用户名: 密码: 验证码:
东北三省水稻水分生产率时空变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食和水问题是全球性的、国际性的问题,是关系到全球人类生存和社会安定的战略问题。东北三省是我国的粮食主产省区和商品粮基地,水稻作为国人的主要口粮其地位非常重要,其生产过程也是农业灌溉用水消耗的大户,目前,全球水资源紧张、行业用水竞争加剧,环境、生态、社会、经济用水矛盾突出,在此背景下,本文以遥感技术和微观试验相结合的方法对东北三省的水稻水分生产率(WP)进行了评估,围绕作物产量和水分消耗之间的关系进行探讨,为确保粮食安全和农业水资源的可持续利用提供理论依据。
     本论文根据29个农业气象试验站确定了东北三省水稻的生育期(即本研究的研究时段)及分区方法(以提高研究结果的精度),并分析了水稻产量的空间分布特征及规律;在分区的基础上,对东北三省综合利用TM数据、时间序列eMODIS数据、MOD12Q1土地覆盖类型数据、DEM数据等异源多时序数据,采用基于专家知识经验构建的决策树对2009年水稻的种植面积进行提取;采用新版MOD16算法,对不同分区利用MODIS产品(包括MOD12Q1土地覆盖类型、MOD15A2植被指数产品、MCD43B3反照率产品),结合GMOA的气象数据,对东北三省2009-2010年水稻的蒸发蒸腾量(ET)进行了反演;构建了水稻产量空间化模型,并依据该模型将水稻产量数据外推到像素级,得到了东北三省2008-2010年水稻的产量分布图;根据产量图和ET图,采用逐像元相比的方法得到了的该区域的水稻水分生产率图;在试验站布置不同尺度、不同水分条件的灌溉试验,利用同时段的灌溉试验结果对基于遥感的结果进行验证。
     本论文的主要成果及创新点有:1)提出了基于异源多时相遥感数据的作物种植面积决策树提取方法,适宜于大范围的水稻面积提取,且精度满足要求。2)以地级市行政区划为分析单元,构建的基于水稻生育期内最大NDVI和相应分析单元平均单产之间关系的水稻产量空间化模型,该模型能从整体上控制误差,通过NDVI将统计产量扩展到像素级水平,较好地解决了传统统计产量数据难以空间化的问题。3)基于MOD16遥感反演ET模型,首次对北纬40-50°之间大范围的水稻生育期耗水量、水分生产率进行了估算,提出了东北三省2008-2010年的水稻水分生产率图,水稻水分生产率的区间为1.26-2.58,平均值为1.890,其中最高值分布北纬44-46°之间。4)设置了盆栽、测坑、小区三个不同尺度不同水分控制条件下的水稻水分生产率试验,以其结果对基于遥感的水分生产率研究成果进行验证,并寻找两者共同存在的规律或特征,为基于卫星遥感的宏观方法和基于田间试验的微观手段在作物水分生产率方面的研究提供了新的有益尝试。
The problem about food and water relates to human existence and social stability, it is a strategic and challenging issue to solve it across the globe. In Northeast China, the three provinces are production base and commercial center for major grain. Being one of the mainfood sources, rice plays a significant role in the agriculture production in China. However, the process of rice growth consumes amounts of irrigation water. At present, water storage across the globe and the usage contradiction among different industries are becoming increasingly intensified. In these contexts, we estimated the rice water productivity (WP) using the method of remote sensing combined with micro-test of field investigation. The relationship between crop yield and water consumption was discussed. The study is expected to provide theoretical guidance for the sustainable utilization of agricultural water resources and the stable production of rice in the Northeast China.
     This paper specified the rice growth periods (i.e., the periods of this research) and the partition method (in order to improve the accuracy of the results of this research) in the three provinces based on the29agro-meteorological experimental stations, and analyzed the spatial distribution of rice yield as well as its characteristics.Using multi-sensor and multi-temporal remote sensing data derived fromTM, time-series NDVI, MOD12Q1and DEM, the rice planting area in three northeast provinces of China was extracted based on expert Knowledge decision-tree and the division in2009. The evapotranspiration(ET) of rice for different partitions was estimated using the new MOD16algorithm with MODIS products(including MOD12Q1land cover types, MOD15A2vegetation index products, MCD43B3albedo products) combined with GMOA meteorological data from2009to2010in the three provinces. The paper proposed a rice spatialization model of yield which extrapolated the yield to the pixel level. Additionally, the rice distribution maps were showed from2008to2010. According to the production map and ET map, the method of pixels compared one by one was used to get the water productivity map in rice area. At last, the irrigation experiment results in different scale and water condition at the same time periods were compared with the results based on remote sensing for validation.
     Main achievements and innovations of this paper were as follow:1) a decision tree method using different sources of remote sensing data to extract crop planting area was proposed. This method is verified to have high precision;2) based on the administrative divisions prefecture level analysis, we put forward a space model according to the relationship between rice yield and the maximum NDVI in rice fertility period of the corresponding unit, which expanding statistics yield to pixel level and controlled the error in each unit. The model provides a good solution to the hard traditional problem of the spatialization of the statistical yield data.3) Based on remote sensing inversion MOD16ET model, the paper estimated water consumption and water productivity of rice in a wide range for the north latitude40°-50°in crop growth period for the first time. It concluded that the rice water productivity changed from1.26to2.58with a mean of1.890in the three provinces in2008-2010and the highest value was in the north latitude44°-46°which was reasonable compared with the experiment results. Comparison among the results of the same field showed that the rice water productivity of the three northeastern provinces was significantly higher than the south areas of China, and was higher than that in other rice-growing areas of the world.4) we designed three different scales-the pot (0.07m2), pit (5m2) and community (60m2) under different water conditions for experiment of rice water productivity, the results were similar to these based on remote sensing. This attempt to provide a new paradigm for cooperative research on crop water productivity combined macroscopic satellite remote sensing with microscopic field experiments.
引文
[1]许迪,龚时宏,李益农等.作物水分生产率改善途径与方法研究综述[J].水利学报.2010(6):631-639.
    [2]中国灌溉排水发展中心.北方地区水稻生产潜力与水利保障对策研究报告[R].2007.
    [3]茆智.水稻节水灌溉及其对环境的影响[J].中国工程科学.2002(07):8-16.
    [4]孙华生.利用多时相MODIS数据提取中国水稻种植面积和长势信息[D].浙江大学,2009.
    [5]程乾MODIS数据提高水稻卫星遥感估产精度稳定性机理与方法研究[D].浙江大学,2005.
    [6]程乾,王人潮.数字高程模型和多时相MODIS数据复合的水稻种植面积遥感估算方法研究[J].农业工程学报.2005(05):89-92.
    [7]焦险峰,杨邦杰,裴志远.基于分层抽样的中国水稻种植面积遥感调查方法研究[J].农业工程学报.2006(05):105-110.
    [8]Sakamoto T, Van Nguyen N, Ohno H, et al. Spatio-temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers[J].2006,100(1):1-16.
    [9]Xiao X, Boles S, Liu J, et al. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images[J]. Remote Sensing of Environment.2005,95(4):480-492.
    [10]Xiao X, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment.2006,100(1):95-113.
    [11]蔡学良,崔远来.基于异源多时相遥感数据提取灌区作物种植结构[J].农业工程学报.2009(08):124-130.
    [12]邬明权,牛铮,王长耀.利用遥感数据时空融合技术提取水稻种植面积[J].农业工程学报.2010(S2):48-52.
    [13]邬明权,王长耀,牛铮.利用多源时序遥感数据提取大范围水稻种植面积[J].农业工程学报.2010(07):240-44.
    [14]Idso S B, Reginato R J, Jackson R D, et al. Measuring yield-reducing plant water potential depressions in wheat by infrared thermometry[J]. Irrigation Science.1981,2(4):205-212.
    [15]Jackson R D, Idso S B, Reginato R J, et al. Canopy temperature as a crop water stress indicator[J]. Water resources research.1981,17(4):1133-1138.
    [16]蔡焕杰,熊运章,刘海军.用冠层温度—气温差方法诊断作物缺水状况的研究[J].干旱地区农业研究.1993(03):49-54.
    [17]梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究[J].生态农业研究.2000(01):26-28.
    [18]刘恩民,于强,谢贤群.水分亏缺对冬小麦冠层温度影响的研究[J].生态农业研究.2000(01):23-25.
    [19]袁国富,唐登银,罗毅等.基于冠层温度的作物缺水研究进展[J].地球科学进展.2001(01):49-54.
    [20]刘增进,柴红敏,蔡焕杰.用冠层温度定量诊断作物根系活动层[J].中国农村水利水电.2003(04):3-4.
    [21]崔晓,许利霞,袁国富等.基于冠层温度的夏玉米水分胁迫指数模型的试验研究[J].农业工程学报.2005(08):22-24.
    [22]王卫星,宋淑然,许利霞等.基于冠层温度的夏玉米水分胁迫理论模型的初步研究[J].农业工程学报.2006(05):194-196.
    [23]俞龙,王卫星,崔晓等.基于冠层温度的夏玉米旱情指数理论模型和经验模型的比较[J].华南农业大学学报.2007(03):110-112.
    [24]朱庭芸.水稻高产效益灌溉原理与方法[M].沈阳:辽宁科学技术出版社,1994.
    [25]Turner N C, O'Toole J C, Cruz R T, et al. Responses of seven diverse rice cultivars to water deficits I. Stress development, canopy temperature, leaf rolling and growth[J]. Field crops research.1986,13:257-271.
    [26]Garrity D P, O'Toole J C. Selection for reproductive stage drought avoidance in rice, using infrared thermometry[J]. Agronomy Journal.1995,87(4):773-779.
    [27]刘鸿艳,邹桂花,刘国兰等.水分梯度下水稻CT,LWP和SF的相关及其QTL定位研究[J].科学通报.2005(02):130-139.
    [28]彭世彰,徐俊增,丁加丽等.节水灌溉条件下水稻叶气温差变化规律与水分亏缺诊断试验研究[J].水利学报.2006(12):1503-1508.
    [29]张文忠,韩亚东,杜宏绢等.水稻开花期冠层温度与土壤水分及产量结构的关系[J].中国水稻科学.2007(01):99-102.
    [30]张彬,郑建初,黄山等.抽穗期不同灌水深度下水稻群体与大气的温度差异[J].应用生态学报.2008(01):87-92.
    [31]张旭东,陈伟,迟道才等.水稻需水关键期冠气温差变化规律试验研究[J].灌溉排水学报.2011(04):
    [32]Overgaard J, Rosbjerg D, Butts M B. Land-surface modelling in hydrological perspective-a review[J]. Biogeosciences.2006,3(2):229-241.
    [33]Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature:a practical tool for evaluating water requirements[J]. Water Resources Research.1977,13(3):651-656.
    [34]Glenn E P, Huete A R, Nagler P L, et al. Integrating remote sensing and ground methods to estimate evapotranspiration[J]. Critical Reviews in Plant Sciences.2007,26(3):139-168.
    [35]Kustas W P, Norman J M. Use of remote sensing for evapotranspiration monitoring over land surfaces[J]. Hydrological Sciences Journal.1996,41(4):495-516.
    [36]Anderson M C, Norman J M, Diak G R, et al. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing[J], Remote Sensing of Environment.1997,60(2):195-216.
    [37]Bastiaanssen W, Menenti M, Feddes R A, et al. A remote sensing surface energy balance algorithm for land (SEBAL).1. Formulation[J]. Journal of hydrology.1998,212:198-212.
    [38]Carlson T. An overview of the" triangle method" for estimating surface evapotranspiration and soil moisture from satellite imagery[J]. Sensors.2007,7(8):1612-1629.
    [39]Glenn E P, Huete A R, Nagler P L, et al. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes:what vegetation indices can and cannot tell us about the landscape[J]. Sensors.2008,8(4):2136-2160.
    [40]Nagler P L, Scott R L, Westenburg C, et al. Evapotranspiration on western US rivers estimated using the Enhanced Vegetation Index from MODIS and data from eddy covariance and Bowen ratio flux towers[J]. Remote sensing of environment.2005,97(3):337-351.
    [41]Cleugh H A, Leuning R, Mu Q, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment.2007,106(3):285-304.
    [42]Mu Q, Heinsch F A, Zhao M, et al. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data[J]. Remote Sensing of Environment.2007,111(4):519-536.
    [43]Yang F, White M A, Michaelis A R, et al. Prediction of continental-scale evapotranspiration by combining MODIS and AmeriFlux data through support vector machine[J]. Geoscience and Remote Sensing, IEEE Transactions on.2006,44(11):3452-3461.
    [44]Wang K, Wang P, Li Z, et al. A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature[J]. Journal of Geophysical Research:Atmospheres (1984-2012). 2007,112(D15).
    [45]张荣华,杜君平,孙睿.区域蒸散发遥感估算方法及验证综述[J].地球科学进展.2012(12):1295-1307.
    [46]Moran M S, Clarke T R, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index[J]. Remote sensing of environment.1994,49(3):246-263.
    [47]Bastiaanssen W, Pelgrum H, Wang J, et al. A remote sensing surface energy balance algorithm for land (SEBAL).:Part 2:Validation[J], Journal of hydrology.1998,212:213-229.
    [48]Allen R G, Tasumi M, Trezza R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Model[J]. Journal of irrigation and drainage engineering.2007,133(4): 380-394.
    [49]Allen R G, Tasumi M, Morse A, et al. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-Applications[J]. Journal of Irrigation and Drainage Engineering.2007, 133(4):395-406.
    [50]张晓涛.区域蒸发蒸腾量的遥感估算[D].西北农林科技大学,2006.
    [51]Su Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes[J]. Hydrology and earth system sciences.2002,6(1):85-99.
    [52]Liu S, Hu G, Lu L, et al. Estimation of regional evapotranspiration by TM/ETM+data over heterogeneous surfaces[J]. Photogrammetric Engineering and Remote Sensing.2007,73(10):1169.
    [53]蔺文静,董华,陈立等.基于SEBAL模型的区域蒸发蒸腾遥感估算[J].遥感信息.2008(05):50-54.
    [54]杜嘉,张柏,宋开山等.基于NOAA/AVHRR数据估算三江平原蒸散量研究初探[J].水土保持研究.2009(02):56-62.
    [55]Shuttleworth W J, Wallace J S. Evaporation from sparse crops-an energy combination theory[J]. Quarterly Journal of the Royal Meteorological Society.1985,111(469):839-855.
    [56]Kustas W P. Estimates of evapotranspiration with a one-and two-layer model of heat transfer over partial canopy cover[J]. Journal of Applied Meteorology.1990,29(8):704-715.
    [57]辛晓洲.用定量遥感方法计算地表蒸散量[D].中国科学院遥感应用研究所,2003.
    [58]Norman J M, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology.1995,77(3): 263-293.
    [59]Blyth E M, Harding R J. Application of aggregation models to surface heat flux from the Sahelian tiger bush[J]. Agricultural and Forest Meteorology.1995,72(3):213-235.
    [60]张仁华,孙晓敏,王伟民等.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J].中国科学(D辑:地球科学).2004(S2):200-216.
    [61]Zhang R, Tian J, Su H, et al. Two improvements of an operational two-layer model for terrestrial surface heat flux retrieval[J]. Sensors.2008,8(10):6165-6187.
    [62]Penman H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.1948,193(1032):120-145.
    [63]Monteith J L. Evaporation and environment[J]. Symposium of the society of experimental biology.1965,19: 205-234.
    [64]Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[J]. FAO, Rome.1998,300:6541.
    [65]Cleugh H A, Leuning R, Mu Q, et al. Regional evaporation estimates from flux tower and MODIS satellite data[J]. Remote Sensing of Environment.2007,106(3):285-304.
    [66]Mu Q, Zhao M, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment.2011,115(8):1781-1800.
    [67]Yuan W, Liu S, Yu G, et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data[J]. Remote sensing of environment.2010,114(7):1416-1431.
    [68]Zhang K, Kimball J S, Nemani R R, et al. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006[J]. Water Resources Research.2010,46(9).
    [69]Priestley C, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters[J]. Monthly weather review.1972,100(2):81-92.
    [70]Barton I J. A parameterization of the evaporation from nonsaturated surfaces[J]. Journal of Applied Meteorology.1979,18(1):43-47.
    [71]Jiang L, Islam S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations[J]. Geophysical research letters.1999,26(17):2773-2776.
    [72]Jiang L, Islam S. Estimation of surface evaporation map over southern Great Plains using remote sensing data[J]. Water Resources Research.2001,37(2):329-340.
    [73]Fisher J B, Tu K P, Baldocchi D D. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-Ⅱ data, validated at 16 FLUXNET sites[J]. Remote Sensing of Environment.2008,112(3): 901-919.
    [74]Fisher J B, Whittaker R J, Malhi Y. ET come home:potential evapotranspiration in geographical ecology[J]. Global Ecology and Biogeography.2011,20(1):1-18.
    [75]Bouchet R J. Evapotranspiration reelle et potentielle, signification climatique[J]. IAHS Publ.1963,62: 134-142.
    [76]Morton F I. Estimating evapotranspiration from potential evaporation:Practicality of an iconoclastic approach[J]. Journal of Hydrology.1978,38(1):1-32.
    [77]Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration [J]. Water Resources Research.1979,15(2):443-450.
    [78]Morton F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology [J]. Journal of Hydrology.1983,66(1):1-76.
    [79]Granger R J. A complementary relationship approach for evaporation from nonsaturated surfacesfJ].1989, 111(1-4):31-38.
    [80]刘绍民,孙睿,孙中平等.基于互补相关原理的区域蒸散量估算模型比较[J].地理学报.2004(03):331-340.
    [81]Venturini V, Islam S, Rodriguez L. Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model[J]. Remote Sensing of Environment.2008,112(1):132-141.
    [82]Liu S, Bai J, Jia Z, et al. Estimation of evapotranspiration in the Mu Us Sandland of China.[J]. Hydrology& Earth System Sciences.2010,14(3).
    [83]李保国,黄峰.1998-2007年中国农业用水分析[J].水科学进展.2010,21(04):575-583.
    [84]许迪,刘钰,李益农等.现代灌溉水管理发展理念及改善策略研究综述[J].水利学报.2008,39(10):1204-1212.
    [85]Sakthivadivel R, De Fraiture C, Molden D J, et al. Indicators of land and water productivity in irrigated agriculture[J]. International Journal of Water Resources Development.1999,15(1-2):161-179.
    [86]董斌,崔远来,李远华.水稻灌区节水灌溉的尺度效应[J].水科学进展.2005,16(6):833-839.
    [87]雷志栋,胡和平,杨诗秀.关于提高灌溉水利用率的认识[J].中国水利.1999(07):13-14.
    [88]李远华,赵金河,张思菊等.水分生产率计算方法及其应用[J].中国水利.2001(08):65-66.
    [89]崔远来,董斌,邓莉.漳河灌区灌溉用水量及水分生产率变化分析[J].灌溉排水.2002,21(4):4-8.
    [90]崔远来,董斌,李远华.水分生产率指标随空间尺度变化规律[J].水利学报.2006,37(1):45-51.
    [91]谢先红,崔远来.典型灌溉模式下灌溉水利用效率尺度变化模拟[J].武汉大学学报:工学版.2009,42(5):653-656.
    [92]谢先红,崔远来.灌溉水利用效率随尺度变化规律分布式模拟[J].水科学进展.2010,21(5):681-689.
    [93]陈超,于强,王恩利等.华北平原作物水分生产力区域分异规律模拟[J].资源科学.2009(09):1477-1485.
    [94]操信春,吴普特,王玉宝等.中国灌区水分生产率及其时空差异分析[J].农业工程学报.2012,28(13):1-7.
    [95]闫娜娜,吴炳方,杜鑫.农田水分生产率估算方法及应用[J].遥感学报.2011,15(2):298-312.
    [96]Chapagain A K, Hoekstra A Y. Water footprints of nations[R].,2004.
    [97]Zwart S J, Bastiaanssen WGM,De Fraiture C, et al. A global benchmark map of water productivity for rainfed and irrigated wheat[J].2010,97(10):1617-1627.
    [98]Zwart S J, Bastiaanssen W G M, De Fraiture C, et al. WATPRO:A remote sensing based model for mapping water productivity of wheat[J].2010,97(10):1628-1636.
    [99]Cai X L, Sharma B R. Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin[J].2010,97(2):309-316.
    [100]梅方权,吴宪章,姚长溪等.中国水稻种植区划[J].中国水稻科学.1988(03):97-110.
    [101]Yu Y, Huang Y, Zhang W. Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management[J].2012,136(0):65-75.
    [102]Xiong W, Holman I, Conway D, et al. A crop model cross calibration for use in regional climate impacts studies[J]. Ecological Modelling.2008,213(3):365-380.
    [103]辽宁省统计局.辽宁统计年鉴-1993-2011[M].北京:中国统计出版社,1993-2011.
    [104]吉林省统计局.吉林统计年鉴-1997-2011[M].北京:中国统计出版社,1997-2011.
    [105]黑龙江省统计局.黑龙江统计年鉴-1993-2011[M].北京:中国统计出版社,1993-2011.
    [106]王福民,黄敬峰,王秀珍.基于穗帽变换的TM影像水稻面积提取[J].中国水稻科学.2008(03):297-301.
    [107]吴黎,张有智,解文欢等.基于TM的混合分解模型提取水稻种植面积研究[J].农机化研究.2013(02):44-47.
    [108]刘荣高,刘洋,刘纪远.MODIS科学数据处理研究进展[J].自然科学进展.2009(02):141-147.
    [109]冉有华,李新,卢玲.四种常用的全球lkm土地覆盖数据中国区域的精度评价[J].冰川冻土.2009(03):490-500.
    [110]夏双,阮仁宗,佘远见等.基于C4.5算法的遥感影像分类[J].地理空间信息.2012(04):89-91.
    [111]Oki T, Kanae S. Global hydrological cycles and world water resources[J]. science.2006,313(5790): 1068-1072.
    [112]Vor6smarty C J, Federer C A, Schloss A L. Potential evaporation functions compared on US watersheds: Possible implications for global-scale water balance and terrestrial ecosystem modeling[J]. Journal of Hydrology. 1998,207(3):147-169.
    [113]Zhao M, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. science.2010,329(5994):940-943.
    [114]Trenberth K E, Fasullo J T, Kiehl J. Earth's global energy budget.[J]. Bulletin of the American Meteorological Society.2009,90(3).
    [115]Vorosmarty C J, Mcintyre P B, Gessner M O, et al. Global threats to human water security and river biodiversity[J]. Nature.2010,467(7315):555-561.
    [116]Los S O, Pollack N H, Parris M T, et al. A global 9-yr biophysical land surface dataset from NOAA AVHRR data[J]. Journal of Hydrometeorology.2000,1(2):183-199.
    [117]Justice C O, Townshend J, Vermote E F, et al. An overview of MODIS Land data processing and product status[J]. Remote sensing of Environment.2002,83(1):3-15.
    [118]Nishida K, Nemani R R, Glassy J M, et al. Development of an evapotranspiration index from Aqua/MODIS for monitoring surface moisture status[J]. Geoscience and Remote Sensing, IEEE Transactions on. 2003,41(2):493-501.
    [119]Gowda P H, Chavez J L, Colaizzi P D, et al. ET mapping for agricultural water management:present status and challenges[J]. Irrigation science.2008,26(3):223-237.
    [120]Stewart J B, Kustas W P, Humes K S, et al. Sensible heat flux-radiometric surface temperature relationship for eight semiarid areas[J]. Journal of Applied Meteorology.1994,33(9):1110-1117.
    [121]孙志刚.应用MODIS遥感信息的农田耗水过程模拟研究[D].中国科学院地理科学与资源研究所,2004.
    [122]Kim H W, Hwang K, Mu Q, et al. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia[J]. KSCE Journal of Civil Engineering.2012,16(2):229-238.
    [123]Dawson T E, Burgess S S, Tu K P, et al. Nighttime transpiration in woody plants from contrasting ecosystems[J]. Tree Physiology.2007,27(4):561-575.
    [124]Clothier B E, Clawson K L, Pinter Jr P J, et al. Estimation of soil heat flux from net radiation during the growth of alfalfa[J]. Agricultural and Forest Meteorology.1986,37(4):319-329.
    [125]Kustas W P, Daughtry C S. Estimation of the soil heat flux/net radiation ratio from spectral data[J]. Agricultural and Forest Meteorology.1990,49(3):205-223.
    [126]Daughtry C, Kustas W P, Moran M S, et al. Spectral estimates of net radiation and soil heat flux[J]. Remote sensing of environment.1990,32(2):111-124.
    [127]Jacobsen A. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas[J]. International Journal of Remote Sensing.1999,20(2):445-461.
    [128]Running S W, Nemani R R, Heinsch F A, et al. A continuous satellite-derived measure of global terrestrial primary production[J]. Bioscience.2004,54(6):547-560.
    [129]Thornton P E. Regional ecosystem simulation:combining surface-and satellite-based observations to study linkages between terrestrial energy and mass budgets[D]. The University of Montana,1998.
    [130]Landsberg J J, Gower S T. Applications of physiological ecology to forest management[M]. Academic Press,1997.
    [131]Zhao M, Heinsch F A, Nemani R R, et al. Improvements of the MODIS terrestrial gross and net primary production global data set[J]. Remote sensing of Environment.2005,95(2):164-176.
    [132]Kelliher F M, Leuning R, Raupach M R, et al. Maximum conductances for evaporation from global vegetation types[J]. Agricultural and Forest Meteorology.1995,73(1):1-16.
    [133]Schulze E, Kelliher F M, Korner C, et al. Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition:a global ecology scaling exercise[J]. Annual Review of Ecology and Systematics.1994,25(1):629-662.
    [134]White M A, Thornton P E, Running S W, et al. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model:net primary production controls.[J]. Earth interactions.2000,4(3):
    [135]Griend A A, Owe M. Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions[J]. Water Resources Research.1994,30(2):181-188.
    [136]Wallace J S, Holwill C J. Soil evaporation from tiger-bush in south-west Niger[J]. Journal of Hydrology. 1997,188:426-442.
    [137]Choudhury B J, Digirolamo N E. A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data I. Model description and comparison with observations[J]. Journal of Hydrology.1998,205(3):164-185.
    [138]王介民,高峰.关于地表反照率遥感反演的几个问题[J].遥感技术与应用.2004(05):295-300.
    [139]Liang S. Narrowband to broadband conversions of land surface albedo I:Algorithms[J]. Remote Sensing of Environment.2001,76(2):213-238.
    [140]Hill M J, Senarath U, Lee A, et al. Assessment of the MODIS LAI product for Australian ecosystems[J]. Remote Sensing of Environment.2006,101(4):495-518.
    [141]陈玉民,郭国双,王广兴等.中国主要作物需水量与灌溉[M].北京:水利电力出版社,1995.
    [142]王韶华,刘文朝,刘群昌.三江平原农业需水量及适宜水稻种植面积的研究[J].农业工程学报.2004,20(4):50-53.
    [143]中国气象局,国家气象信息中心.中国气象科学数据共享服务网[Z].
    [144]程乾.基于MOD13产品水稻遥感估产模型研究[J].农业工程学报.2006(03):79-83.
    [145]黄耀欢,江东,王建华.基于蒸散的水资源利用效率与效益评价[M].北京:气象出版社,2012.
    [146]Cai X, Rosegrant M W. World Water Productivity:Current Situation and Future Options[M]. Water Productivity in Agriculture:Limits and Opportunities for Improvement, CAB International,2003,163-178.
    [147]迟道才,王殿武.北方水稻节水理论与实践[M].北京:中国农业科学技术出版社,2003.
    [148]Dong B, Loeve R, Li Y H, et al. Water productivity in the Zhanghe irrigation system:issues of scale[M]. Proceedings of an International Workshop in Water-saving Irrigation for Rice, Barker R, Loeve R, Li Y H, et al, Wuhan, China:2001,97-115.
    [149]Zwart S J, Bastiaanssen W G M. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize[J].2004,69(2):115-133.
    [150]Bethune M, Austin N, Maher S. Quantifying the water budget of irrigated rice in the Shepparton Irrigation Region, Australia[J].2001,20(3):99-105.
    [151]Mishra H S, Rathore T R, Pant R C. Effect of intermittent irrigation on groundwater table contribution, irrigation requirement and yield of rice in Mollisols of the tarai region[J]. Agricultural Water Management.1990, 18(3):231-241.
    [152]Singh K B, Gajri P R, Arora V K. Modelling the effects of soil and water management practices on the water balance and performance of rice[J]. Agricultural water management.2001,49(2):77-95.
    [153]Cabangon R J, Tuong T P, Abdullah N B. Comparing water input and water productivity of transplanted and direct-seeded rice production systems[J]. Agricultural Water Management.2002,57(1):11-31.
    [154]Nwadukwe P O, Chude V O. Manipulation of the irrigation schedule of rice (Oryza sativa L.) as a means of maximizing water use efficiency and irrigation efficiency in the semi-arid tropics[J]. Journal of Arid Environments.1998,40(3):331-339.
    [155]Bhuiyan S I, Sattar M A, Khan M. Improving water use efficiency in rice irrigation through wet-seeding[J]. Irrigation Science.1995,16(1):1-8.
    [156]Roel A, Heilman J L, Mccauley G N. Water use and plant response in two rice irrigation methods[J]. Agricultural water management.1999,39(1):35-46.
    [157]Mahajan, Bharaj, Timsina. Yield and water productivity of rice as affected by time of transplanting in Punjab, India[J]. Agricultural Water Management .2009,96:525-532.
    [158]Singh R, Van Dam J C, Feddes R A. Water productivity analysis of irrigated crops in Sirsa district, India[J].2006,82(3):253-278.
    [159]Ahmad M D, Masih I, Turral H. Diagnostic analysis of spatial and temporal variations in crop water productivity:A field scale analysis of the rice-wheat cropping system of Punjab, Pakistan[J].2004,39(1):43-63.
    [160]侯忠诚,张思平.前郭灌区第二灌区在水源取水中存在的问题及对策[J].吉林水利.2002(12):27-29.
    [161]刘维谦.拉林灌区中型水库坝体迎水坡破坏原因分析及最大坍塌宽度预测[J].东北水利水电.1989(07):34-38.
    [162]巩楠,许晗,孙平.辽宁省营口灌区存在的主要问题[C].2011.
    [163]彭世彰.水稻节水灌溉技术[M].郑州:黄河水利出版社,2012.
    [164]De Wit C T. Transpiration and crop yields.[J]. Versl. Landbouwk. Onderz.64.6.1958:1-88.
    [165]Bierhuizen J F, Slatyer R O. Effect of atmospheric concentration of water vapour and CO< sub> 2 in determining transpiration-photosynthesis relationships of cotton leaves[J]. Agricultural Meteorology.1965,2(4):259-270.
    [166]Sinclair T R, Tanner C B, Bennett J M. Water-use efficiency in crop production[J]. BioScience.1984, 34(1):36-40.
    [167]Stanhill G. The relationship between climate and the transpiration and growth of pastures. [C].1960.
    [168]Keller A, Keller J, Seckler D. Integrated water resource systems:Theory and policy implications[M]. IWMI,1996.
    [169]李会昌.水分与产量关系的研究与评述[J].河北水利科技.1998(02):14-19.
    [170]茆智,崔远来,李新健.我国南方水稻水分生产函数试验研究[J].水利学报.1994(09):21-31.
    [171]迟道才,王瑄,夏桂敏等.北方水稻动态水分生产函数研究[J].农业工程学报.2004(03):30-34.
    [172]付强,王立坤,门宝辉等.三江平原井灌水稻水分生产函数模型及敏感指数变化规律研究[J].节水灌溉.2002(04):1-3.
    [173]缴锡云,彭世彰Jensen模型敏感指数出现负值的原因及解决方法[J].沈阳农业大学学报.2004(Z1):439-442.
    [174]中华人民共和国水利部.《灌溉试验规范》[S].2004.
    [175]张旭东,陈伟,迟道才等.阶段亏水条件下水稻产量及水分生产率的通径分析[J].灌溉排水学报.2012,31(1):127-131.
    [176]蔡甲冰,刘钰,许迪等.基于通径分析原理的冬小麦缺水诊断指标敏感性分析[J].水利学报.2008,39(01):83-90.
    [177]郑健,蔡焕杰,王健等.日光温室西瓜产量影响因素通径分析及水分生产函数[J].农业工程学报.2009,25(10):30-34.
    [178]邢文刚,陈立娜,邵光成等.控制排水条件下水稻产量影响指标敏感性的通径分析[J].灌溉排水学报.2010,29(03):41-45.
    [179]崔党群,林德光.通径分析的矩阵算法[J].生物数学学报.1994(01):71-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700