用户名: 密码: 验证码:
低覆盖度行带式固沙林的生长优势与界面效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低覆盖度行带式固沙林是近年来被广泛认可的一项低成本、高效益的防沙治沙体系,已经获得国家专利“低覆盖度固沙方法”。低覆盖度防沙治沙体系打破了传统研究认为的植被覆盖度在40%以下不能完全固定流沙的观念,达到了植被覆盖度在20%左右就能够完全固定流沙的效果,不仅能加快带间植被自然修复的时间,而且能够促进带间土壤的改良,是符合当地水量平衡的带状疏林,是一种长寿命的生物沙障。经过20多年的种植实验与观察发现,在低覆盖度行带式配置模式下的固沙林长势良好并可成材,林分稳定性更高,与均匀配置的片林相比具有显明的生长优势,但是其所表现出来的生长优势的机理尚不明确。笔者认为是这种特殊的人为干扰下的带状集群分布格局使林分具有了更多生态意义上的界面,从而使林内资源得到了更加高效、合理的分配与利用。
     本文以低覆盖度行带式配置(Low coverage banded scheme)模式下的赤峰杨(P.×xiaozhuanica W.Y Hsu et Liangcv. Chifengensis)固沙林为研究对象,在界面生态学的基础上,用传统的森林经理学方法研究了不同配置模式对固沙林生长的影响,通过标准地调查法及标准木解析法,结合带间土壤温湿度变化情况,对不同配置模式下植株的胸径、树高、材积生长过程、胸高比变化、径阶分布结构、林分竞争、林分稳定性等各方面进行了比较,对其生长优势进行了量化评价,主要结论有:
     1.低覆盖度行带式固沙林的生长优势是通过植株的树高、胸径与材积生长量增加体现出来的,赤峰杨固沙林胸径、树高、材积总生长量遵从Chapman-Richards函数生长;而连年生长量和平均生长量遵从多项式函数生长。低覆盖度行带式配置25~25m、35~15m、25~10m、35~8m((株距行距~带间距)和均匀配置35m模式下的赤峰杨固沙林,胸径数量成熟龄分别为:9、8、20、17和25年,树高数量成熟龄分别为:9、8、23、16和15年,材积的数量成熟龄分别为:9、10、18、19和25年。胸径、树高和材积数量成熟龄随带间距的增大而减少;达最大平均生长量和最大连年生长量的年龄随带间距的增加而减小,而其值却随带间距的增加而增大。在一定带间距下,低覆盖度行带式固沙林的胸径和材积生长量大于均匀配置林分,而树高生长优势不明显,研究区适宜的带间距为10~25m,10m以下生长优势表现不明显。
     2.低覆盖度行带式配置模式下植株干、枝、叶生物量(鲜重)分配更为合理,其中,行带式配置模式下叶生物量在总生物量中所占的比例最高可达15.5%,而均匀配置模式下的林分叶生物量仅占总生物量的3.5%。行带式配置模式下植株胸高比较大,胸径生长优于树高生长,植株更加粗壮,更加适应于在干旱大风的环境在生长。数据分析表明,带间距越宽,死亡率越低。均匀配置(35m)林分死亡率高达9.7%,而行带式配置模式下林分死亡率最高为4.9%,最低的仅为2.2%;在同密度的行带式配置模式下,林分死亡率随着带间距的增大而降低。
     3.均匀配置的固沙林边缘效应率为1.17,界面效应表现为东边>西边>北边>南边,故林带走向以南北方向为宜,而且当地的主害风为西北风,根据防风固沙的需要,进行南北走向的林带设计也是相一致的。而行带式配置的固沙林是使所有的林木处于边行的位置,故在所有边行上都具有边缘效应。
     4.在低覆盖度行带式配置模式下,随着赤峰杨胸径的增大,其所受到的竞争强度在逐渐减小,竞争强度与林木径阶的大小符合幂函数关系。无论配置与林龄如何变化,胸径在15cm前受到的竞争压力较小,随后趋于稳定,故应在赤峰杨胸径达到15cm前进行必要的择伐或带状疏伐,以减少此后植株间的竞争,赤峰杨对象木周围2~3m范围内竞争强度是最大的。
     5.行带式配置模式下赤峰杨根系分布特征为,根长密度:株间>行间>带间,根长密度最大的是0~0.2mm径阶的细根,约0.61cm/cm3,根长密度最小的是径阶>2mm的根系,前者占到了根系根长密度的44.7%,而后者仅为1.6%,前者约是后者的30倍;0~60cm深度处根系占到了全根长(1~100cm)密度的74.6%,而深度在60~80cm的根系仅占25.4%。根重密度最大的出现在带间,根重密度最高可达22.58mg/cm3。距树不同径向距离处根长密度表现为开始最大而后减少又逐渐增大的趋势。赤峰杨根系主要吸收的是天然降雨。
     与均匀配置的人工林相比,低覆盖度行带式配置固沙林使所有的林木处于边行的位置,因此,具有明显的生长优势,林分结构合理,稳定性高。低覆盖度行带式配置模式是适宜于干旱半干旱地区种植的一种优良的配置模式。本文可为我国三北乃至相似地区生态恢复建设提供理论依据及参考,具有重要的现实与指导意义。
In recent years, the type of low coverage scheme sand-fixing forest belts was widelyconsidered as a low-cast and high-efficiency way to prevent and control desertification, whichhas got a patent named low coverage sand-fixing method.
     The type achieved the quicksand could be fixed completely when the vegetation coveragereached20%, which broked the traditional concept that the quicksand could not be fixed untilthe vegetation coverage under40%. Not only it could accelerate the natural restoration of theinter-band vegetation, but also promote the soil improvement, this zonal sparse woodlands fitfor the local water balance and was a biological barrier with long-life.
     After more than20years of planting experiment and observation, it has been found thatthe sand-fixing forest bands grew well and became lumber under the low coverage bandscheme, it has higher stability and more obvious growth advantage compared with the regulardistribution sand-fixing forest. However, the mechanism of the growth advantage still unclear.The author believed that the special zonal clumped distribution type of sand-fixing forestwhich under human disturbance created more ecological significance interface, thus realizedthe resources could be used and distributed more reasonably and efficiently.
     The thesis regards the P.×xiaozhuanica W.Y Hsu et Liang cv.‘Chifengensis’ as theresearch object, which planted under the lower coverage banded scheme, on the basis ofinterface ecology, the traditional forest management methods were used to study the effect ofdifferent configuration type on the growth of sand-fixing forest. Through the ample-plotsurvey and standard stem analytical methods, combined with the soil temperature and humiditychanges between inter-band, compared the difference of DBH, height, volume, the ration ofDBH and height, the diameter distribution structure, the competition index and the standstability of P.×xiaozhuanica cv. Chifengensis sand-fixing forest which planted under different type, the growth advantage was evaluated quantitatively. The main conclusions are asfollows:
     1. The growth advantage of sand-fixing forest planted under low coverage banded schemewas reflected by the tree height, the DBH and the volume growth. The DBH, the height and thevolume growth of P.×xiaozhuanica cv. Chifengensis followed the Chapman-richardsgrowth function. The current growth and the average growth followed the polynomial growthfunction.
     The P.×xiaozhuanica cv. Chifengensis sand-fixing forest planted under low coveragewith banded scheme of25~25、35~15、25~10、35~8m (stem row~band) andregular type of3x5m, the DBH quantitative maturity age were9,8,20,17and25yearsrespectively, the height quantitative maturity age were9,8,16,23and15years, respectively,the volume quantitative maturity age was9,10,18,19and25years respectively. The matureage of DBH, height and volume decreased with the band-width increased; the largest age ofaverage growth and the largest age of current growth decreased with the band-width increased,but the values were increased with band-width increased. Under certain band-width, the DBHand volume growth of sand-fixing forest which planted under low coverage with band-rowscheme were better than the regular type, but it was not obvious for the tree height growthadvantage, the appropriate band-width was between10~25m, the growth advantage wasindistinctive when the band-width less than10m.
     2. The stem, branch and foliage biomass allocation of P.×xiaozhuanica cv.Chifengensis were more reasonable which planted under low coverage band-row scheme,the foliage biomass proportion could up to15.5%among total biomass, on the contrary, it onlyaccounted for3.5%of the total biomass under regular type. The ratio of DHB and height washigher and the DBH growth was better than the height, it showed more adapted to grew in thedry wind environment. The data analysis showed that the more band width higher, the mortalityrate lower. Regular type (3x5m) forest mortality rates up to9.7%, but the mortality rate underlow coverage with banded scheme was only2.2%; when the low coverage with banded scheme sand-fixing forest planted under the same density, the mortality decreases with the band-widthincreased.
     3. The edge effect rate of sand-fixing forest which were planted under regular typewas1.17, the order of edge effect were east>south>west> north, so it was benefit for thedirection of the blet from north to south, and trees planted under low coverage with bandedscheme were all located at the edge, therefore, all the band and row have the edge effect.
     4. The competition intensity of P.×xiaozhuanica cv. Chifengensis planted under lowcoverage banded scheme decreased with the DBH increased, the relationship between theintensity of competition and the order DBH corresponed the power function. No matter howforest type and age changed, the competition of DBH under15cm has more lower, therefore, itwas not necessary to carry out selective cutting or band thinning until DBH up to15cm inorder to reduce competition identity, the most fierce competition appeared within distance fromP.×xiaozhuanica cv. Chifengensis2~3m scopes.
     5. The root distribution characteristic of P.×xiaozhuanica cv. Chifengensis plantedunder low coverage with banded scheme was: the order of root length density, inter-stems>inter-row> inter-band, the fine roots diameter class at0~0.2mm had the maximum rootlength density, about0.61cm/cm3, the fine root diameter class>2mm had the minimum rootlength density, the former accounted for44.7%of root length density, while the latter was only1.6%, the former was about30times than the latter; root system at depth of0~60cmaccounted for74.6%of the total root length density, while the root system at60~80cmaccounted for only25.4%. The Largest root weight density appeared at the inter-band, the rootweight density up to22.58mg/cm3. The root length density at different distance exhibited withmaximum in the beginning, then reduced and gradually increasd ultimately. The mainlyabsorbed of P.×xiaozhuanica cv. Chifengensis root system was natural rainfall.
     The low coverage banded sand-fixing forests under were all located at edges compared tothe regular sand-fixing forest of. Therefore, it has higher growth advantage, the stand structurewas reasonable and stability. The low coverage with banded scheme was suitable for arid andsemi-arid region. It could also be benefits to provide reference basis theory for the ecological restoration and vegetation construction of the Three-North even the same areas in our country,it has important practical and guiding significance.
引文
Bella I.A new competition model for individual trees.Forest Science,1971,17(3):364-372
    Bredenkamp B V, Gregoire T G. Notes: a forestry application of Schnute's generalized growthfunction.Forest Science,1988,34(3):790-797
    Bromley J,Brouwer J,Barker,et al.The role of surface water redistribution in an area of patternedvegetation in a semi-arid environment, south-west Niger.Journal of Hydrology,1997,198:1-29
    Cadenasso M,Traynor M,Pickett S T.Functional location of forest edges: gradients of multiple physicalfactors.Canadian Journal of Forest Research,1997,27(5):774-782
    Cadenasso M L,Pickett S T,Weathers K C,et al.An interdisciplinary and synthetic approach to ecologicalboundaries.BioScience,2003,53(8):717-722
    Cancino J.Modelling the edge effect in even-aged Monterey pine Pinus radiata stands.Forest Ecology andManagement,2005,210(1):159-172
    Cao Q V.Predicting Parameters of a Weibull Function for Modeling Diameter distribution.Forest Science,2004,50(5):682-685
    Cao S.Why Large-Scale Afforestation Efforts in China Have Failed To Solve the DesertificationProblem.Environmental Science&Technology,2008,42(6):1826-1831
    Cao S,Wang G,Chen L.Assessing effects of afforestation projects in China: Cao and colleaguesreply.Nature,2010,466(7304):315-315
    Casenave A,Valentin C.A runoff capability classification system based on surface features criteria insemi-arid areas of West Africa.Journal of Hydrology,1992,130:231-249
    Chen J,Franklin J F,Spies T A.Vegetation responses to edge environments in old-growth Douglas-firforests.Ecological Applications,1992,2(4):387-396
    Chen J,Franklin J F,Spies T A.Growing-season microclimatic gradients from clearcut edges intoold-growth Douglas-fir forests.Ecological Applications,1995,5(1):74-86
    Douglas G B,Mcivor I R,Potter J F,et al.Root distribution of poplar at varying densities on pastoral hillcountry.Plant and Soil,2010,333(1):147-161
    Dunkerley D,Brown K.Banded vegetation near Broken Hill, Australia: significance of surface roughnessand soil physical properties.Catena,1999,37:75-88
    Hegyi F.A simulation model for managing jack-pine stands.Growth models for tree and stand simulation,1974,12(30):74-90
    Kapos V.Effects of isolation on the water status of forest patches in the Brazilian Amazon.Journal ofTropical Ecology,1989,5(2):173-185
    Lazorko M H.Root distribution, activity, and development for boreal species on reclaimed oil sandminesoils in Alberta, Canada.University of Saskatchewanmaster degree,2008,75-88
    Liu C,Zhang L,Davis C J,et al.A finite mixture model for characterizing the diameter distributions ofmixed-species forest stands.Forest Science,2002,48(4):653-661
    Ludwig J A,Wilcox B P,Breshears D D,et al.Vegetation patches and runoff-erosion as interactingecohydrological processes in semiarid landscapes.Ecology,2005,86(2):288-297
    Matlack G R.Microenvironment variation within and among forest edge sites in the eastern UnitedStates.Biological Conservation,1993,66(3):185-194
    Mesquita R C,Delam nica P,Laurance W F.Effect of surrounding vegetation on edge-related tree mortalityin Amazonian forest fragments.Biological Conservation,1999,91(2):129-134
    Mulia R,Dupraz C.Unusual fine root distributions of two deciduous tree species in southern France: Whatconsequences for modelling of tree root dynamics?.Plant and Soil,2006,281(1):71-85
    Muller-Landau H C,Condit R S,Harms K E,et al.Comparing tropical forest tree size distributions withthe predictions of metabolic ecology and equilibrium models.Ecol Lett,2006,9(5):589-602
    Palik B J,Murphy P G.Disturbance versus edge effects in sugar-maple/beech forest fragments.ForestEcology and Management,1990,32(2):187-202
    Pugnaire F I,Luque M T.Changes in plant interactions along a gradient of environmental stress.Oikos,2001,93:42-49
    Puri S,Singh V,Bhushan B,et al.Biomass production and distribution of roots in three stands of Populusdeltoides.Forest Ecology and Management,1994,65(2):135-147
    Raynor G S.Wind and temperature structure in a coniferous forest and a contiguous field.Forest Science,1971,17(3):351-363
    Rennolls K,Wang M.A new parameterization of Johnson's SB distribution with application to fitting foresttree diameter data.Canadian Journal of Forest Research,2005,35(3):575-579
    Saunders S C,Chen J,Drummer T D,et al.Modeling temperature gradients across edges over time in amanaged landscape.Forest Ecology and Management,1999,117(1):17-31
    Schoener T W.Field experiments on interspecific competition.American Naturalist,1983,1(3):240-285
    Sizer N,Tanner E V.Responses of woody plant seedlings to edge formation in a lowland tropical rainforest,Amazonia.Biological Conservation,1999,91(2):135-142
    Stankova T V,Zlatanov T M.Modeling diameter distribution of Austrian black pine (Pinus nigra Arn.)plantations: a comparison of the Weibull frequency distribution function and percentile-based projectionmethods.European Journal of Forest Research,2010,129(6):1169-1179
    Thiery J,D'herbes J M,Valentin C.A model simulating the genesis of banded vegetation patterns inNiger.Journal of Ecology,1995,83:497-507
    Vega E,Monta a C.Effects of overgrazing and rainfall variability on the dynamics of semiarid bandedvegetation patterns: A simulation study with cellular automata.Journal of Arid Environments,2011,75(1):70-77
    Von Hardenberg J,Meron E,Shachak M,et al.Diversity of vegetation patterns and desertification.PhysicalReview Letters,2001,87(19):98-101
    Wagner B,G rtner H,Ingensand H,et al.Incorporating2D tree-ring data in3D laser scans of coarse-rootsystems.Plant and Soil,2010,334:175-187
    Wahl M.Ecological lever and interface ecology: epibiosis modulates the interactions between host andenvironment.Biofouling,2008,24(6):427-438
    Walsh S J,Butler D R,Allen T R,et al.Influence of snow patterns and snow avalanches on the alpinetreeline ecotone.Journal of Vegetation Science,1994,5(5):657-672
    Whittaker R H,Niering W A.Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production,and diversity along the elevation gradient.Ecology,1975,56(4):771-790
    Williams-Linera G.Vegetation structure and environmental conditions of forest edges in Panama.TheJournal of Ecology,1990,2(4):356-373
    Wilson S D,Tilman D.Plant competition and resource availability in response to disturbance andfertilization.Ecology,1993,74(2):599-611
    Wood P A,Samways M J.Landscape element pattern and continuity of butterfly flight paths in anecologically landscaped botanic garden, Natal, South Africa.Biological Conservation,1991,58(2):149-166
    Wu X B,Thurow T L,Whisenan T G.Fragmentation and changes in hydrologic function of tiger bushlandscapes south_west Niger.Journal of Ecology,2000,88:790-800
    Yang X,Jia Z,Ci L.Assessing effects of afforestation projects in China.Nature,2010,466(7304):315-315
    Yang Y-C,Chao S-L.Notes: Comparison of Volume Growth Calculation Methods for RemeasuredHorizontal Line Sampling.Forest Science,1987,33(4):1062-1067
    Zasada M,Cieszewski C J.A finite mixture distribution approach for characterizing tree diameterdistributions by natural social class in pure even-aged Scots pine stands in Poland.Forest Ecology andManagement,2005,204(2):145-158
    Zhang L,Gove J H,Liu C,et al.A finite mixture of two Weibull distributions for modeling the diameterdistributions of rotated-sigmoid, uneven-aged stands.Canadian Journal of Forest Research,2001,31(9):1654-1659
    Zhu J J,Fan Z P,Zeng D H,et al.Comparison of stand structure and growth between artificial and naturalforests of Pinus sylvestiris var. mongolica on sandy land.Journal of Forestry Research,2003,14(2):103-111
    Zhu Y,Ren L,Skaggs T H,et al.Simulation of Populus euphratica root uptake of groundwater in an aridwoodland of the Ejina Basin, China.Hydrological Processes,2009,23(17):2460-2469
    阿拉木萨,慈龙骏,杨晓晖,等.科尔沁沙地不同密度小叶锦鸡儿灌丛水量平衡研究.应用生态学报,2006,17(1):31-35
    阿拉木萨,蒋德明,骆永明.半干旱区人工固沙灌丛发育过程土壤水分及水量平衡研究.水土保持学报,2005,(4):107-110
    毕华兴,李笑吟,李俊,等.黄土区基于土壤水平衡的林草覆被率研究.林业科学,2007,43(4):17-23
    蔡延松.沙产业理论的实践和发展.西部大开发,2011,(9):93-94
    曹长雷.次生林的边缘效应对鸟类分布的影响.大众科技,2007,100(6):94-95
    曹长雷.破碎化次生林的边缘效应对鸟类分布格局及繁殖功效的影响.东北师范大学硕士学位论文,2007,15-17
    陈廷芝,尤莉,古月,等.2010年夏季内蒙古干旱高温成因分析.干旱区资源与环境,2012,26(1):88-92
    陈亚文.栓皮栎次生林林分结构与生长模型研究.中南林业科技大学硕士学位论文,2011,25-31
    陈银萍.祁连山青海云杉种群结构组建稳定性机制研究.甘肃农业大学硕士学位论文,2000,62-65
    丛萍.三北防护林体系三十年铸就绿色长城.绿色中国,2008,23:20-23
    德永军.中间锦鸡儿带状林地根系和土壤水分特征及抗旱性研究.内蒙古农业大学博士学位论文,2009,42-61
    丁宝永,陈祥伟,陈大我,等.森林边缘效应理论及其效应的初步研究.东北林业大学学报,1990,18(S3):13-26
    丁宏,周永斌,崔建国.辽阳地区杨树人工林边缘效应研究.林业科技,2008,33(3):15-18
    董慧龙.低郁闭度乔木行带式固沙林防风效果研究.内蒙古农业大学硕士学位论文,2009,33-39
    董治宝,王涛,屈建军.风沙物理学学科建设的若干问题.中国沙漠,2002,22(3):205-209
    杜心田,王同朝.作物群体边际效应规律及其应用.应用生态学报,1998,9(5):475-480
    段爱国,张建国,童书振.6种生长方程在杉木人工林林分直径结构上的应用.林业科学研究,2003,16(4):423-429
    段仁燕,王孝安.太白红杉种内和种间竞争研究.植物生态学报,2005,29(2):242-250
    段仁燕.太白红杉邻体干扰与竞争特性的研究.陕西师范大学硕士学位论文,2005,27-30
    高函,吴斌,张宇清,等.行带式配置柠条林防风效益风洞试验研究.水土保持学报,2010,24(4):44-47
    高函.低覆盖度带状人工柠条林防风阻沙效应研究.北京林业大学博士学位论文,2010,26-31
    高露双,赵秀海,王晓明.长白山火烧红松年表特征分析.林业科学,2011,47(3):189-193
    高琼,董学军,梁宁.基于土壤水分平衡的沙地草地最优植被覆盖率的研究.生态学报,1996,(1):33-39
    高尚武.治沙造林学.北京:中国林业出版社,1984,65-71
    高永,许智,杨永峰,等.赤峰地区杨树边行优势分析及优化配置.内蒙古林业科技,1998,(1):32-36
    关卓今,裴铁璠.生态边缘效应与生态平衡变化方向.生态学杂志,2001,20(2):52-55
    郭水良,韩士杰,曹同.苔藓植物对森林生态界面指示作用的研究.应用生态学报,1999,(1):1-6
    国家林业局.中国林业统计年鉴.北京:中国林业出版社,2005,66-71
    韩光瞬.林木生长模型比较研究及其四维表达.北京林业大学硕士学位论文,2006,14-21
    韩路,王海珍,周正立,等.塔里木荒漠优势植物胡杨种内、种间竞争研究.西北植物学报,2006,26(12):2547-2552
    韩庆瑜,刘刚,周麒麟.三峡大老岭保护区铁坚油杉古树直径生长模型研究.湖北林业科技,2009,(1):1-8
    韩士杰,廖利平,姜凤岐.关于森林界面生态学的思考.应用生态学报,1998,(5):5-8
    韩士杰.森林界面生态学研究现状与展望.中国科学院院刊,2002,(4):260-263
    韩士杰.叶面界面生态学.哈尔滨:东北林业大学出版社,1996,15-30
    韩志文,刘贤万,姚正义.复膜沙袋阻沙体与芦苇高立式方格沙障防风机理风洞模拟实验.中国沙漠,1982,2(1):13-20
    胡宝刚,周红敏,李世伟,等.枣庄市黑杨直径结构的模拟研究.安徽农业科学,2010,38(23):12901-12902
    胡喜生,周新年,兰樟仁,等.人工林桉树胸径分布模型的研究.福建林学院学报,2008,28(4):314-318
    黄家荣,高光芹,孟宪宇,等.基于人工神经网络的林分直径分布预测.北京林业大学学报,2010,32(3):21-26
    黄家荣,孟宪宇,关毓秀.马尾松人工林直径分布神经网络模型研究.北京林业大学学报,2006,28(1):28-31
    黄荣珍,李凤,肖龙,等.退化第四纪红黏土重建马尾松林恢复27年后林分直径分布模型研究.水土保持研究,2011,18(5):128-131
    贾俊平.统计学(第二版).北京:清华大学出版社,2006,45-88
    姜凤岐,曾德慧,于占源.从恢复生态学视角透析防护林衰退及其防治对策:以章古台地区樟子松林为例.应用生态学报,2006,17(12):2229-2235
    姜凤岐,朱教君,曾德慧.防护林经营学.北京:中国林业出版社,2003,158-169
    姜凤歧.林带经营技术与理论基础.北京:中国林业出版社,1992,121-126
    姜丽娜,杨文斌,卢琦,等.低覆盖度柠条固沙林不同配置对植被修复的影响.干旱区资源与环境,2009,23(02):180-185
    姜丽娜,杨文斌,姚云峰,等.不同配置的行带式杨树固沙林与带间植被修复的关系.中国水土保持科学,2011,9(02):88-92
    姜丽娜,杨文斌,姚云峰,等.樟子松固沙林带间植被恢复及其对林草界面作用的响应.中国沙漠,2011,31(2):372-378
    姜丽娜.低覆盖度行带式固沙林促进带间土壤、植被修复效应的研究.内蒙古农业大学博士学位论文,2011,45-46
    蒋国梅,孙摇国,张光富.濒危植物宝华玉兰种内与种间竞争.生态学杂志,2010,29(2):201-206
    金则新,周荣满.木荷种内与种间竞争的数量关系.浙江林学院学报,2003,20(3):35-39
    雷静品,肖文发,黄志霖,等.带状改造对柏木人工林林下植被多样性和环境的影响.江西农业大学学报,2009,31(3):381-387
    黎建强,张洪江,程金花,等.长江上游不同植物篱系统的土壤物理性质.应用生态学报,2011,22(2):418-424
    黎磊,周道玮,盛连喜.密度制约决定的植物生物量分配格局.生态学杂志,2011,30(8):1579-1589
    李丽光,何兴元,李秀珍.景观边界影响域研究进展.应用生态学报,2006,17(5):935-938
    李萍,朱清科,谢芮,等.半干旱黄土丘陵沟壑区水平阶整地人工油松林种内竞争研究.应用基础与工程科学学报,2012,20(4):592-601
    李贤伟,张健,陈文德,等.三倍体毛白杨+黑麦草复合模式根土养分动态研究.水土保持学报,2005,19(4):6-9
    李晓庆,周俊宏,郑勇平.不同立地指数级杉木生长过程的数学模拟.浙江林学院学报,1991,(3):14-20
    梁希武,于海中,牛永杰,等.白桦林边缘效应与增产机制和多样性的关系.林业科技,2001,26(2):19-20
    刘海云.杨树根系的生长规律.中国林业,2008,655(6):56
    刘爽,宫鹏.2000~2010年中国地表植被绿度变化.科学通报,2012,57(16):1423-1434
    刘彤,李云灵,周志强,等.天然东北红豆杉(Taxus cuspidata)种内和种间竞争.生态学报,2007,27(3):924-929
    刘雅君.关于生态环境与绿色经济的几点思考.现代工业经济和信息化,2012,30(14):24-26
    刘宗顺,廖艳梅.赤峰地区造林树种选择及森林覆被率指标的探讨.内蒙古林业科技,1999,3(4):75-78
    龙滕周,项东云,孟永庆,等.桉树人工林栽培密度效应研究进展.广西林业科学,2008,144(2):71-75
    卢琦,赵体顺,师永全,等.农用林业系统仿真的理伦与方法.北京:中国环境科学出版社,1999,15-21
    路振邦.干旱地区造林水量平衡计算方法的研究.林业科技通讯,1984,(1):17-19
    马世骏.高效和谐谈生态学原理在城市改革中的作用.生态学杂志,1985,(03):27-30
    马友鑫,刘玉洪,张克映.西双版纳热带雨林片断小气候边缘效应的初步研究.植物生态学报,1998,(3):250-255
    毛磊,杨丹青,王冬梅,等.红花尔基自然保护区天然樟子松林种内种间竞争分析.植物资源与环境学报,2008,17(2):9-14
    孟宪宇.测树学(第3版).北京:中国林业出版社,2006,171-198
    倪晓峰.半干旱黄土高原地区羊道景观的植被格局和结构研究.兰州大学硕士学位论文,2011,33-68
    牛海亮.浑善达克沙地榆树疏林榆树种群特征分析.内蒙古大学硕士学位论文,2008,22-31
    彭少麟.热带亚热带恢复生态学研究与实践.北京:科学出版社,2003,23-25
    秦树高.柠条林草带状复合系统地下竞争关系研究.北京林业大学博士学位论文,2011,13-19
    渠春梅,韩兴国,苏波.片断化森林的边缘效应与自然保护区的设计管理.生态学报,2000,20(01):161-168
    史宇,余新晓,岳永杰,等.北京山区天然侧柏林种内竞争研究.北京林业大学学报,2008,30(2):36-40
    宋曰钦,翟明普,贾黎明,等.不同年龄三倍体毛白杨纸浆林生长期间细根变化规律.生态学杂志,2010,29(9):1696-1702
    孙澜,苏智先,张素兰,等.马尾松-川灰木人工混交林种内、种间竞争强度.生态学杂志,2008,181(8):1274-1278
    田盼盼,董新光,姚鹏亮,等.干旱区不同灌溉方式下枣树根系分布特性研究.水资源与水土工程学报,2012,23(1):102-105
    王凤臻,尹秋浦,杜文峰.山东省最适区域森林覆盖率初探.林业资源管理,1999,(3):26-28
    王红梅,张桂杰,谢应忠,等.农田-草地景观镶嵌体土壤水分界面瞬时判定初探.农业科学研究,2010,(4):40-45
    王洪英.黄土高原人工刺槐林土壤水分动态及生物量的密度效应研究.北京林业大学硕士学位论文,2006,33-41
    王凌晖,吴国欣,施福军,等.不同造林密度对杂交相思生长的影响.南京林业大学学报(自然科学版),2009,33(9):134-136
    王琦,张恩和,龙瑞军,等.不同灌溉方式对紫花苜蓿生长性能及水分利用效率的影响.草业科学,2006,23(9):75-78
    王如松,马世骏.边缘效应及其在经济生态学中的应用.生态学杂志,1985,(2):38-42
    王雄宾,余新晓,徐成立,等.间伐对华北落叶松人工林边缘效应的影响.北京林业大学学报,2009,(5):29-34
    王秀云,孙玉军,马炜.不同密度长白落叶松林生物量与碳储量分布特征.福建林学院学报,2011,(3):221-226
    王元,张希明.塔南绿洲优化防护模式风洞实验研究初探.干旱区研究,1995,12(4):76-80
    卫丽,高亮,杜心田,等.生物系统边缘效应定律及其在农业生产中的应用.中国农学通报,2003,(05):99-102
    魏国良.坡地枣树根系分布及其与土壤水分养分的关系研究.西北农林科技大学硕士学位论文,2011,23-25
    温国胜.毛乌素沙地臭柏群落景观动态.浙江林学院学报,2005,(2):129-132
    问青春,李秀珍,贺红士,等.岷江上游林农边界效应对植被生物量的影响.中山大学学报(自然科学版),2007,(2):87-91
    邬建国.景观生态学:格局,过程,尺度与等级.高等教育出版社,2000,16-18
    吴德祥.棉花边际效应及其应用研究.江西棉花,1997,:6-7
    吴刚,李静,邓红兵.农林生态系统界面生态学初探.应用生态学报,2000,11(3):459-460
    吴祥云,姜凤岐,李晓丹,等.樟子松人工固沙林衰退的规律和原因.应用生态学报,2004,(12):2225-2228
    席本野,贾黎明,刘寅,等.宽窄行栽植模式下三倍体毛白杨吸水根系的空间分布与模拟.浙江林学院学报,2010,27(2):259-265
    席本野,王烨,贾黎明,等.宽窄行栽植模式下三倍体毛白杨根系分布特征及其与根系吸水的关系.生态学报,2011,31(1):47-57
    谢春平,伊贤贵,王贤荣.福建武夷山野生早樱群落优势种群种间竞争.浙江林学院学报,2008,97(6):718-722
    谢小魁,刘正纲,苏东凯,等.长白山阔叶红松林径级结构动态模拟和优化经营.生态学杂志,2011,30(2):384-388
    谢小魁,苏东凯,刘正纲,等.长白山原始阔叶红松林径级结构模拟.生态学杂志,2010,29(8):1477-1481
    辛营营,韦新良.青山湖针阔混交林优势树种竞争的数量研究.浙江农林大学学报,2011,28(4):601-606
    熊文愈,王汉杰.论生态界面系统.南京林业大学学报(自然科学版),1986,(2):1-10
    许鸿儒,刘金声,范学文.利用林木边行优势营造杨树速生丰产林的试验研究──林农复合生态经济系统的新模式.生态学杂志,1994,13(3):11-16
    闫明,钟章成,乔秀红.缙云山片断常绿阔叶林小气候边缘效应的初步研究.应用生态学报,2006,17(1):17-21
    杨东华.科尔沁沙地防风固沙林稳定性研究.东北林业大学硕士学位论文,2010,64-52
    杨帆.内蒙古东部沙地樟子松林空间分布格局及其驱动力研究.西北大学硕士学位论文,2004,42-45
    杨文斌,丁国栋,王晶莹,等.行带式柠条固沙林防风效果.生态学报,2006,26(12):4106-4112
    杨文斌,董慧龙,卢琦,等.低覆盖度固沙林的乔木分布格局与防风效果.生态学报,2011,31(17):5000-5008
    杨文斌,卢琦,吴波,等.低覆盖度不同配置灌丛内风流结构与防风效果的风洞实验.中国沙漠,2007,27(5):791-796
    杨文斌,卢琦,吴波,等.杨树固沙林密度、配置与林木生长过程的关系.林业科学,2007,43(3):54-59
    杨文斌,王晶莹,王晓江,等.科尔沁沙地杨树固沙林密度、配置与林分生长过程初步研究.北京林业大学学报,2005,27(4):33-38
    杨文斌,王晶莹.干旱、半干旱区人工林边行水分利用特征与优化配置结构研究.林业科学,2004,40(05):3-9
    杨文斌,赵爱国,王晶莹,等.低覆盖度沙蒿群丛的水平配置结构与防风固沙效果研究.中国沙漠,2006,26(1):108-112
    杨有林,卢琦.以色列的荒漠化整治与林业建设.世界林业研究,1996,(4):42-47
    尤文忠,刘明国,曾德慧.森林景观界面研究概况.辽宁林业科技,2005,(5):31-34
    尤文忠.黄土高原坡地农林复合系统景观边界土壤特征的研究:以陕西省永寿地区为例.沈阳农业大学博士学位论文,2006,15-20
    曾德慧,姜凤歧.从水量平衡角度探讨沙地樟子松人工林的合理密度.防护林科技,1995,(1):4-26
    张建国,段爱国.理论生长方程与直径结构模型的研究.北京:科学出版社,2004,36-45
    张劲松,孟平.农林复合系统水分生态特征的模拟研究.生态学报,2004,(6):1172-1177
    张强,张存杰,白虎志,等.西北地区气候变化新动态及对干旱环境的影响.干旱气象,2010,28(1):1-7
    张小翠,满自红,张育德,等.连城国家级自然保护区青杄种内种间竞争关系研究.生态科学,2008,76(4):197-201
    张宇清,齐实,邹青,等.梯田埂坎杨树的根系分布研究.西北林学院学报,2002,17(2):6-9
    昭日格,李钢铁,岳永杰,等.浑善达克沙地天然沙地榆种内竞争研究.中国沙漠,2011,31(2):451-455
    赵秉强,余松烈,李风超.冬小麦边际效应的研究.耕作与栽培,1997,4:4-7
    赵哈林,赵学勇,张铜会,等.恢复生态学通论.北京:科学出版社,2009,177-198
    赵忠,李鹏,王乃江.渭北黄土高原主要造林树种根系分布特征的研究.应用生态学报,2000,(1):38-40
    周荣伍,安玉涛,王浩,等.西山国家森林公园人工侧柏林种内与种间竞争的数量关系.北京林业大学学报,2010,32(6):27-32
    周晓峰.生态林业中的适应与边缘效应.东北林业大学学报,1986,14(S4):1-8
    周永斌,吴栋栋,姚鹏,等.杨树人工林边缘效应的初步研究.福建林业科技,2008,35(04):108-110
    周宇峰,周国模.斑块边缘效应的研究综述.华东森林经理,2007,21(2):1-8
    朱教君,曾德慧,康宏樟.沙地樟子松人工林衰退机制.北京:中国林业出版社,2005,32-45
    朱金兆,魏天兴,张学培.基于水分平衡的黄土区小流域防护林体系高效空间配置.北京林业大学学报,2002,24(5):5-13
    朱强根,张焕朝,方升佐,等.苏北杨树人工林细根分布及其季节动态.林业科技开发,2008,(3):45-48
    朱廷曜,孔繁智,朱劲伟,等.白音他拉疏林草场防护效应的初步分析.中国农业气象,1990,(3):62-64
    朱震达.中国的荒漠化及其治理.北京:科学出版社,1989,98-101
    邹春静,徐文铎.沙地云杉种内、种间竞争的研究.植物生态学报,1998,22(3):269-274
    邹梅.黄土高原半干旱丘陵区羊道斑状植被格局的结构特征分析及模拟.兰州大学硕士学位论文,2011,66-84
    左政,许彦红,朱霖,等.香格里拉高山松林分直径结构分析.西南林业大学学报,2011,31(2):29-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700