究法现状及展望[J].湖南农业科学,2008 (5):11-14
    221郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社,2007.71-72
    222孙洪仁,张英俊,厉卫宏,等.北京地区紫花苜蓿建植当年的耗水系数和水分利用效率[J].草地学报,2007,l6(1):41-46
    223曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2000.34-36
    224 Hsu F H,Nelson C J,Hatches A G. Temperature effects on germination of perennial warm season forage grasses[J]. Crop Science,1985,25(1):215-220
    225郭颖,韩蕊莲,梁宗锁.土壤干旱对黄土高原4个乡土禾草生长及水分利用特性的影响[J].草地学报,2010,19(2):21-30
    226郝仲勇,刘洪禄,杨培岭.果树根系吸水函数的建立[J].农业工程学报,2000,16(增刊):53-56
    227韦兰英,上官周平.黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系[J].生态学报,2006,26(11):3740-3748
    228郝仲勇,杨培岭,刘洪禄,等.苹果树根系分布特性的试验研究[J].中国农业大学学报,1998,3(6):63-66
    229康绍忠,刘晓明,熊运章.冬小麦根系吸水模式研究[J].西北农业大学学报(自然科学版),1992,20(2):5-12
    230成向荣,黄明斌,邵明安,等.紫花苜蓿和短花针茅根系分布与土壤水分研究[J].草地学报,2008,16(2):170-175
    231白文明,左强,黄元仿,等.乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究[J].植物生态学报,2001,25:35-41
    232 Burvall J. Influence of harvest time and soil type on fuel quality in reed canary grass(Phalaris arundinacea L.)[J]. Biomass and Bioenergy,1997,12(3): 149-154
    233 Landstrom S,Lomakka L.,Andersson S. Harvest in spring improves yield and quality of reed canary grass as a bioenergy crop[J]. Biomass and Bioenergy, 1996,11(4):333-341
    234刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005.44
    235岳建芝,张杰,徐桂转,等.玉米秸秆主要成分及热值的测定与分析[J].河南农业科学, 2006(9):30-32
    236 Baxter L L,Miles T R,Miles Jr T R,et al. The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences[J]. Fuel Pro- cessing Technology,1998,54(1-3):47-78
    237林栖凤,李冠一.植物耐盐性研究进展[J].生物工程进展,2000,20(2),20-25
    238王继和,杨自辉,胡明贵,等.干旱区腌渍化土地综合治理技术研究[J].中国生态农业学报,2001,(9):64-66
    239徐恒刚.中国盐生植被及盐渍化生态治理[M].北京:中国农业技术出版社,2004,10-15
    240 Sanderson M A, Reed R L, Ocumpaugh W R, et al. Switchgrass cultivars and germplasm for biomass feedback production in Texas[J]. Bioresource Technology 2000,67(3):209-219
    241郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1647
    242刘昌明,王会肖.土壤-作物-大气界面水分过程与节水调控[M].北京:科学出版社,1999,194
    243李禄军,蒋志荣,车克钧,等.绿洲-荒漠交错带不同沙丘土壤水分时空动态变化规律[J].水土保持学报,2007,21(1):123-127
    244 Mass E V,Poss J A. Salt sensitivity of wheat at various growth stages[J]. Irr- igation Science,1989,10(1):29-40
    245 Levitt J. Responses of plants to environmental stress[M]. New York: Academic Press,1980.365-434
    246黄燕,吴平等. SAS统计分析及应用[M].北京:机械工业出版社,2007.67-98
    247吴朝晖,周建群,青先国.水稻根系分布形态研究法现状及展望[J].湖南农业科学,2008(5):11-14
    248郝建军,康宗利,于洋.植物生理学实验技术[M].化学工业出版社,2007,71-72
    249蹇洪英,邹寿青.地毯草的光合特性研究[J].广西植物,2003,23(2):181-184
    250谢会成,姜志林,李际红.栓皮栎林光合特性的研究[J].南京林业大学学报:自然科学版,2004,28(5):83-85
    251杨兴洪,邹琦,赵世杰.遮荫和全光生长的棉花光合作用和叶绿素荧光特征[J].植物生态学报,2005,29(1):8-15
    252许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244
    253武维华.植物生理学[M].北京:科学出版社,2003,4:117
    254 Verma S,Dubey R S. Effect of cadmium on soluble sugars and enzymes of their metabolism in rice[J]. Biologia Plantarum,2001,44(1):117-123
    255赵可夫.植物抗盐生理[M].北京:中国科学技术出版社,1993
    256徐炳成,山仑,黄占斌,等.黄土丘陵区柳枝稷光合生理生态特征的初步研究[J].西北植物学报,2001,21(4):625-630
    257秦景,董雯怡,贺康宁.盐胁迫对沙棘幼苗生长与光合生理特征的影响[J].生态环境学报2009,18(3):1031-1036
    258武俊英,刘景辉,李倩.盐胁迫对燕麦幼苗生长,K+、Na+吸收和光合性能的影响[J].西北农业学报,2010,19(2):100-105
    259高奔,宋杰,刘金萍,等.盐胁迫对不同生境盐地碱蓬光合及离子积累的影响[J].植物生态学报.2010,34(6):671-677
    260柯裕州,周金星,张旭东等.盐胁迫对桑树幼苗光合生理生态特征的影响[J].林业科学,2009,45(8):61-66
    261 Farquhar G D,Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33(3):317-345
    262黄沆,陈光辉.水稻根系育种的研究现状及展望[J].湖南农业大学学报(自然科学版),2009,35(1):35-39
    263严小龙,廖红,年海.根系生态学原理与应用[M].北京:科学出版社,2007.3-75
    264刘小冰,王光华,金剑等.作物根际和产量生理研究[M].北京:科学出版社,2010.65
    265 Hendrick R L,Pregitzer K S. The demography of fine root in a northern hardwood forest [J]. Ecology,1992,73:1094-1104
    266万素梅.黄土高原地区不同生长年限苜蓿生产性能及对土壤环境效应研究[D].杨凌:西北农林科技大学,2008
    267陈洪松,王克林,邵明安.黄土区人工林草植被深层土壤干燥化研究进展[J].林业科学,2005,41(4):156-161

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700