用户名: 密码: 验证码:
植物篱拦挡对沟道径流水力特性及挟沙力影响的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国南方湿润、半湿润丘陵地区,坡地面积大且是重要的耕地资源。由于不合理的坡地利用,加上南方地区雨量大、降雨强度大的影响,坡地发生沟蚀十分常见。由于汇聚了较多的水流,冲刷动能较大,对坡地侵蚀严重,造成坡地大量的水土流失。本文拟采用植物篱技术防治南方地区坡地沟蚀为目的,以南方地区坡地形成的沟道为研究对象,通过自主设计的室内模拟冲蚀水槽装置,在较大径流量冲刷条件下,对沟道径流的水力特性和径流挟沙力进行试验研究。分析了植物篱在径流中的受力和形变、植物篱拦挡下的径流钝体绕流和对径流动能的影响,试验研究了不同植物篱拦挡模式对径流水力特性及挟沙力的影响,取得的主要结论如下:
     1.在调查南方地区发生沟蚀的坡地地形、沟道径流特点的前提下,自主设计并制造了一种适合沟道侵蚀室内模拟试验的冲蚀水槽装置。该装置可进行无土、填土冲蚀试验和植物篱拦挡试验等。满足试验坡度为1°、5°、15°、25°、径流量为0-0.13m3/min、泥沙浓度为0~100g/L的径流冲刷试验要求,并可满足槽底糙度为0.01、0.02的试验要求。整体装置具有结构紧凑、占用空间少,试验操作方便等特点。
     2.无植物篱拦挡时,通过改变冲蚀槽底糙度,在设定4种试验坡度分别对应4种流量试验条件下,对沟道径流的水力特性进行了试验研究。研究得出了浅沟径流的挟沙力与坡度和流量的定量关系(糙度0.01),并对径流挟沙时不同粒径泥沙的沉积特性进行了分析。
     (1)沟道径流属于薄层水流范畴,槽底糙度对径流流速影响明显,槽底糙度越大,流速越小;流速随着流量、坡度的增加而增大且呈现幂函数增加关系(R2=0.98,p<0.05),径流水深随着流量的增加而增大,随着坡度的增加而减小,它们之间的关系符合幂函数关系(R2=0.98,p<0.05)。
     (2)试验得出沟道径流的雷诺数(Re)在842~5467之间,沟道水流流态属于紊流,水流雷诺数的大小与径流量呈现较好的正相关性,流量越大,雷诺数越大。坡度和槽底糙度对水流的雷诺数影响不明显;沟道径流的佛汝德数(Fr)在1.05~18.89之间,属于急流范畴,流量对佛汝德数的影响不明显,坡度和槽底糙度对佛汝德数的影响明显,它们的值越大,佛汝德数越小。
     (3)沟道径流的挟沙力与流量和坡度有关,径流挟沙力随流量的增加而增大、随着坡度的增加挟沙力急剧增加,通过回归分析得出的挟沙力模型为:T=292.95X0.98Y0.22(R2=0.93P<0.05)。流量对同一粒径泥沙沉积影响不明显,坡度对同一粒径泥沙沉积影响显著。坡度为1°时,径流对2-4mm泥沙的输移力较大,对0.02-2mm、小于0.02mmm粒径泥沙输移力较小;大坡度(15°、25。)时,小于0.02mmm粒径泥沙沉积量较多,2-4mm、0.02-2mm粒径泥沙颗粒沉积较少。
     3.通过力学分析和物理方法推演,对径流中的泥沙受力、侵蚀产沙、植物篱受力形变和径流钝体绕流进行了研究,结果表明:在径流作用和植物篱阻挡下,泥沙受到径流拖曳力、上举力、黏结力、渗透压力、重力、浮力和植物篱拦挡引起的阻力作用,径流发生产沙的剪切力至少大于水压引起的摩擦力、土壤黏结力引起的摩擦力和植物篱拦挡引起的阻力之和;植物篱形变的主要动力是径流水头压力,植物篱最大绕度方程为:植物篱转角方程为:并分析了植物篱布置时需要考虑植物篱变形因素的原因;在植物篱拦挡下,钝体绕流的宽度与流量呈正相关,与流速呈负相关的线性关系,植物篱对径流的阻挡影响径流的流线,径流沿流线的交叉碰撞和叠加导致其动能的消耗,降低了径流的侵蚀力。
     4.确定紫穗槐和蓑草在5cmX5cm、1OcmX10cm拦挡模式(糙度0.01)、4种坡度分别对应4种流量的条件下,对拦挡下的径流的水力特性进行试验研究,并研究了不同拦挡模式下径流的挟沙力、拦挡效果及不同粒径泥沙的沉积特性。
     (1)在植物篱拦挡下,径流流速与单宽流量、坡度呈幂函数增加关系(R2=0.98P<0.05);蓑草5cmX5cm拦挡模式在小坡度(1°、5°)时可以大大降低径流的流速,但在大坡度时对流速的影响较小,其它3种拦挡模式在坡度为1°时对流速影响有限,坡度为5°、15。、25°时对流速影响不明显。径流深度与单宽流量、坡度呈幂函数关系(R2=0.98P<0.05);植物篱拦挡时径流深度随径流量的增加而增大,在坡度为1°时增长较快,但在5°、15°、25。时增长缓慢。小坡度时径流深度较深,大坡度时径流深度较浅,大坡度时径流深度之间的极差较小。
     (2)植物篱拦挡下水流流态仍属于紊流流态。植物篱的拦挡、坡度对沟道径流的雷诺数影响不明显,流量是影响水雷诺数的主控因素。坡度对佛汝德数的影响十分明显,其中蓑草在5cm X5cm模式拦挡下坡度为1°时,径流属于缓流,其它情况均为急流。
     (3)在植物篱拦挡下,小坡度时径流的挟沙力随流量的增加而增大,径流量是影响径流挟沙力的主要因素;在大坡度时,径流的挟沙力很大,坡度是影响径流挟沙力的主要因素;4种模式的拦沙能力分别为蓑草5cmx5cm>紫穗槐5cmx5cm>蓑草>10cmxl0cm>紫穗槐10cmx10cm;流量对同一粒径泥沙沉积影响不明显,坡度对同一粒径泥沙沉积影响显著。在蓑草拦挡下,坡度为1°时,较大粒径的泥沙颗粒发生输移,较小颗粒泥沙易于沉积;坡度为50时,2~4mm泥沙沉积相对量较少,0.02~2mm粒径泥沙易于输移。对于0.02mm以下粒径泥沙,在坡度为1°、5°时,植物篱对该粒径泥沙拦挡效果较差。
In the humid and semi-humid hilly area in South China, there are plenty of the slope land and it's important arable resource, the gully erosion is very common phenomenon because of the influence of the unreasonable land use and heavy rainfall. Because much water is collectted in the gully, and it has larger erosion kinetic energy leading soil and water loss away, so the slope land erosion is serious. The purpose of this paper was using the hedgerow technology to prevent the gully erosion in south area, and the object was the gully formed in the southern slope land, under the conditions of the large runoff, experimental studied hydraulic characteristics and transporting sediments capacity of gully flow through simulation erosion flume device designed by ourselves. Analyzed not only the stress and deformation of hedgerow, but also the effects of hedgerow block on the runoff kinetic energy and the runoff around a blunt body, and experimental studied the effects of different hedgerow block on hydraulic characteristics and transporting sediments capacity of gully flow, the main results were as follows:
     1. According to character of the gully flow and the slope land of gully erosion in the south area, we designed a kind of erosion flume device which was suitable for gully erosion simulation experiment indoor. This device could complete a variety of experiment including soilless and soil erosion experiment, hedgerow block experiment and so on. Experiment condition included that slope gradient is1°,5°,15°,25°, the flow discharge is0-0.13m3/min, the sediment concentration is0-100g/L, the roughness is0.01and0.02. The whole device is characteristic of compact structure, less space occupation, convenient experiment operation.
     2. By using different roughness at the bottom of erosion flume and no hedgerow block, under the conditions of4kinds of experiment slope gradient corresponding to4kinds of flow discharge, experimental studied the hydraulic characteristics of gully flow. The results showed the quantitative relationship between the transporting sediments capacity of ephemeral gully flow and the slope gradient and the flow discharge (rigesity was0.01), and analyzed the deposition character of different size sediments.
     (1) The ephemeral gully flow belongs to the laminar flow, roughness of the erosion flume had obvious effect on the flow velocity, the results showed that the bigger roughness was, the smaller the velocity was; the flow velocity increased with increasing both of the flow discharge and of the slope gradient, the relationship was the increasing power function (R2=0.98,p<0.05),the water depth increased with increasing of the flow discharge and it reduced with the increase of the slope gradient, the relationship was the power function (R2=0.98,P<0.05).
     (2) The experiment results showed Reynolds number (Re) was842-5467, gully flow was turbulent flow, there was a good positive correlation between Reynolds number and flow discharge, the more the flow discharge was, the bigger Reynolds number was. The slope gradient and roughness of erosion flume wasn't obvious effects on Reynolds number; the Froude number (Fr) is1.051-8.89, gully flow belonged to the torrent, the flow wasn't obvious effect on the Froude number, the slope gradient and roughness of the flume had obvious effect on Froude number, the bigger their value was, the smaller Froude number was.
     (3) The transporting sediments capacity of gully flow was related to the flow discharge and the slope gradient, it increased with the increasing of the flow discharge and increased sharply with the increase of the slope gradient, the transporting sediments capacity model was T=292.95X0.98Y0.22by the regression analysis (R2=0.93P<0.05). The flow discharge had little effect on the same size sediments deposition but the slope gradient had obvious effect. When the slope gradient was1°, the transporting sediments capacity to2-4mm sediments was larger, but it was smaller to0.02-2mm and less than0.02mm sediments; when the slope gradient was larger(15°,25°), the size of sediments deposition was more to less than0.02mm sediments, but it is less to2-4mmand0.02-2mm sediment.
     3. The experiment had studied sediment stress, erosion and sediment yield, hedgerow deformation and the runoff around a blunt body by using mechanical analysis and physical reduction, the results showed that the sediment was stopped by drag force, lift force, cohesion force, osmotic pressure, gravity, and buoyancy because of the runoff and hedgerow block, so sediment yield shear force caused by the runoff is at least more than the total friction caused by the water pressure, soil cohesion and the resistance caused by hedgerow block; The Hedgerow deformation power was mainly come from the runoff head pressure, Hedgerow maximum deflection formula was hedgerow angle formula was and analyzed the causes of hedgerow deformation when laid hedgerow; under the condition of the hedgerow block, the water width around a blunt body was positive linear correlation to flow discharge but negative to the flow velocity, the hedgerow block influenced streamline of runoff, runoff collision and stack on the crossing of streamline, so the kinetic energy of runoff was reduced, the erosion force of runoff was also reduced.
     4. When Amorpha fruticosa or Juncus effusus laying mode was5cm×5cm and10cm×10cm (roughness was0.01), under the conditions of4kinds of the slope gradient corresponding to4kinds of the flow discharge, experimental studied the hydraulic characteristics of the runoff, the transporting sediments capacity, block effects and the different size sediments deposition character.
     (1) Under the conditions of the hedgerow block, the relationship between the flow velocity, the flow unit discharge and the slope gradient was a power function (R2=0.98P<0.05); When the Juncus effusus was in5cm×5cm mode block and the slope gradient was smaller (1°nd5°), the flow velocity reduced greatly, in the large slope gradient, the velocity changes were smaller; the other3kinds of block mode had few effects on the velocity. The relationship between water depth and the unit discharge, the slope gradient was a power function (R2=0.98P<.05); under the condition of hedgerow block, the water depth increased with the increase of the flow discharge, however, it increased rapidly when the slope gradient was in1°and slow in5°,15°,25°. In the small slope, the water depth was deeper, in the large slope, the water depth was relatively shallow and the change range of the water depth was smaller.
     (2)Under the condition of the hedgerow block, the flow pattern belonged to the turbulent flow. Hedgerows block and the slope gradient had few effects on Reynolds number, the flow discharge was the main factors of influencing Reynolds number. The slope gradient had obvious effect on Froude number, when the Juncus effusus was5cm×5cm mode block and the slope gradient was1°, the gully flow belongs to the slow flow, the others belongs to the torrent.
     (3)Under the condition of the hedgerow block, in the small slope, the transporting sediments capacity increased with the increase of the flow discharge, the flow discharge was the main factor of influencing transporting sediments capacity. In the large slope, the transporting sediments capacity was very large, so the slope gradient was the main factor. The transporting sediments capacity of4modes were Juncus effusus5cm×5cm> Amorpha fruticosa5cm×5cm> Juncus effusus10cm×10cm> Amorpha fruticosa10cm×1Ocm; the flow discharge hadn't obvious effect on the same size sediment deposition but the slope gradient was obvious to it. Under the condition of the Juncus effusus block, when the slope gradient was1°, the large size sediments was easy to be transported, but the small size was deposited more; when the slope gradient was5°, the2-4mm sediments was deposited more, the0.02-2mm sediment was easy to be transported. When the slope was1°or5°, the hedgerow bock hadn't obvious effect on deposition of less than0.02-2mm sediments.
引文
1. 蔡崇法,王峰,丁树文,黄丽,史志华.间作及农林复合系统中植物组分间养分竞争机理分析.水土保持研究,2000,7(3):27-29
    2. 蔡强国,卜崇峰.植物篱复合农林业技术措施效益分析.资源科学,2004,26(1):7-15
    3. 蔡强国,黎四龙.植物篱笆减少侵蚀的原因分析.土壤侵蚀与水土保持学报,1998,4(2):54-60
    4. 蔡强国,陆兆熊,王贵平.黄土丘陵沟壑区典型小流域侵蚀产抄过程模型.地理学报,1996,51(2);108-115
    5. 蔡强国.坡面细沟发生临界条件研究.泥沙研究,1998(1):52-59
    6. 蔡强国.降雨特性对溅蚀影响的初步试验研究.中国水土保持,1986,(6):41-42
    7. 蔡强国.坡面细沟发生临界条件研究.泥沙研究,1998,(1):52-59
    8. 查世煜,李秋洪.三峡库区坡耕地的水土流失问题与对策.农业环境与发展,1998,15(2):30-33
    9. 陈国祥.土壤侵蚀与流域产沙的物理过程及预报模拟.全国泥沙基本理论研究学术讨论会会议论文集.北京:中国水利水电出版社,1995:214-249
    10.陈明霞,查轩.生草覆盖和植物篱措施对红壤坡地土壤侵蚀调控效应研究.亚热带资源与环境学报,2009,14(1):32-37
    11.陈一兵,林超文,朱钟麟.经济植物篱种植模式及其生态经济效益分析.水土保持学报,2002,16(2):80-83
    12.陈永宗.黄河中游黄土丘陵区的沟谷类型.地理科学,1984,4(4):321-327
    13.陈治谏,廖晓勇,刘邵权.坡地植物篱农业技术生态经济效益评价.水土保持学报,2003,17(4):125-127
    14.程冬兵,蔡崇法.等高绿篱技术保水抗旱效益研究.长江流域资源与环境,2008,17(5):793-796
    15.崇峰,蔡强国,袁再健.三峡库区等高植物篱的控蚀效益及其机制.中国水土保持科学,2006,4(4):14-18
    16.崇婧,杨达源,姜洪涛.长江三峡地区坡地发育初步研究.长江流域资源与环境,2002,11(3):264-268
    17.窦国仁.论泥沙启动流速.水利学报,1960,(4):44-60
    18.费世民,向成华.四川盆地丘陵区坡地农林复合系统内部结构和系统综合效能的研究.林业研究,2000,36(3):33-39
    19.高学田,包忠谟.降雨特性和土壤结构对溅蚀的影响.水土保持学报,2001,15(3):24-26
    20.龚家国,周祖吴,贾仰文,王文龙.耕作对黄土丘陵沟壑区浅沟侵蚀的影响试验.人民黄河,2010,32(9):86-89
    21.顾晓勤,谭朝阳主编.材料力学.北京:机械工业出版社,2011
    22.何园球,杨艳生主编.红壤生态系统研究.北京:中国农业出版社,1998:211-229
    23.胡刚,伍永秋,刘宝元.东北漫岗黑土区浅沟侵蚀发育特征.地理科学,2009,29(4):545-548
    24.湖北省林业厅.湖北德援水土保持造林项目技术总结.1998,57-68
    25.黄秉维.再论华南坡地利用与改良.地理研究,1993,1:1-7
    26.黄丽,丁树文.三峡库区紫色土养分流失的试验研究.土壤侵蚀与水土保持学报,1998,4(1):8-13
    27.黄儒钦主编.水力学教程.成都:西南交通大学出版社,1997(第二版)
    28.贾志军,李傻义,王小平.地面坡度对墟耕地土壤侵蚀的影响见:陈永宗主编.晋西黄土高原土壤侵蚀规律实验研究文集.北京:水利电力出版杜,1990,26-31
    29.江忠善,李秀英.坡面流速试验研究.中国科学院西北水土保持研究所集刊,1985,(7):46-52
    30.江忠善,刘志.降雨因素和坡度对溅蚀影响的研究见:陆宗凡主编,黄土丘陵沟壑区水土保持型生态农业研究(下册).陕西杨凌:天刚出版杜,1990,115-121
    31.江忠善,宋文经,李秀英.黄土地区天然降雨雨滴特性研究.中国水土保持,1983,(3):32-36
    32.江忠善,宋文经.坡面流速的实验研究.中国科学院水利部水土保持研究所集刊,1988,(7):46-52
    33.焦菊英.王万忠,李靖.黄土高原林草水土保持有效盖度分析.植物生态学报,2000,24(5):608-612
    34.经济参考报.解读中国3.59亿亩坡耕地的“政治经济学”.2009,6,29
    35.黎建强,张洪江,陈奇伯,周红芬.长江上游不同植物篱系统土壤抗冲、抗蚀特征.生态学报,2012,21(7):1223-1228
    36.黎建强,张洪江,程金花.不同类型植物篱对长江上游坡耕地土壤养分含量及坡面分布的影响.生态环境学报,2010,19(11):2574-2580
    37.李杰,彭方仁,黄宝龙.农林复合系统种群互作研究进展.世界林业研究,1999,12(5):10-14
    38.李勉,姚文艺,李占斌.黄土高原草本植被水土保持作用研究进展.地球科学进展,2005,20(1):74-80
    39.李文华,赖世登.中国农林复合经营.北京:科学出版社,1994
    40.李新通,朱鹤健.UCCO镶嵌农林复合系统的可持续性研究.福建师范大学学报(自然科学版),1999,15(2):101-108
    41.李秀彬,彭业轩,姜臣.高活篱笆技术提高坡地持续生产力探讨.地理研究,1998,17(3):309-315
    42.李秀彬,施迅.等高活篱笆试验研究的若干问题.地理研究,1996,15(1):66-72
    43.李玉柱,苑明顺主编.流体力学.北京:高等教育出版社,2004
    44.李占斌,朱冰冰,李鹏.土壤侵蚀与水土保持研究进展.土壤学报,2008,45(5):802-809
    45.廖晓勇,陈治谏,刘邵权.陡坡地皇竹草水土保持效益研究.水土保持学报,2002,16(4):34-36
    46.刘定辉,赵燮京,曹均城,刘敏,王昌桃,毛仕昌.紫色丘陵区蓑草植物篱的减流减沙效应及其机理.西南农业学报,2007,20(3):439-442
    47.刘青泉,李家春,陈力.坡面流及土壤侵蚀动力学(Ⅱ):土壤侵蚀.力学进展,2004,34(4):493-511
    48.卢琦.农用林业研究的回顾与展望.世界林业研究.1996,(2):39-47
    49.陆兆熊,Merz W.应用盐液示踪技术测定表面流速.见:中国科学院地理研究所,加拿大多伦从大学地理系.山西省水土保持研究所.晋西黄土高原土壤侵蚀管理与地理信息系统应用研究.北京:科学出版社,1992
    50.陆兆熊,蔡强国,朱同新.黄土丘睦沟壑区土壤侵蚀过程研究.中国水土保持,1991,11:19-22
    51.罗伟祥,自立强,宋西德.不同覆盖度林地和草地的径流量与冲刷量.水土保持学报,1990,4(1):30-34
    52.马廷,周成虎,蔡强国.不同植物篱坡面的土壤侵蚀过程CA模拟地理研究,2006,25(6):959-965
    53.孟庆岩,王兆,宋莉莉.我国热带区胶-茶-鸡农林复合系统氮循环研究,应用生态学报,2000,11(5):707-709
    54.牟金泽.雨滴速度计算公式.中国水土保持,1983,3:40-41
    55.潘成忠,上官周平.不同坡度草地含沙水流水力学特性及其拦沙机理.水科学进展,2007,18(4):490-495
    56.蒲玉琳,谢德体,林超文,魏朝富.植物篱—农作模式坡耕地土壤综合抗蚀性特征.农业工程学报,2013,29(18):125-133
    57.全为民,严力蛟.农业面源污染对水体富营养化的影响及其防治措施.生态学报,2002,22(3):291-299
    58.沙际德,将允静.试论初生态侵蚀性坡面薄层水流的基本特性.水土保持学报.1995,9(5):29-35
    59.申元村,冷疏影,张永涛等.坡地农林复合系统的结构类型与效益分析—以长江三峡库区坡地农业为例.地理研究,1995,14(3):42-50
    60.申元村.资源工程体系建设探讨—以三峡库区坡地资源开发保护体系建设为例.长江流域资源与环境,1998,7(2):97-101
    61.施迅.坡地改良利用中活篱笆的种类选择和水平空间结构初步研究.生态农业研究,1995,3(2):49-53
    62.史东梅,卢喜平,刘立志.三峡库区紫色土坡地桑基植物篱水土保持作用研究.水土保持学报,2005,19(3):75-79
    63.史晓楠,雷廷武,夏卫生.电解质示踪测量坡面薄层水流流速的改进方法.农业工程学报,2010,26(5):65-70
    64.孙辉,唐亚,赵其国.干旱河谷区坡耕地植物篱种植系统土壤水分动态研究.水土保持学报,2002,16(1):84-87
    65.孙辉,唐亚,陈克明.固氮植物篱改善退化坡耕地土壤养分状况的效果.应用与环境生物学报,1999,5(5):473-477
    66.孙辉,唐亚,陈克明.等高固氮植物篱控制坡耕地地表径流的效果.水土保持通报,2001,21(2):48-51
    67.孙辉,唐亚,陈克明.固氮植物篱防治坡耕地土壤侵蚀效果研究.水土保持通报,1999,19(6):1-6
    68.孙辉,唐亚,谢嘉穗.植物篱种植模式及其在我国的研究和应用.水土保持学报,2004,18(2):114-117
    69.唐科明,张光辉,任宗萍,汪邦稳.坡面薄层水流分离土壤的动力学机理.水土保持学报,2011,25(4):46-49
    70.唐克丽,陈永宗.黄土高原地区土壤侵蚀区域特征及综合治理途径.北京:中国科学技术出版社,1990
    71.唐克丽,郑世清,席道勤.杏子河流域坡耕地的水土流失及其防治.水土保持通报,1983,3(5):43-48
    72.唐克丽.中国土壤侵蚀与水土保持学的特点展望.水土保持研究.1999,6(2):2-7
    73.唐亚,陈克明,谢嘉穗.论固氮植物在山区农业持续发展中的应用.地理研究,1999,(13):73-78
    74.唐亚,谢嘉穗,陈克明.等高固氮植物篱技术在坡耕地可持续耕作中的应用.水土保持研究,2001,8(1):104-109
    75.唐政洪,蔡强国,许峰.半干旱区植物篱侵蚀及养分控制过程的试验研究.地理研究,2001,20(5):593-600
    76.王贵平,陆兆熊.晋西北黄土丘陵沟壑区坡地土壤侵蚀及预报研究.中国水土保持,1992,5: 23-28
    77.王晗生,刘国彬.试论防蚀有效植被的基本特征——贴地面覆盖.中国水土保持,2000,3:28-31
    78.王文龙,雷阿林,李占斌,唐克丽.黄土丘陵区坡面薄层水流侵蚀动力机制实验研究.水利学报,2003,(9):66-70
    79.吴发启,刘秉正主编,黄土高原流域农林复合配置.郑州:黄河水利出版社,102-235
    80.吴普特.动力水蚀实验研究.西安:陕西科学技术出版社,1997
    81.吴普特,周佩华.地表坡度与薄层水流侵蚀关系的研究.水土保持通报,1993,13(3):1-5
    82.吴淑芳,吴普特,原立峰.坡面径流调控薄层水流水力学特性试验.农业工程学报,2010,26(3):14-19
    83.武敏,郑粉莉,黄斌.黄土坡面汇流汇沙对浅沟侵蚀影响的试验研究.水土保持研究,2004,11(4):74-77
    84.武敏,郑粉莉.浅沟侵蚀过程及预报模型研究进展.水土保持研究,2004,11(4):113-116
    85.肖培青,李家春,陈力.坡面流及土壤侵蚀动力学(Ⅰ):坡面流.力学进展,2004,34(3):360-373
    86.肖培青,郑粉莉,姚文艺.坡沟系统坡面径流流态及水力学参数特征研究.水科学研究,2009,20(2):236-241
    87.徐礼煜,王明珠,石华.复合农林业—一种值得推广的土地利用方式.当代复合农林业,1993,1(1):4-12
    88.许峰,蔡强国,吴淑安.等高植物篱控制紫色土坡耕地侵蚀的特点.土壤学报,2002,39(1):71-79
    89.许峰,蔡强国,吴淑安.坡地农林复合系统土壤养分过程研究进展.水土保持学报,2000,14(1):82-87
    90.许峰,蔡强国,吴淑安.等高植物篱带间距对表土养分流失的影响.土壤侵蚀与水土保持学报,1999,5(2):23-29
    91.许峰,蔡强国,吴淑安.坡地等高植物篱带间距对表土养分流失影响.土壤侵蚀与水土保持学报,1999,5(2):23-29
    92.许峰,蔡强国.等高植物篱在南方湿润山区坡地的应用—以三峡库区紫色土坡地为例.山地学报,1999,17(3):193-199
    93.许建民.黄土高原浅沟发育主要影响因素及其防治措施研究.水土保持学报,2008,22(4):39-41
    94.杨锦,吕宏兴,上官周平.薄层水流水力特性试验研究.灌溉排水学报,2008,27(4):58-61
    95.姚文艺,汤立群主编.水力侵蚀产沙过程及模拟.郑州:黄河水利出版社,2001
    96.姚文艺.坡面流阻力规律试验研究.泥沙研究,1996,3:74-82
    97.翟娟,卢晓宁,熊东红,李佳佳,杨丹,苏正安,董一帆.土壤侵蚀径流水动力学特性及其影响因素的研究进展.安全与环境工程,2012,19(5):1-5
    98.张光辉,梁一民.植被盖度对水土保持功效影响的研究综述.水土保持研究,1996,3(2):104-110
    99.张建锋,单奇华,钱洪涛,徐永辉,曹孟军.坡地固氮植物篱在农业面源污染控制方面的作用与营建技术.水土保持通报,2008,28(5):180-184
    100.张劲松,孟平,尹昌君,崔国栋.农林复合系统的水分生态特征研究述评.世界林业研究,2003,16(1):10-13
    101.张劲松,孟平.农林复合系统水分生态特征的模拟研究.生态学报,2004,24(6):1172-1177
    102.张科利,唐克丽,王斌科.黄土高原坡面浅沟侵蚀特征值的研究.水土保持学报,1991,5(2): 8-13
    103.张科利,唐克丽.浅沟发育与陡坡开垦历史的研究.水土保持学报,1992,6(2):59-62
    104.张科利,唐克丽.陕北黄土丘陵沟壑区坡耕地浅沟及其防治途径.陕西杨陵:中国科学院水利部水土保持研究所,1988
    105.张科利.坡面土壤侵蚀机理及侵蚀过程模型的基础研究.清华大学博士后研究工作报告,1998
    106.张维理,武淑霞,冀宏杰.中国农业面源污染形势估计及控制对策.中国农业科学,2004,37(7):1008-1017
    107.张小峰,刘兴年主编.河流动力学.北京:水利水电出版社,2010
    108.张永光,伍永秋,刘洪鹄,刘宝元.东北漫岗黑_土区地形因子对浅沟侵蚀的影响分析.水土保持学报,2001,21(1):35-38
    109.郑粉莉,高学田.黄土坡面土壤侵蚀过程与模拟.西安:陕西人民出版社,2000:96-119
    110.郑粉莉,高学田.坡面土壤侵蚀过程研究进展.地理科学,2003,23(2):230-235
    11 1.郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究.土壤学报,1989,28(2):109-116
    112.郑粉莉,唐克丽,周佩华.黄土高原坡耕地的细沟侵蚀及其防治途径.陕西杨陵:中国科学院西北水土保持研究所,1983
    113.郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀的发生、发展和防止途径的探讨.水土保持学报.1987,1(1):36-48
    114.郑良勇,李占斌,李鹏.黄土区陡坡径流水动力学特性试验研究.水利学报,2004,(5):46-51
    115.钟勇.美国水土保持中的缓冲带技术.中国水利,2004(10):63-65
    116.朱显谟.黄土区土壤侵蚀的分类.土壤学报,1956,4(2):99-11
    117.朱钟麟,陈一兵.经济植物篱主要模式及其生态经济效益研究.西南农业学报,2008,18(6):715-718
    118. Abrahams AD, Li G. Effect of saltating sediment on flow resistance and bed roughness in overland flow. Earth Surface Processes and Landforms,1998,23(10):953-960
    119. Adisak Sujjapongse. Management of Sloping land for sustainable Agriculture. IBSRAM publication.2002:151-186
    120. Agus F, Cassel DK, Garrity DP. Soil water and soil physical properties under contour hedgerow systems on sloping oxisols. Soil & Tillage Research,1997,40:185-199
    121. Agus F, Garrity DP, Cassel DK. Soil fertility in contour hedgerow systems Oil sloping oxisols in Mindanau. Philippines. Soil & Tillage Research,1999,50:159-167
    122. Alfaia, Sonia S.Evaluation of soil fertility in smallholder agroforestry systems and pastures in western Amazonia.Agriculture.Ecosystem & Environment.,2004,102(3):409-414
    123. Bagnold, RA. An Approach to the Sediment Transport Problem from General Physics. Washington DC; United States Government Printing Offiee,1996:1-37
    124. Baudry J, Bunce RGH, Burel F. Hedgerows; an international perspective on their origin, function and management. Journal of Environmental Management,2000,60:7-22
    125. Bregman L. Comparison of the erosion control potential of agroforestry systems in the Himalayan region. Agroforestsy systems,1993,21 (2):101-116
    126. Buck LE. Agroforestry policy issues and research directions in the US and less developed countries; insights and challenges from recent experience. Agroforestry Systems,1995,30(1/ 2):57-73
    127. Cai CF, Ding SW, Shi ZH. The effect of contour hedgerow—intercropping system on slope land and Some problems of application,The proceeding of 12th international soil conservation organization, May 26-31,Beijing,China.Tsinghua University Press,2002:344-349
    128. Cannell MGR. The central agroforestry hypothesis; the tree must acquire resources that the crop would not otherwise acquire. Agroforestry Systems,1996,34(1):27-31
    129. Casali J Bennett, S Robinson K. Processes of ephemeral gully erosion. International Journal of Sediment Research,2000,15(1):31-41
    130. Dabney SM, Meyer LD. Deposition pattern of sediment trapped by Grass hedges, Transaction of the AESE,1995,38(6):1797-1729
    131. Dabney SM, Mcgrogor KC. Vegetative barriers for runoff and sediment control.In integrated resources management and landscape modification for environmental protection. Transaction of the AESE,1993,36(2):710-719
    132. Dunne T, Dietrich WE. Experimental study of Horton overland flow on tropical hillslopes,2. Hydraulic characteristics and hillslope hydrographs. Z Geomorphol Suppl.,1980,35:60-80
    133. Elliot WJ, Laflen JM. A process—based rill erosion model. Trans, of the ASAE,1993, 36:65-72
    134. Ellison WD. Studies of raindrop erosion. Aric. Eng.,1944,25:131-136
    135. Emmett WW. Overland flow. Kirkby MJ (ed.), Hillslope Hydrology, New York:John Wiley and Sons,1978,145-176
    136. Emmett WW. The hydraulics of overland flow on hillslopes. United States Geological Survey. Washington D C,1970,662-A
    137. Fayemelihin, A A. Effect of alley cropping with woody legume(Leucaena leucocephala)and nitrogen application on intercropped maize(Zea mays). Training Report. Ibadan, Nigeria:IITA, 1986
    138. Foster GR, Meyer LD, Onstad CA. An erosionqeuation deirved from basic erosion principles. Trnas. of ASAE,1977,20(4):678-682
    139. Foster GR. Modeling the erosion process. In; Haan CT. Hydrologic Modeling of small watershed. de. C. T. Haan, ASAE Monograph No5. St.1982,297-360
    140. Foster GR. Understanding ephemeral gully erosion. In; Committee on Conservation Needs and Opportunities.Soil Conservation(Ed.). Assessing the National Resources Inventory. Board on Agricultur. National Research Council. Washington. DC:National Academy Press,1986,90-125
    141. GarcAAa-FernAAndez, Carmen, Casado, Miguel A. Forest recovery in managed agroforestry systems:The case of benzoin and rattan gardens in Indonesia. Forest Ecology and Management, 2005,214(1-3):158-169
    142. Haggar JP, Warren GP, Beer JW, et al. Phosphorus availability under alley cropping and mulched and unmulched sole cropping systems in Costa Rica. Plant and Soil,1991,137(2):275-283
    143. Harper JL. Population biology of plants. London, UK:Acaderaic Press,1977
    144. Horton RE. Erosional development of streams and their drainage basins:hydrophysical approach to quantitative morphology. Geological Society of America Bulletin.1945,56:275-370
    145. Horton RE, Leach HR, Van Vliet R. Laminar sheet flow. Transactions of the American Geophysical Union.1934,15(2):393-404
    146. Jin CX, Romkens MJM. Trapped Mulch Increases sedimentation removel by vegetative filter strips.Transactions of the ASAE,2002,45(3):947-954
    147. Kang BT, Wilson GF, Sipkens L. Alley cropping maize(Zea mays,L)and leucaena(Leucaena leucocephala Lam de Wit)in southern Nigeria. Plant and soil,1981,63:165-179
    148. Kang BT, Wilson GF, Lawson TL. Alley Cropping; A stable alternative to shifting cultivation. Ibadan. Nigeria; IITA.1984.22
    149. King KW, Norton LD. Methods of rill flow velocity dynamics. American Society of Agricultural Engineers,1992,92-2542
    150. Krumbein WC. Fundamental attributes of sedimentary particles. Proc.,2nd Hyd. Conf., State Univ. Iowa,1943,318-331
    151. Lavender EA. Genotypic variation in the root system of Betula pendula. Aberdeen:University of Aberdeen,1992
    152. Laws JO, Parsons DA. The relationship of raindrop size to intensity. Trans. Am. Geography. Union,1943,22:452-459
    153. Lei T, Xia W, Zhao J. Method of measuirng velocity of shallow water flow of soil erosion with an electrolyte tracer. Joumal of Hydrology,2005,301(1/2/3/4):139-145
    154. Li G, Abrahams AD. Correction factors in the determination of mean velocity of overland flow. Earth Surface Process and Landforms,1996,21:509-515
    155. Lundgren BO. ICRAF into 1990s.Agroforestry Today.1990,2(4):14-16
    156. Martin CS, Mostafa MA. Seepage force on interfacial bed particles. J.Hyd. Div., Proc., Amer.Soc. Civil Engrs.1971,1081-1100
    157. Mcgregor CK, Dabney SM, Johnson J R. Runoff and soil loss from cotton plots with and without stiff-grass hedges.Transactions of the ASAE,1999,42(2):683-685
    158. Meyer LD, Foster GR, Romkens MJM. Source of soil eroded by water from upland. In:Present and prospective technologe for prediction sediment yield and source. Proc. Sediment yield workshop, USDA Sedimentation Lab,Oxford, MS Agric Res Service ARS-S-40.1975a,177-189
    159. Meyer LD. Sediment-trapping effectiveness of stiff-grass hedges.Transaction of the ASAE.1995, V38(3):809-815
    160. Morgan RPC. Soil Erosion and Conservation. Addison-Wesley Longman, Edinburgh,1995
    161. Nachtergaele J, Posen J, Vandekerckhove L. Testing the Ephemeral Gully Erosion Model(EGEM) for two Mediterranean environments. Earth Surface Processes and Landforms,2001,26(1):17-30
    162. Nearing MA, Fsoter GR, Lane LJ. A process—tased soil ersoion model for USDA—water erosion prediction project technology. Trans, of ASAE,1989,32(5):1587-1593
    163. Nearing MA. Bradford JM. Relationships between waterdrop properties and forces of impact. Soil Sci Soc Am j,1985,51:425-530
    164. Nearing M, Norton L, Bulgakav A. Hydraulics and erosion in eroding rills. Water resources Research,1997,33(4):865-876
    165. Nearing MA, Simanton R, Norton D, Bulygin SJ. Soil eroding by surface water flow on a stony, semiarid hill slope. Earth Surface Processes and Landforms,1999,24:677-686
    166. Pattanayak S, Mercer DE. Valuing soil conservation benefits of agroforestry; contour hedgerows in the Eastern Visayas, Philippines. Agricultural Economics,1998,18:31-46
    167. Rauws G, GoversG Hydraulic and soil mechanical aspects of rill generation on agricultural soils. J. of Soil Sciences(UK),1988,39:111-124
    168. Reiche P. A survey of weathering processes and products. Univ. New Mexico Pub. In Geology, No.3, Revised,1950,95-104
    169. Roels JM. Flow resistance in concentrated overland flow on rough slope surface. Earth Surface Process and Landforms,1984,9:541-551
    170. Savat J, Ploey J DE. Sheetwash and rill development by sueface flow. In; Eryan R B and Yair A Bdelnad Geomorphology and Piping. Geobooks, Norwich,1998:113-126
    171. Smith MW, CoxNJ, Bracken LJ. Applying flow resistance equations to overland flows. Progress in Physical Geography,2007,31(4):363-387
    172. Sundriyal RC, Rai SC, Sharma E. Hill agroforestys systems in south Sikkim, India. Agroforestys systems,1993,26(3):215-235
    173. Tacio HD. Sloping agricultural land technology(SLAT); A sustainable agroforestry scheme for the uplands. Agrofortsy systems,1993,22(2):145-152
    174. Tang Y. Agricultural development in Ningnan County; government—community interaction to promote technology. Mountain Research and Development,2001,21:212-214
    175. Tang Y. Options lot improving productivity of marginal farms—a regional programme on soil conserving fanning systems.1998-2001. International centre for integrated mountain development(ICIMOD), Kathmandu, Nepal.1999
    176. Wischmeier WH, Mannering JV. Relation of Soil properties to its erodibility. Soil Sci Soc Am Proc,1969,33(1):131-137
    177. Woodward DE. Method to predict cropland ephemeral gully erosion. Special Issue; soil erosion modeling at the catchments scale. Catena,1999,37(3-4):393-399
    178. Woolhiser DA, Hanson CL, Kuhlman AR. Overland flow on rangeland watersheds. Journal of Hydrology (N.Z.),1970,9(2):336-356
    179. Young RA, Wiersma JL. The role of rianfall impactin soil detachment and transport. Water Resourcse Research,1973,9(6):1629-1636
    180. Zhang XC, Nearing MK. Miller WP. Modeling interrill sediment delivery. Soil Sci. Sco. Am. J, 1998,62:438-444
    181. Zheng FL., Huang CH. Gully erosion. In; Lal Rattan edited. Encyclopedia of soil science. New York; Marcel Dekker. Inc.,2002,630-634
    182. Zinkhan FC, Mercer DE. An assessment of agroforestry systems in the southern USA. Agroforestry Systems,1997,35:303-321

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700