用户名: 密码: 验证码:
南方丘陵季节性干旱区节水稻作综合效应研究及效益评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水资源与粮食生产发展的关系密切,如何提高农业生产中的水分生产力已成为21世纪人类面临的巨大挑战。我国是一个淡水资源严重短缺的国家,粮食安全始终是我国国家安全的重要内容。农业是用水大户,水资源压力与危机进一步加大,正成为制约我国农业发展的重要因素。
     南方丘陵区是我国重要稻米产区之一,季节性干旱的出现,致使水稻生产用水供给不足,严重阻碍水稻生产。而且水资源又具有区位固定性、不可替代性等特征,不像其它资源可以通过进口替代来缓解压力。因此,研究和开发节水农业,特别是节水的稻作农业,发展水稻节水生产,不但在很大程度上节约水资源,而且有利于增产稳产,节约能源和减少环境污染,对水资源日益短缺、人口压力巨大、又以稻米为主食的中国21世纪“稻米安全”具有特殊重要的战略意义。
     因此,探明节水稻作技术的生理生态特征和节水稻作模式的生态环境效应,建立适合于南方丘陵区季节性干旱地区的节水稻作技术与模式,旨在为该区稻作持续稳产高产高效优质生产和节约高效利用水资源提供理论依据。本研究以不同节水稻作技术和节水稻作模式为研究对象,在大田和防雨棚池栽条件下系统开展了节水稻作条件下水稻生理生态效应及技术体系集成、节水高效新型稻作模式生态环境效应及稻作模式的综合效益评价模型三方面研究。主要研究结果如下:
     1.阐明了节水条件下不同水稻品种产量效应及水分利用效率及节水对水稻产量构成和稻米品质影响。结果表明在早稻、中稻、晚稻节约用水分别达10%、28%、26%条件下,与其对照相比,引种早稻品种中旱27、中稻品种武运粳7号和两优培九、晚稻品种农香16和中香1号具有较高的经济与生态效益,在该区具有广阔的前景。节水灌溉对中稻与晚稻的生长和稻米品质的影响表现出一致性。与常规灌溉模式相比,节水灌溉下虽然水稻有效穗降低,有的甚至达到显著差异,但是每穗颖花数、结实率和千粒重的增加,弥补有效穗降低不足,因此产量变化未达到显著差异。节水灌溉条件下糙米率、精米率、整精米率、胶稠度、碱消值、直链淀粉等性状提高,而垩白率、垩白度、蛋白含量降低和稻米粒型变小。
     2.明确了控制灌溉下水稻密度与氮肥互作对其光合特性、稻谷产量及产量结构的影响。中稻试验结果表明,随着密度的增加,孕穗期前,控制灌溉水稻群体净光合速率增加,但孕穗期后,高密度大群体净光合速率衰退较快,与此同时,高密度大群体剑叶光合速率、穗粒数、结实率及千粒重较低;随着施氮量的增加,水稻群体净光合速率、剑叶光合速率、叶绿素含量、单位面积穗数及穗粒数增加,而结实率与千粒重降低。在本研究条件下,控制灌溉中稻水稻栽插密度为28.13万穴/ha、施氮量225kg/ha时,其产量最高,达10299kg/ha;控制灌溉晚稻栽插密度为32.14万穴/ha、施氮量225kg/ha时,其产量最高,达6537 kg/ha。
     3.揭示了不同水分胁迫程度下水稻产量构成因子及叶片生理性状指标相对值变化规律。大田试验结果表明,在轻度水分胁迫下,虽然有效穗数降低,但每穗颍花数和结实率增加能够弥补有效穗数降低不利因素,因此产量没有显著降低。在重度水分胁迫下,不仅有效穗数降低,而且每穗颍花数和结实率也降低,产量则显著下降。适当水分胁迫,能够不降低水稻的产量,大大节约灌溉水量,提高水稻水分利用效率,试验提出以-30kPa土水势为该区水稻节水灌溉控制标准。防雨棚池栽试验结果表明,在适宜土壤水分胁迫下,即土水势高于-30kPa,丙二醛(MDA)含量、细胞质膜透性、可溶性糖含量和游离氨基酸含量、SOD、CAT、POD含量相对值有所升高,当土壤水分低于灌溉下限复水至土壤饱和时,有所恢复,随着生育时期延长,变化趋势平稳,这说明叶片本身存在一定对干旱胁迫适应与调节能力。当水势低于-30kPa时,丙二醛(MDA)含量、细胞质膜透性、可溶性糖含量和游离氨基酸含量、SOD、CAT、POD含量相对值显著升高,抗旱性强品种的丙二醛(MDA)含量、细胞质膜透性增加或升高幅度小,抗旱性强品种可溶性糖含量和游离氨基酸含量、SOD、CAT、POD含量增加或升高幅度大。花后16天,细胞质膜透性、可溶性糖含量和游离氨基酸含量、SOD、CAT、POD含量相对值降低。
     4.阐明了节水稻作模式生态系统的物流、能流、价值流及生态环境效应。结果表明,节水稻作模式的净初级生产力为3.10×10~5-3.78×10~5MJ/(ha·yr),以化肥为主的辅助能投入为0.59×10~5-0.97×10~5MJ/(ha·yr),纯收入为484-1166美元/(ha·yr)。不同节水稻作模式所表现出的变化特征为:采用节水灌溉双季稻模式,有利于减少系统化肥、农药、人工等能量投入,增加系统能量的输出,提高能量转换效率、光能利用效率和稻田的经济效益;采用水旱轮作双季稻节水稻作模式,有机肥的投入增加,能流循环指数提高,系统稳定性增强,但能量转换效率下降,稻田的经济效益有所降低;采用稻油轮作节水稻作模式,在减少系统化肥、农药、人工等能量投入同时,充分利作物生长期间太阳辐射,光能利用效率提高,稻田的经济效益增加。与常规稻作模式相比,节水稻作模式的综合效益较高,具有较好节肥、省药效应以及控制农业面源污染效应。
     5.揭示了节水稻作模式需水规律和稻田水分利用效率。结果表明,节水稻作模式通过对水稻和油菜等作物产生的生长调控作用和补偿生效应,使植株蒸腾量、棵间蒸发量及稻田渗漏量大幅降低,各阶段的需水量、需水强度和需水模系数均发生显著变化,形成了稻作模式新的需水规律。与常规双季模式相比,节水灌溉双季稻模式、水旱轮作双季稻模式、稻油轮作模式的需水强度分别减少了0.76mm/d、1.15 mm/d、0.32mm/d,渗漏强度分别减少了0.12mm/d、0.16 mm/d、0.19 mm/d,水分利用效率提高了30%、48%、18%,作物需水与降雨耦合度分别提高了14%、33%、6%。
     6.阐明了节水稻作模式下土壤理化性状、土壤微生物特性及土壤酶活性变化规律。结果表明,与该区常规稻作模式相比,在试验设计范围内,节水稻作模式下稻田的土壤理化性状明显改善,随着耕种年限增加,土壤容重下降,而孔隙度增加,土壤通透性增强,有效阻止土壤次生潜育化和土壤酸化,提高了土壤pH值;采用节水稻作模式实现了土壤水分轻度亏缺,这种轻度水分亏缺不仅可以提供生命所必需的水分,而且可以有效地改善土壤的通气状况,为微生物的生命活动提供了良好环境,因此土壤微生物菌落总数的显著增加,其中以水旱轮作双季稻模式最佳;就土壤酶活性而言,节水稻作模式处理酶活性常规稻作模式相比,除转化酶外,其它酶活性均有不同程度的增加,尤其对磷酸酶与脲酶影响最大;主成分分析和相关分析表明,土壤脲酶、磷酸酶和过氧化氢酶活性与土壤化学性质显著相关,可以作为评价土壤肥力水平的指标,主成分分析能够客观地评价土壤肥力水平。
     7.构建了节水稻作模式综合效益评价模型与评价指标体系。针对南方丘陵区季节性干旱状况和稻作发展的基本特点,以节水稻作模式为研究对象,借鉴层次分析法(AHP)的基本原理,遵循科学、实用及简明的原则,构建了南方丘陵区节水稻作模式综合效益评价模型,提出了综合效益评价的经济效益、生态环境效益和社会效益三方面共16项评价指标。并以国家“863”项目推广示范的节水灌溉双季稻模式、水旱轮作双季稻模式、稻油轮作模式三种节水稻作模式和当地常规双季稻模式为例,利用所建模型进行了综合评价。结果表明,三种节水稻作模式的综合效益均优于该区常规稻作模式,以稻油轮作模式综合效益最高,因此在南方丘陵季节性干旱双季稻区适当发展稻油轮作节水稻作模式具有良好的前景。评价结果可为南方丘陵季节性干旱区水资源高效利用和稻作持续健康发展提供了理论依据。
Distribution of precipitation is inconsistent and asynchronous with evaporation, creating conditions for severe summer and autumn droughts in the hilly region of southern China. Jiangxi Province is located in a hilly region of southern China, where seasonal drought regions are widely distributed. High temperatures have caused severe drought during the past fifty years. The drought disaster-affected acreage of rice was 0.63×10~6 ha in 2003. Seasonal drought often seriously affects rice production due to water stress. As a result, it is necessary to set up new water-saving rice cultivation systems to increase water use efficiency and reduce yield loss caused by drought. The physiology-ecological effect and technology integration of water-saving rice cropping, the feature of ecosystem function and eco - environmental effect of water-saving rice cultivation patterns, and synthetic evaluation mode of water-saving rice cultivation patterns were studied in the field experiment and trough cultivation experiment in this research. This research would lend itself to prove up more construction and function of water-saving rice cultivation systems, and set up sustainable water-saving rice cultivation systems. This research has the potential to aid in sustainable development and effective production of rice cultivation and optimum use of water in seasonal droughts hilly region of southern China. The results are as follows:
     The biological characteristics of introducing rice cultivars under condition of water-saving and effects of water-saving irrigation on rice growth and grain quality were studied by using 12 introducing rice cultivations and 3 local rice cultivations as material in the seasonal drought hilly region of southern China. The results showed the early rice, mid-season rice and late rice was under the condition of 10%, 28%, and 26% water-saving respectively, the introducing early rice cultivar Zhanghan 27, mid-season rice cultivar Liangyoupeijiu and Wuyunjing 7, late rice cultivar Nongxiang 16 and Zhongxiang 1 had higher economic benefit and ecological benefit, and had a bright prospect of application in the region. The effective panicle number and plant length in water-saving irrigation was lower than that in common irrigation, but the spikelet length, No. of spikelet per plant, seed setting rate and 1000-grain weight in water-saving was higher than that in common irrigation. Among which effects of water-saving irrigation on the effective panicle number, plant length and No. of spikelet per plant had notable discrepancy in some rice cultivars. Comparing with the common irrigation, the brown rice rate, milled rice rate, head rice rate, gel consistency, amylose content and alkali-spreading value was increased, but length/width, chalky grain rate and chalkiness was decreased. Therefore the rice grain quality could be improved in water-saving irrigation.
     The effect of amount of nitrogen and planting density on canopy apparent photo synthetic (CAP) rate, photosynthetic rate and chlorophyll content in flag leaves, yield components and grain yields were studied with indica hybrid rice Liangyoupeijiu in intermission irrigation in southern China seasonal drought hilly region. The results were as follows: as the increment of density, canopy apparent photosynthetic (CAP) rate increased before anthesis and decreased quickly during grain filling. Meanwhile photosynthetic rate in flag leaves, grain number per panicle, seed setting rate and 1000-grain weight decreased. As the increment of amount of nitrogen, canopy apparent photosynthetic (CAP) rate, photosynthetic rate and chlorophyll content in flag leaves, panicle number and grain number per panicle increased. But seed setting rate and 1000-grain weight increased. The result showed that the tiptop output of mid-season rice was 10299 kg/ha when the transplanting density was 281.3 thousand hills/ha and the applying amount N-fertilizer is 225kg/ha in controlling irrigation.
     In order to investigate the effects of drought tolerance on the yield, component factors, as well as water productivity of rice, the field experiment and trough cultivation experiment with rain-proof shelter were carried out in 2003 and 2004. The results followed that: irrigation when the soil water potential was higher than -30kPa had no significant effect on yield however would greatly save irrigation water and improve water productivity. It would be the optimal rice irrigation regime rice in this area. Meanwhile trough cultivation experiment with rain-proof shelter was carried out to investigate the effects of different water stress on the relative values of MDA, plasmalemma permeability, osmoregulation substances, protective enzyme activity. The results indicated that the relative values of MDA, plasmalemma permeability, soluble sugar, amino acid, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in leaves increased and then decreased after rewatering to saturated soil under optimal water stress (the soil water potential was higher than -30kPa). The change trend became stable with the advance of growth stage. When the soil water potential was below -30kPa, the relative values of MDA, plasmalemma permeability, soluble sugar, amino acid, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in leaves significantly increased, increases of MDA and plasmalemma permeability in better drought resistant cultivars were obvious less than those in weaker drought resistant ones, and increases of soluble sugar, amino acid, activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD in better drought resistant cultivars were obvious more than those in weaker drought resistant ones, and plasmalemma permeability, soluble sugar, amino acid, and activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased from16 days to 40days after anthesis. These results suggest that water stress can induce physiological and biochemical changes in rice and changes of MDA content, plasmalemma permeability, osmotic regulators and antioxidative enzyme activities are correlated significantly to drought resistance of rice varieties.
     Based on field investigation and experimental data analysis, ecological economic principles were applied to study the material flow, energy flow, value flow and ecological environmental benefits of water-saving rice cultivation systems. The results showed that the net production and economical production in the three types of water-saving rice cultivation systems were 3.10×l0~5 to 3.78×10~5MJ/( ha·yr) and 1.77×10~5 to 1.98×10~5 MJ/ (ha·yr), respectively. The major input of energy was for fertilizers, which were 0.59×10~5 to 0.97×10~5 MJ/ (ha·yr). The output-input ratios of energy and light utilization efficiency of rice fields were 3.22 to 6.45:1 and 0.64 to 0.78, respectively. The net monetary values were 484 to 1166 dollar/ (ha·yr) and the cost-benefit ratios were 0.34 to 0.88. Higher energy conversion efficiency, light utilization efficiency, and economic efficiency were found in the water-saving irrigation double-cropping rice cultivation system and water-saving rice cultivation system of rice and rape rotation. However, the lower energy conversion efficiency and economic efficiency took place in water-saving rice cultivation system of flood-drought cultivation. The water-saving rice cultivation systems had a higher integral benefit than the local rice cultivation system, and could significantly save water and decrease the application of fertilizer and pesticide so that it could control agriculture non-point resource pollution.
     Study of water-demand regulations and water use efficiencies under condition of different water-saving rice cultivation patterns were carried by field-scale experiments. The results obtained showed that the evapotranspiration of rice or rape reduced by a wide margin, the water requirement, requirement intensity and coefficient of every stage changed greatly for the growth regulation function and compensation effect to crop of water-saving rice cultivation patterns. Thus, the new water requirement rules of water-saving rice cultivation patterns were formed. The water requirement intensities of the water-saving irrigation double cropping rice pattern, the double cropping rice pattern of flood-drought cultivation, and water-saving rice cultivation pattern of rice and rape rotation were 0.76mm/d、1.15 mm/d、0.32 mm/d lower than those of the conventional double cropping rice pattern, respectively. The leakage intensities of the water-saving irrigation double cropping rice pattern, the double cropping rice pattern of flood-drought cultivation, and water-saving rice cultivation pattern of rice and rape rotation were 0.12mm/d、0.16 mm/d、0.19 mm/d lower than those of the conventional double cropping rice pattern, respectively. The WUE of the water-saving irrigation double cropping rice pattern, the double cropping rice pattern of flood-drought cultivation, and water-saving rice cultivation pattern of rice and rape rotation was 30%, 48%, and 18% higher than that of the conventional double cropping rice pattern, respectively.
     Environment of cultivated land has been influenced unfavorably by single continuous cropping in paddy field, and seasonal drought often seriously affects rice production due to water stress. The soil physical and chemical characteristics, soil microorganism and soil enzyme activity of water-saving rice cultivation patterns were studied in the field experiment of five years in this paper. The results showed that, water-saving rice cultivation patterns had improved soil physical and chemical characteristics apparently. Water-saving rice cultivation patterns could not only provide water indispensable to life, but also ameliorate the condition of soil water content and ventilation. Soil microorganisms multiplied, and the double cropping rice pattern of flood-drought cultivation was best among all the water-saving rice cultivation patterns. The activities of catalase, phosphatase, urease, polyphenoloxidase were higher than those of the conventional double cropping rice pattern. The correlation and principal component analysis showed that soil urease, alkaline phosphatase activities, and catalase activities could be as a comprehensive index of soil fertility, and their enzyme activities were affected by soil chemical properties and other enzymes. Soil fertility could be evaluated objectively by principal component analysis.
     Research of water-saving rice cultivation patterns integrated benefit evaluation is a core problem concerning development of paddy field agriculture, soil and water environmental protection as well as coordinated economic and eco-environmental development. Based on the current situation of seasonal droughts hilly region of southern China, applying analytic hierarchical process theory, this paper established the mathematical model and indicators system for integrated benefit evaluation for water-saving rice cultivation patterns by taking the demonstration patterns of water-saving rice cultivation in the native "863" special project as a research project. The evaluation indictors system was proposed based on characteristics and principles of scientific, practical and concise. The indicators system included three aspects such as economic benefit, social and eco-environmental benefit and systematically reflects the features of water-saving rice cultivation patterns. The evaluating model and the indicators system were applied to evaluate synthetically the integrated benefit of water-saving rice cultivation patterns in seasonal droughts hilly region of southern China. The evaluation results showed that The integrated benefits of the water-saving irrigation double cropping rice pattern, the double cropping rice pattern of flood-drought cultivation, and water-saving rice cultivation pattern of rice and rape rotation was higher than that of the conventional double cropping rice pattern, especially of water-saving rice cultivation pattern of rice and rape rotation. The evaluation model played an important role in the evaluation and management of water-saving rice cultivation patterns in seasonal droughts hilly region of southern China.
引文
[1]武雪萍,梅旭荣,蔡典雄,等.节水农业关键技术发展趋势及国内外差异分析[J].中国农业资源与区划,2005,26(4):28-32
    [2]陈家宙,陈明亮,何圆球.不同水分状况下红壤水稻的水量平衡和成产能力[J].华中农业大学学报,2000,19(3):72-77
    [3]黄国勤,钱海燕.江西省近年来的农业自然灾害及其防治对策[J].灾害学,2005,20(2):61-65
    [4]江西省减灾委员会办公室.江西省减轻自然灾害白皮书[Z].2004
    [5]李玉林,杨梅,黄少平,等.江西省夏季干旱特征分析[J].应用气象学报,2003,14(增):161-169
    [6]陈正法,张茜茜.我国南方红壤区季节性干旱及对林果业的影响[J].农业环境保护,2002,21(3):241-244
    [7]水利部农村水利司,中国灌溉排水技术开发培训中心.水稻节水灌溉技术[M].北京:中国水利水电出版社,1998
    [8]王一凡,周毓洐.北方节水稻作[M].沈阳:辽宁科学技术出版社,2000
    [9]杨守仁.论水稻的半水生性.见:杨守仁水稻文选[M].沈阳:辽宁科学技术出版社,1998:33-41
    [10]Mackenzie A,Ball A s,Virdee R.Ecology(生态学一影印本)[M].北京:科学出版社,1999:31-39
    [11]曾广文,蒋德安.植物生理学[M].四川:成都科技大学出版社,1998:71-76
    [12]李永和.试论水稻灌溉节水的途径[J].灌溉排水,1997,16(3):45-47
    [13]陈玉民,孙景生,肖俊夫.节水灌溉的土壤水分控制标准问题研究[J].灌溉排水,1997,16(1):24-28
    [14]朱庭云.水稻灌溉的理论与技术[M].北京:中国水利水电出版社,1998
    [15]Bhagat R M,Bhuiyan S L,Moody K.Water,tillage and weed interactions in lowland tropical rice:a review[J].Agriculture Water Management,1996,31:165-184
    [16]Neue H U,Bloom P R.Nutrient kinetics and availability in flooded rice soils[C].Progress in irrigated rice research.Manlia Pilip:IRRI,1989:173-190.
    [17]潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展[J].植物学通报,1996,13(2):13-20
    [18]方荣杰,李远华,张明炫.非充分灌溉条件下水稻根系生长发育特征研究[J].中国农村水利水电(农田水利与小水电),1996,(8):11-14
    [19]Turner N.Plant water relational irrigation management[J].Agriculture Water Management,1990,17:59-73
    [20]陈进红,赵国平,陈志银.早稻旱育苗床的生态效应及秧苗的生长生理特性[J].浙江农业学报,1998(4):179-183
    [21]张玉屏,李金才,黄义德,等.水分胁迫对水稻根系生长和部分生理特性的影响[J].安徽农业科学,2001,29(1):58-59
    [22]Passioura J B.Roots and drought resistance[J].Agriculture Water Management,1983,7:265-280
    [23]杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究[J].中国农业科学,1995,28(5):65-72
    [24]王伟.植物对水分亏缺的某些生化反应[J].植物生理学通讯,1998,34(5):388-393
    [25]韦朝领,袁家明.植物抗逆的分子生物学研究进展[J].安徽农业大学学报,2000,27(2):204-208
    [26]梁光商.水稻生态学[M].北京:农业出版社,1983
    [27]陈家宙,陈明亮,何圆球.土壤水分状况及环境条件对水稻蒸腾的影响[J].应用生态学报,2001,12(1):63-67
    [28]金千瑜,欧阳由男.我国发展节水型稻作的若干问题探讨.中国稻米[J],1999,(1):9-12
    [29]梁永超,胡锋,杨茂成,等.水稻覆膜作高产节水机理研究[J].中国农业科学,1999,32(1):26-32
    [30]郑寨生,吴良欢,孔向军,等.水稻覆膜旱作高产栽培技术研究[J].上海农业学报,2000,16(3):55-60
    [31]张薇,司徒淞.吨粮田节水灌排调控指标研究[J].灌溉排水,1998,17(2):22-25
    [32]司徒淞,王和洲,张薇.中国水稻节水若干问题的探讨与建议[J].灌溉排水,2000,19(1):30-33
    [33]陈玉民,孙景生,肖俊夫.节水灌溉的土壤水分控制标准问题研究[J].灌溉排水,1997,16(1):24-28
    [34]Gregory P J,Simmonds L P,Pibeam C J.Soil type,climatic regime,and the response of water use efficiency to crop management[J].Agronomy Journal,2000,92:814-820
    [36]吴良欢,祝增荣,梁永超,等.水稻覆膜旱作节水节肥高产栽培技术[J].浙江农业大学学报,1999,25(1):41-42
    [37]黄义德,张自立,魏凤珍,等.水稻覆膜早作的生态生理效应[J].应用生态学报,1999,10(3):305-308
    [38]杨艳敏,刘小京,孙宏勇,等.早稻夏季地膜覆盖栽培的生态学效应[J].干旱地区农业研究,2000,18(3):50-53
    [39]张薇,司徒淞.稻田土壤水分优化调控技术研究[J].中国水稻科学,1995,9(4):211-216
    [40]彭世彰,俞双恩,张汉松,等.水稻节水灌溉技术[M].北京:中国水利水电出版社,1998.
    [41]Romeo J,Cabangon T P,Tuong.Management of cracked soils for water saving during land preparation for rice cultivation[J].Soil & Tillage Research,2000,56:105-116
    [42]Tabbal D F,Bouman B A M,Bhuiyan S I,et al.On-farm strategies for reducing water input in irrigated rice:case studies in the Philippines[J].Agricultural Water Management,2002,56:93-112
    [43]Cabangon R J,Tuon T P,Abdullah N B.Comparing water input and water productivity of transplanted and direct-seeded rice production systems[J].Agricultural Water Management,2002,57:11-31
    [44]余汉勇,魏兴华,王一平,等.优质早稻新品种中旱209的选育及应用[J].中国稻米,2005,1:20.
    [45]Bouman B A M,Peng S,Castanda A.R,et al.Yield and water use of irrigated tropical aerobic rice systems[J].Agricultural Water Management,2005,4:74-87.
    [46]王甲辰,刘学军,张福锁,等.不同土壤覆盖物对旱作水稻生长和产量影响[J].生态学报,2002,22(6):929-929
    [47]Tao H B,Brueck H,Dittert K,et al.Growth and yield formation of ricez(Oryza sativa L.) in the water-saving ground cover rice production system(GCRPS)[J].Field Crops Research,2006,95:1-12.
    [48]钱晓晴,沈其荣,徐勇,等.不同水分管理方式下水稻的水分利用效率与产量[J].应用生态学报,2003,14(3):399-404
    [49]廖敏,谢晓梅,吴良欢.水稻覆膜旱作对稻田土坡微生物生态质量的影响[J].中国水稻科学,2002,16(3):243-246
    [50]汪强,樊小林,刘芳,等.断根和覆盖旱作条件下水稻的产量效应[J].中国水稻科学,2004,18(5):437-442
    [51]盛海君,周春霖,沈其荣,等.秸秆覆盖下旱作水稻的生长发育特征研究[J].中国水稻科学,2004,18(1):53-58
    [52]任文涛,辛明金,林静,等.纸膜覆盖水稻种植技术节水控草的效果[J].沈阳农业大学学报, 2002,33(6):439-442
    [53]石英,沈其荣,冉炜.半腐解秸秆覆盖下旱作水稻对~(15)N的吸收和分配[J].中国水稻科学,2002,16(3):236-242
    [54]王一凡,周毓洐.北方节水稻作[M].沈阳:辽宁科学技术出版社,2000.
    [55]茆智.水稻节水灌溉及其对环境的影响[J].中国工程科学,2002,4(7):8-16
    [56]迟道才,林文华,朱庭芸,等.水稻节水灌溉技术的研究现状与发展趋势[J].垦殖与稻作,2003(5):39-41
    [57]迟道才,王宣.水稻节水高产灌溉模式及土壤水分能量调控标准研究[J].农业工程学报,2001,17(2):59-64
    [58]戴东.大力推广水稻“浅、蓄、晒、湿”高产节水灌溉技术[J].水利科技,2002,(4):19-20
    [59]林贤青,周伟军,朱德峰,等.稻田水分管理方式对水稻光合速率和水分利用效率的影响[J].中国水稻科学,2004,18(4):333-338
    [60]曾翔,李阳生,谢小立.不同灌溉模式对杂交水稻发育后期根系生理特性和剑叶光合特性的影响[J].中国水稻科学,2003,17(4):355-359
    [61]王绍华,曹卫星,姜东,等.水稻强化栽培对植株生理与群体发育的影响[J].中国水稻科学,2003,17(1):3I-36
    [62]田永超,曹卫星,姜东,等.不同水氮条件下水稻冠层发射光谱与叶片水势关系的研究[J].水土保持学报,2003,17(3):178-180
    [63]王笑影,梁文举,闻大中.间歇灌溉对北方水稻生理需水的影响[J].应用生态学报,2004,15(10):1911-1915
    [64]蔡一霞,朱庆森,王志琴,等.结实期土壤水分对稻米品质的影响[J].作物学报,2002,28(5):601-608
    [65]Saijo Y,Hata S,Kyozuka J,et al.Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J].The Plant Journal,2000,23(3):319-327
    [66]Price A H,Young E M,Tomos A D.Quantitative trait associated with stomata conductance,leaf rolling and heading date mapped in upland rice(Oryza sativa L.)[J].New phytol,1997,137:83-91.
    [67]Srivalli B,Sharma G,Khanna-Chopra R.Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery[J].Physiologia plantarum.2003,119:503-512
    [68]Vories E D.Production of water-seeded rice on a clay soil[J].Research Series,1996,453:271-274
    [69]程方民,张高午.水稻籽粒灌浆过程中稻米品质动态变化及温度影响效应[J].浙江大学学报.1999,25(4):347-350
    [70]程方民,钟连进,孙宗修.灌浆结实期温度对旱作水稻籽粒淀粉合成代谢的影响[J].中国农业科学,2003,36(5):492-501
    [71]Bao J S,Kong X L,Xie J K,el al.Analysis of Genotypic and Environmental Effects on Rice Starch.1.apparent Amylose content,pasting viscosity,and gel texture[J].Journal of agricultural and food chemistry.2004,52(19):6010-6016
    [72]刘鸿艳,邹桂花,罗利军,等.水分梯度下水稻CT,LWP和SF的相关及其QTL定位研究[J].科学通报,2005,50(1):130-139
    [73]Yang J C,Zhang J H,Ye Y X,et al.Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling[J].Plant,Cell and Environment.2004,27:1055-1064
    [74]Pantuwan G,Fukai S,Cooper M,et al.Yield response of rice(Oryza sativa L.) genotypes to drought under rainfed lowland.Ⅲ.Plant factors contributing to drought resistance[J].Field crop research,2002,73:181-200.
    [75]钱晓晴,沈其荣,王娟娟,等.全程与阶段非充分灌溉条件下水稻的生长及部分生理反应[J].土壤学报,2004,41(4):641-644
    [46]杨建昌,王国忠,王志琴,等.旱种水稻灌浆特性与灌浆籽粒中激素含量的变化[J].作物学报,2002,28(5):615-621
    [77]郑桂萍,郭晓红,陈书强,等.水分胁迫对水稻产量和食味品质抗旱系数的影响[J].中国水稻科学,2005,19(2):142-146
    [78]郑家国,任光俊,陆贤军,等.花后水分亏缺对水稻产量和品质的影响[J].中国水稻科学,2003,17(3):239-243
    [79]杨建昌,徐国伟,王志琴,等.旱种水稻结实期茎中碳同化物的运转及其生理机制[J].作物学报,2004,30(2):108-114
    [80]王维,张建华,杨建昌,等.水分胁迫对贪青迟熟水稻茎贮藏碳水化合物代谢及产量的影响.[J].作物学报,2004,30(3):196-204
    [81]蔡一霞,王维,张祖建,等.水旱种植下多个品种蒸煮品质和稻米RVA谱的比较性研究[J].作物学报,2003,29(4):508-513
    [82]蔡一霞,朱庆森,徐伟,等.结实期水分胁迫对水稻强、弱势粒主要米质性状及淀粉粘滞谱特征的影响[J].作物学报,2004,30(3):241-247
    [83]刘立军,袁莉民,王志琴,等.旱种水稻倒伏生理原因分析与对策的初步研究[J].中国水稻科学,2002,16(3):225-230
    [84]李东坡,武志杰.旱稻田苗后杂草化学防除技术研究[J].中国水稻科学,2002,16(4):378-380
    [85]田永超,曹卫星,王绍华,等.不同水氮条件下水稻不同叶位水、氮含量及光合速率的变化特征[J].作物学报,2004,30(11):1129-1134
    [86]Lafitte R.Relationship between leaf relative water content during reproductive stage water deficit and grain formation in rice[J].Field crop research,2002,76:165-174
    [87]王志琴,杨建昌,丁志豪,等.旱育秧水稻不同发育期灌溉指标的研究[J].江苏农业研究,1999.20(3):33-36
    [88]王志琴,杨建昌.土壤水分对水稻光合速率与物质运转的影响[J].中国水稻科学,1996,10(4):235-240
    [89]李亚龙,崔远来,李远华,等.以土水势为灌溉指标的水稻节水灌溉研究[J].灌溉排水学报,2004,23(5):14-16
    [90]王贵玲,蔺文静,陈浩.农业节水缓解地下水位下降效应的模拟[J].水利学报,2005,36(3):286-294
    [91]王笑影,梁文举,闻大中.北方稻田蒸散需水分析及其作物系数确定[J].应用生态学报,2005,16(1):69-72
    [92]王笑影,闻大中,梁文举.不同土壤水分条件下北方稻田耗水规律研究[J].应用生态学报,2003,14(6):925-929
    [93]胡继超,姜东,曹卫星,等.短期干旱对水稻叶水势、光合作用及干物质分配的影响[J].应用生态学报,2004,15(1):63-67
    [94]邓勋飞,张后勇.水稻叶水势与不同水分处理定量关系研究[J].浙江大学学报(农业与生命科学版).2005,31(5):581-586
    [95]刘巽浩,牟正国.中国耕作制度[M].北京:农业出版社,1993
    [96]沈荣开,任理,张瑜芳,等.夏玉米麦秸全覆盖下土壤水热动态的田间试验和数值模拟[J].水利学报.1997,2:14-21
    [97]张喜英,裴东,胡春胜.太行山前山前平原冬小麦和夏玉米灌溉指标研究.农业工程学报[J],2002,11(16):36-42
    [98]石玉林 封志明.开展农业资源高效利用研究[J].自然资源学报,1997,12(4):293-298
    [99]山仑,张岁岐.节水农业及其生物学基础[J].水土保持研究,1999,6(1):2-6,13
    [100]钟志明.河北景县节水农业潜力与综合技术模式研究[D].中国农业大学硕士学位论文,1999
    [101]王仰仁,杨丽霞.作物组合种植的需水量研究[J].灌溉排水,2000,4:64-67
    [102]Michael Popp,Patrick Manning,Paul Counce,et al.Rice-soybean rotations:Opportunities for enhancing whole farm profits or water savings[J].Agricultural Systems,2005,86:223-238。
    [103]程旺大,赵国平,王岳钧,等.浙江省发展水稻节水高效栽培的探讨[J].农业现代化研究,2000,21(3):197-200
    [104]Tuong T P,Bhuiyan S I.Increasing water-use efficiency in rice production:farm-level perspectives [J].Agricultural Water Management,1999,40:117-122
    [105]Bouman B A M,Tuong T P.Field water management to save water and increase its productivity in irrigated low land rice[J].Agricultural Water Management,2001,49:11-30
    [106]Chi D C,Wang X A,Zhu T Y,et al.Water saving and high yield irrigation models of rice and soil moisture potential control criteria[J].Transaction of the Chinese society of agricultural engineering,2001,17(2):59-64
    [107]齐学斌,庞鸿宾.节水灌溉的环境效应研究现状及研究重点[J].农业工程学报,2000,16(2):37-40
    [108]李远华,张祖莲,赵长友,等.水稻间歇灌溉的节水增产机理研究[J].中国农村水利水电,1998(11):12-15
    [109]徐华,邢兴熹,蔡祖聪,等.土壤水分状况和氮肥施用及品种对稻田N_2O排放的影响[J].应用生态学报,1999,10(20):186-188
    [110]杨艳敏,刘小京,孙宏勇,等.旱稻夏季地膜覆盖栽培的生态学效应[J].干旱地区农业研究,2000,18(3):50-53
    [111]Wassman R,Papen H,Rennenberg H.Methane emission from rice paddies and possible mitigation strategies[J].Chemosphere,1993,26:201-217
    [112]Flessa H,Beese F.Effects of sugar beet residues on soil redox potential and nitrous oxide emission [J].Soil Science Society of America Journal,1995,59:1044-1051
    [113]Zheng X H,Wang M X,Wang Y S,et al.Impacts of soil moisture on nitrous oxide emission from croplands:a case study on the rice-based agro-ecosystem in Southeast China[J].Chemosphere-Global Change Science,2000,2:207-224
    [114]韦鹤平.环境系统工程[M].上海:同济大学出版社,1993:183
    [115]朱荫湄.施肥与地面水富营养化[C].施肥与环境学术讨论会论文集.北京:中国农业科技出版社,1994,40-44
    [116]李荣刚,夏源陵,吴安之,等.太湖地区水稻节水灌溉与氮素淋失[J].河海大学学报,2001,29(2):21-25
    [117]Viets F G.Water deficits and nutrient availability[C].In Kozlowski T Ted.,Water Deficits and Plant Growth,1972,21-23
    [118]吴良欢,祝增荣,梁永超,等.水稻覆膜旱作节水节肥高产栽培技术[J].浙江农业大学学报,1999,25(1):41-42
    [119]Neue H U,Bloom P R.Nutrient kinetics availability in flooded rice soils[C].Progress irrigated rice research.Manila Philip:IRRI,1989,173-190
    [120]Patrick W H,Mikkelsen D S,Wells B R.Plant nutrient behavior in flooded soil[C].Fertilizer technology and used.Soil Science Society of America,Madison,Wisconsin,1985,197-228
    [121]杨建昌,朱庆森,王志琴.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,1996,29(4):58-66
    [122]祝增荣,吴良欢,吴国强,等.水稻覆膜旱作对病虫草害发生程度的影响[J].植物保护学报,2000,27(4):295-301
    [1]Bouman BAM.Water-efficient management strategies in rice production[J].International Rice Research Notes,2001,16(2):17-22
    [2]Bouman BAM,Tuong T P.Field water management to save water and increase its productivity in irrigated rice[J].Agriculture Water Management.2001,49:11-30
    [3]Geng S,Zhou Y,Zhang M,et al.A sustainable agro-ecological solution to water shortage in the North China Plain(Huabei Plain)[J].Journal of Environmental Planning and Management.2001,44:345-355
    [4]曾德慧,张春兴,王桂容,等.科尔沁沙地东部地区早稻品种引种及其生物学特性[J].应用生态学报,2004,15(10):1873-877
    [5]陈正法,张茜茜.我国南方红壤区季节性干旱及对林果业的影响[J].农业环境保护,2002,21(3):241-244
    [6]彭世彰,郝树荣,刘庆,等.节水灌溉水稻高产优质成因分析[J].灌溉排水,2000,(3):3-7
    [7]蔡一霞,朱庆森,王志琴,等.结实期土壤水分对稻米品质的影响[J].作物学报,2002,28(5):601-608
    [8]尤小涛,荆奇,姜东,等.水灌溉条件下氮肥对粳稻稻米产量和品质及氮素利用的影响[J].中国水稻科学,2006,20(2):199-204
    [9]杨建昌,袁莉民,唐成,等.结实期干湿交替灌溉对稻米品质及籽粒中一些酶活性的影响[J].作物学报,2005,31(8):1052-1057
    [10]Zhang J H,Sui X Z,.Lin B,et al.An improved water-use efficiency for winter wheat grown under reduced irrigation[J].Field Crop Research,1998,59:91-98
    [11]金从岭.水稻间歇灌溉制度示范与推广[J].中国农村水电水利,2003,6:64
    [12]李远华,张祖莲,赵长有,等.水稻间歇灌溉节水增产机理研究[J].中国农村水电水利,1998,11:12-15
    [13]杨守仁.水稻文选[M].沈阳:辽宁科学技术出版社,1998,284-290
    [14]Fumio N,Kousei T.On the photosynthetic characteristics of high yielding rice varieties[J].Japanese Journal of Crop Science,1990,59(1):72-79
    [15]董树亭.玉米花粒期群体光合性能与高产潜力研究[J].作物学报,1997,23(3):318-325
    [16]王宝英,张学.农作物高产的适宜土壤水分指标研究[J].灌溉排水,1996,15(3):35-39
    [17]杨建昌,王维,王志琴,等.水稻旱秧大田期需水特性与节水灌溉指标研究[J].中国农业科学, 2000,33(2):34-42
    [18]齐运田,苏仕华.水稻全程节水栽培技术[J].垦殖与稻作,2001,(2):16-18
    [19]曲廷才,邱凤安.非充分灌溉的理论依据及水稻节水灌溉技术在干旱地区生产实践中的应用[J].吉林水利,1996,1:31-33
    [20]Bouman BAM,Kropff M J,et al.modeling lowland rice[M].LosBanos(Philippines):International Rice Research Institute,and Wageningen University and Research Centre,2000,235
    [21]Boling A,Tuong T P.Effect of climate,agrohydrology,and management on rainfed rice production in Central Java,Indonesia:a modeling approach[M].LosBanos,Philippines:International Rice Research Institute,2000,5773
    [22]朱庆森,邱泽森,江长鉴,等.水稻各生育期低土壤水势对产量的影响[J].中国农业科学,1994,27(6):15-22
    [23]邱泽森,丁艳峰.土水势在水稻节水灌溉中的应用[J].江苏农业科学,1993,(2):5-8
    [24]迟道才,王瑄,张玉龙,等.水稻节水灌溉模式及土壤水分能量调控标准[J].灌溉排水学报,2003.22(4):39-42
    [25]李亚龙,崔远来,李远华,等.以土水势为灌溉指标的水稻节水灌溉研究[J].灌溉排水学报,2004.23(5):14-16
    [26]孙骏威,杨勇,黄宗安,等.聚乙二醇诱导水分胁迫引起水稻光合下降的原因探讨[J].中国水稻科学,2004,18:539-543
    [27]李长明,刘保国,任昌福,等.水稻抗旱机理研究[J].西南农业大学学报,1993,15:409-411
    [28]杨建昌,王志琴,朱庆森.水稻品种的抗旱性及其生理特性的研究[J].中国农业科学,1995,28(5):65-72
    [29]王贺正,马均,李旭毅,等.水稻开花期一些生理生化特性与品种抗旱性关系[J].中国农业科学,2007,40(2):399-404
    [30]吴大付,何园球.江西省余江县生态农业综合评价[J].土壤学报,2004,41(5):819-822
    [31]王明珠.我国南方季节性干旱研究[J].农村生态环境,1997,13(2):6-10
    [32]景元书,张斌,王明珠,等.鹰潭小流域季节性降雨径流特征研究[J].水土保持学报,2003,17(5):45-47
    [33]王熹,陶龙兴,黄效林,等.灌溉稻田水稻旱作技术要素及产量形成[J].中国农业科学,2004,37(4):502-509
    [34]董树亭.玉米花粒期群体光合性能与高产潜力研究[J].作物学报,1997,23(3):318-325
    [35]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [36]任红旭,陈雄,吴冬秀.CO_2浓度升高对干旱胁迫下蚕豆光合作用和抗氧化能力的影响[J].作物学报,2001,27:729-736
    [37]李亚龙,崔远来,李远华,等.以土水势为灌溉指标的水稻节水灌溉研究[J].灌溉排水学报,2004,23(5):14-16,49
    [38]艾天成,李芳敏,周志安,等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报,2000,20(1):6-8
    [39]梁新华,许兴,徐兆桢,等.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响[J].干旱地区农业研究,2001,19(3):72-77
    [40]郝建军,康宗利,于洋,等.植物生理学实验技术[M].北京:化学工业出版社,2007
    [41]王贺正,马均,李旭毅,等.水分胁迫对水稻结实期一些生理形状的影响[J].作物学报,32(12):1892-1897
    [42]程建平,曹凑贵,蔡明历,等.不同灌溉方式对水稻生物学特性与水分利用效率的影响[J].应用生态学报,2006,17(10):1895-1865.
    [43]迟道才,王碹,张玉龙,等.水稻节水高产灌溉模式及土壤水分能量调控标准研究[J].灌溉排水学报,2003,22(4):39-42
    [44]钱晓晴,沈其荣,徐勇,等.不同水分管理方式下水稻的水分利用效率与产量[J].应用生态学报,2003,14(3):399-404
    [45]王笑影,梁文举,闻大中.间歇灌溉对北方水稻生理生态需水的影响[J].应用生态学报,2004,15(10):1911-1915
    [46]Borrell A,Garside A,Fukai S.Improving efficiency of water use for irrigated rice in a semi-arid tropical environment[J].Field Crops Research,1997,52:231-248
    [47]Lu J,Ookawa T,Hirasawa T.The effects of irrigation regimes on the water use,dry matter production and physiological responses of paddy rice[J].Plant Soil,2000,233:207-216.
    [48]张祖莲,薛继亮.水稻间歇灌溉试验研究[J].节水灌溉,2001,6:23-25
    [49]赵全志,黄丕生,凌启鸿.水稻群体光合速率和茎鞘贮藏物质与产量关系的研究[J].中国农业科学,2001,34(3):304-310
    [50]王笑影,梁文举,闻大中.间歇灌溉对北方水稻生理需水的影响[J].应用生态学报,2004,15(10):1911-1915
    [51]蔡一霞,朱庆森,王志琴,等.结实期土壤水分对稻米品质的影响[J].作物学报,2002,28(5):601-608
    [52]王志琴,杨建昌,丁志豪,等.旱育秧水稻不同发育期灌溉指标的研究[J].江苏农业研究,1999.20(3):33-36
    [53]王志琴,杨建昌.土壤水分对水稻光合速率与物质运转的影响[J].中国水稻科学,1996,10(4):235-240
    [54]李亚龙,崔远来,李远华,等.以土水势为灌溉指标的水稻节水灌溉研究[J].灌溉排水学报, 2004,23(5):14-16
    [55]王贵玲,蔺文静,陈浩.农业节水缓解地下水位下降效应的模拟[J].水利学报,2005,36(3):286-294
    [56]王笑影,梁文举,闻大中.北方稻田蒸散需水分析及其作物系数确定[J].应用生态学报,2005,16(1):69-72
    [57]王笑影,闻大中,梁文举.不同土壤水分条件下北方稻田耗水规律研究[J].应用生态学报,2003,14(6):925-929
    [58]朱杭申,黄丕升.土壤水分胁迫与水稻活性氧代谢[J].南京农业大学学报,1994,17(2):7-11
    [59]蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响.植物生理与分子生物学学报,1991,17(1):80-84
    [60]石春海,吴建国,樊龙江,等.不同环境条件下稻米透明度的发育遗传分析[J].遗传学报,2002,29(1):56-61
    [61]石春海,吴建国,樊龙江,等.不同环境下籼稻糙米重的发育遗传研究(英文)[J].植物学报,2001,43(6):603-609
    [62]Shi C H,Zhu J,Wu J G,et al.Genetic and genotypexenvironment interactions effects from embryo,endosperm,cytoplasm and maternal plant for rice grain shape traits of indica rice[J].Field Crop Research,2000,68:191-198.
    [63]包劲松,何平,李仕贵,等.异地比较定位控制稻米蒸煮食用品质的数量性状基因[J].中国农业科学,2000,33(5):1-7
    [1]王笑影,梁文举,闻大中.间歇灌溉对北方水稻生理生态需水的影响[J].应用生态学报,2004,15(10):1911-1915
    [2]茆智.水稻节水灌溉及其对环境的影响[J].中国工程科学,2002,4(07):8-16
    [3]Borrell A,Garside A,and Fukai S.Improving efficiency of water use for irrigated rice in a semi-arid tropical environment.Field Crop Research,1997,52:231-248
    [4]Tripathi R P,Kushwaha H S,and Mishra R K.Irrigation requirements of rice under shallow water table conditions.Agricultural Water Management,1986,12:127-136
    [5]彭世彰,徐俊增,黄乾,等.控制灌溉水稻叶片水平的水分利用效率试验研究[J].农业工程学报,2006,22(11):47-52
    [6]Turner N C.Plant water relations and irrigation management[J].Agricultural Water Management,1990,17:59-73
    [7]吕金印,山仑,高俊凤.非充分灌溉及其生理基础[J].西北植物学报,2002,22(6):1512-1517
    [8]康绍忠,史文娟,胡笑涛,等.调亏灌溉对于玉米生理指标及水分利用效率的影响[J].农业工程学报,1998,14(4):82-87
    [9]石英,松进,沈其荣,等.覆膜旱作水稻的生物效应及吸氮特征[J].农村生态环境,2001,17(2):22-25
    [10]石英,冉炜,沈其荣,等.不同施氮水平下旱作水稻土壤无机氮的动态变化及吸氮特征[J].南京农业大学学报,2001,24(2):61-65
    [11]肖新,赵言文,胡锋,等.南方丘陵典型季节性干旱区节水稻作模式生态系统功能特征研究[J].水土保持学报,2006,22(03):74-78
    [12]Odum E P.The mesocosm[J].Bio.Science,1984,34:558-562.
    [13]戈峰,刘向辉,丁岩钦.不同类型的棉田生态系统功能特征[J].生态学报,2002,22(9):1433-1439
    [14]Ellen R.Environment,Subsistence and System[M].New York:Chambridge Univ.Press,1982
    [15]Lowrance R S,Kinner B R,House G S.Agricultural Ecosystems[M].New York:Wiley Interscience,1984
    [16]Marten G G.Productivity,stability,sustainability,equitability and antonomy as properties for agroecosystem assessment[J].Agricultural systems,1988,26:291-316
    [17]Rao A R,Nehra D S.Energetics of cotton agronomy[J].Energy,1992,17:493-497
    [18]Gajaseni J.Energy analysis of wetland rice systems in Thailand[J].Agrculture,Ecosystems and Environment,1995,52:173-178
    [19]Strapatsa A V,Nanos G D,Tsatsarelis C A.Energy flow for integrated apple production in Greece[J].Agrculture,Ecosystems and Environment.2006.(In press)
    [20]Schrol L H.Energy-flow and ecological sustainability in Danish agriculture[J].Agrculture,Ecosystems and Environment,1994,51:301-310
    [21]uhlin,H.1999.Energy productivity of technological agriculture-lessons fron the transition of Swedish agriculture[J].Agrculture,Ecosystems and Environment,1999,73:63-81
    [22]Tripathi R S.Sah V K.Material and energy flows in high-hill,mid-hill and valley farming systems of Garhal Himalaya[J].A grculture,Ecosystems and Environment,2001,86:75-91
    [23]刘巽浩.能量投入产出研究在农业上的应用[J].农业现代化研究,1984,4:15-20
    [24]Wen D Z,David P.Energy flow through an organic agroecosystem in China[J].Agrculture,Ecosystems and Environment,1984,11:145-160
    [25]Han C R,Fran G,Zheng G M.Energy analysis of advanced collective farms in North China[J].Agrculture,Ecosystems and Environment,1985,13:217-240
    [26]陈家宙,陈明亮,何圆球.不同水分状况下红壤水稻的水量平衡和成产能力[J].华中农业大学学报,2000,19(3):72-77
    [27]李玉林,杨梅,黄少平,等.江西省夏季干旱特征分析.应用气象学报,2003,14(增):161-169
    [28]陈正法,张茜茜.我国南方红壤区季节性干旱及对林果业的影响[J].农业环境保护,2002,21(3):241-244
    [29]刘广明,杨劲松,姜艳,等.节水灌溉条件下水稻需水规律及水分利用效率研究.灌溉排水学报,2005,24(6):49-52
    [30]马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化.应用生态学报,2004.15:1005-1008
    [31]沈宏,曹志洪,徐本生.玉米生长期间土壤微生物量与土壤酶变化及其相关性研究.应用生 态学报,1999,10:471-474
    [32]岳进,黄国宏,梁魏,等.不同水分管理下稻田土壤CH_4和N_2O排放与微生物菌群的关系[J].应用生态学报,2003,14:2273-2277
    [33]高明,周保同,魏朝富,等.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报,2004,15:1177-1181
    [34]李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38:1591-1599
    [35]张国红,任华中,高丽红,等.京郊日光温室土壤微生物状况和酶活性[J].中国农业科学,2005.38:1447-1452
    [36]Rietz D N,Haynes R J.Effects of irrigation-induced salinity and sodicity on soil microbial activity [J].Soil Biology and Biochemistry,2003,35:845-854
    [37]Garcia C,Roldan A,Hernandez T.Ability of different plant species to promote microbiological processes in semiarid soil[J].Geoderma,2005,124:193-202.
    [38]Steenwerth K L,Jaclson L E,Calderon F J.Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California[J].Soil Biology and Biochemistry,2002,34:1599-1611
    [39]邱莉萍,刘军,王益权,等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报,2004,10(03):277-280
    [40]周礼恺.土壤酶活性的总体在评价土壤肥力水平中的作用[J].土壤学报,1983,20(4):413-417
    [41]Sakorn P P.Urease activity and fertility status of some lowland rice soils in the central plain[J].Thai Journal of Agricultural Science,1987,20:173-186
    [42]周瑞莲,张善金,徐长林,等.高寒山区火烧土壤对其养分含量和酶活性的影响及灰色关联分析[J].土壤学报,1997,34(1):89-96
    [43]和文祥,朱铭莪.陕西土壤脲酶活性与土壤肥力关系分析[J].土壤学报,1997,34(4):392-397
    [44]刘巽浩.能量投入产出研究在农业上的应用[J].农业现代化研究,1984,4:15-20
    [45]王熹,陶龙兴,黄效林,等.灌溉稻田水稻旱作技术要素及产量形成[J].中国农业科学,2004,37(4):502-509
    [46]中国科学院南京土壤研究所.土壤物理测定方法[M].北京科学出版社,1978,1-76
    [47]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2000,20-131
    [48]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986,278-313
    [49]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986
    [50]黄昌勇.土壤学[M].北京:农业出版社,2000
    [51]周礼恺.土壤酶学[M].北京:科学出版社,1987
    [52]徐炳成,梁银丽,黄占斌.黄土旱塬麦田生态系统能流特征及评价.干旱地区农业研究,2001,19(3):128-134
    [53]崔远来,李远华,吕国安,等.不同水肥条件下水稻氮素运移与转化规律研究[J].水科学进展,15(3):280-285
    [54]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社,2000
    [55]蔡坤争,骆世明,方祥.水稻覆膜旱作对根叶性状、土壤养分和土壤微生物活性的影响[J].生态学报,2006,26(6):1903-1911
    [56]袁志发,孟德顺.多元统计分析[M].西安:天则出版社,1993
    [57]王淑彬,黄国勤,李年龙,等.稻田水早轮作(第3年度)的土壤微生物效应.江西农业大学学报(自然科学版),2002,24(3):320-333
    [1]Charles M B,Robert E.W,Stuart W S.Irrigation system evaluation manual[M].California department of water resource and agriculture,1999
    [2]Jerry R W,Orlan H B.Gary D A.Microcomputer model for irrigation system evaluation[J].Southern journal of agricultural economics,1988,20(1):153-157
    [3]Manuel M R.Francisco J S.Evaluation of Irrigation Projects and Water Resource Management:a Method-logical Proposal[J].Sustainable Development,2002,(10):90-102
    [4]Zhou M Y.Group analytic hierarchy process(GAHP)-Fuzzy Method for Evaluation of irrigation district management[J].Irrigation and Drainage System.1994,8(3):177-188.
    [5]郭宗楼,雷声隆,刘肇炜.排灌工程项目环境影响评价[J].中国农村水利水电,1999,(5):7-10
    [6]姚崇仁.干旱缺水灌区节水灌溉评价标准及其分析[J].农田水利与小水电,1995,(6):7-10
    [7]候维东,徐念榕.井灌节水项目综合评价模型及其应用[J].河海大学学报,2000,23(3):90-94
    [8]雷波,姜文来.节水农业综合效益评价研究进展[J].灌溉排水学报,2004,23(3):65-69
    [9]王景雷,吴景社,齐学斌,等.节水灌溉研究进展[J].水科学进展,2002,13(4):521-525
    [10]张红旗,李家永,牛栋.典型红壤丘陵区土地利用空间优化配置.地理学报,2003,58(5):668-676
    [11]宋松柏,蔡焕杰.旱区生态环境质量的综合定量评价模.生态学报,2004,24(11):2509-2515
    [12]武兰芳,欧阳竹,唐登银.区域农业生态系统健康定量评价.生态学报,2004,24(12):2740-2748
    [13]徐梦洁,葛向东,张永勤,等.耕地可持续利用评价指标体系及评价.土壤学报,2001,38(3):275-284
    [14]吴钢,魏晶,张萍,等.三峡库区农林复合生态系统的效益评价.生态学报,2002.22(2):232-239
    [15]周炳中,杨浩,周生路,等.红壤丘陵区农业开发中的生态环境效应及其调控.地域研究与开发,2002,12(4):14-19
    [16]许志斌,李彦禄,马自清,等.应用灰色关联分析研究粮菜立体种植模式结构.生物数学学报,1995,12(4):224-228
    [17]王龙昌,贾志宽,蒋骏,等.宁南半干旱区灌溉农田高效多熟种植模式研究.西北农业学报,2000,9(4):58-62
    [18]Jat R L,Gaur B L,Suresh K,et al.Effect of weed management,fertilizers and Rhizobium inoculation on growth,yield attributes of maize and soybean under maize + soybean intercropping systems.Indian Journal of Agronomy,1998,43(1):23-26
    [19]Gollar R G,Patil V C.Studies on maize based cropping systems under simultaneous and staggered planting of intercrops.Karnataka Journal of Agricultural Sciences,1997,10(3):648-652
    [21]Ruttan,V W,Hayami Y.Toward a theory of induced institutional innovation[J].Journal of development studies.1984,20(4):203-223

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700