用户名: 密码: 验证码:
筑坝土料的水利工程性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国在水利水电工程土石坝建坝过程中,由于对筑坝土料的水利工程性质认识还不够深入,一般安全系数取值都较高,存在极大的浪费现象,这给国家和人民造成了不应有的经济负担和损失。加快筑坝土料的水利工程性质研究步伐,提高对筑坝土料水利水电工程性质的认识,建设既安全又经济的水利水电工程,为国家节约资金,促进社会发展是水利水电工作者、岩土工作者肩负的历史使命。开展筑坝土料的水利水电工程性质的深入研究不仅可以丰富水利水电工程、岩土工程学科的科学理论,而且可以直接减轻国家在基础建设上的经济负担,因而具有十分重要的理论指导意义和现实生产意义。
     为了全面深入认识筑坝土料的水利水电工程性质,为将来的水利水电工程建设提供理论和试验依据,本文以筑坝土料的水利工程性质为主线,以水利工程筑坝土料的压实性、渗透性、渗透变形特性以及粘土的抗拉性能为重点,主要依托西安市黑河工程建设实际,根据现有试验条件,开展了筑坝土料的几个水利水电工程性质专题问题的室内试验研究。研究主要内容分为三大部分,即土的最大干密度研究、土的水力学性质研究和非饱和粘性土的抗拉强度研究。
     在土的最大干密度研究中,对粘性土最大干密度的主要影响因素、含水率对粘性土最大干密度的控制作用、粘性土最大干密度的简便试验方法、超粒径粗粒土最大干密度的试验处理方法和施工控制等问题进行了探讨。
     在土的水力学性质研究中,主要在粗粒土的渗透系数与其级配指标的关系、粗粒土的渗透变形坡降与颗粒级配参数的相关性、粘性土与砾质土在不同开缝度下的裂缝冲刷变化规律方面进行了探讨。
     在非饱和粘性土的抗拉强度研究中,采用单轴和三轴两种拉伸方法对非饱和粘性土的抗拉强度进行了试验研究,对比了相同性状非饱和粘性土的抗拉与抗剪强度规律,对二者的内在联系进行了探讨。
     通过试验和分析,总结出以下几点结论:
     (1)筑坝土料的最大干密度主要受击实功能和含水率两个因素的影响,在含水率一定的情况下,干密度随击实功能增大而增加,在击实功能一定的情况下,土体的干密度与含水率呈现出正态曲线关系,在某一适中含水率下土体干密度最大,即存在一个最优含水率和最大干密度。土体的最大干密度受含水率的限制,其最大干密度不会超过土体含水率下击实达到饱和状态所限制的最大干密度。
     (2)采用剔除法逐步剔除粗粒土大粒径料,对剩余料进行最大干密度试验的研究表明:粗粒土最大干密度与剔除量、剩余量之间存在较强的线性相关规律,提出了以此规律进行外推,从而间接求出超粒径粗粒土原级配料的最大干密度思想。根据超粒径粗粒土压实后密度仍呈不均匀性的特点,分析得出超粒径粗粒土压实过程是细料处于最后被压实,压实后各部分土体仍处于密度极不均匀的结论,提出以剔除巨粒组料后的细料最大干密度试验结果为标准,对施工压实质量进行细料最小干密度控制的观点。
     (3)粗粒土的渗透系数与孔隙比密切相关,在级配一定的条件下,孔隙比越大,渗透系数越大,渗透系数与孔隙比的平方呈现出一种线性正相关关系;粗粒土的渗透系数与粗粒土的不均匀系数密切相关,不均匀系数越大,渗透系数越大,渗透系数与不均匀系数的平方根成线性正相关关系;渗透系数与曲率系数也存在较强的相关性,曲率系数越大,渗透系数越小,渗透系数与曲率系数的平方根成线性负相关关系,在相关分析和回归分析基础上建立了粗粒土渗透系数与级配指标相关的试验模型。
     (4)粗粒土的渗透变形坡降与颗粒级配存在联系,在某些范围内存在着有一定规律的变化,与不均匀系数,曲率系数在不同范围内存在不同形式的相关。含5%左右细粒组且级配良好的粗粒土渗透破坏一般属于流土型破坏,破坏坡降较大,一般可达到4.5左右,与较多文献中指出的渗透破坏坡降一般不超过1.5的结果相比要高。粘土与含砾土的裂缝冲刷会改变原滤层结构,粘土与含砾土在改变原滤层结构时机理是相同的,由于含砾土比粘土粘聚力弱,受水流冲刷时极易分散,形成比粘土裂缝冲刷孔隙更细的次生反滤层结构,两种性质土料的裂缝冲刷均能形成次生滤层使原反滤层结构变细,保土性能增强,在设置反滤层情况下,裂缝受水力冲刷作用具有自愈功能。
     (5)非饱和粘性土的三轴抗拉强度与围压有关,低围压下表现为拉伸破坏,高围压表现为颈缩破坏。非饱和粘性土的三轴拉伸试验表明:以不同围压为大主应力,轴向应力为小主应力绘制的摩尔圆,满足库仑准则,物理性状相同的非饱和粘性土,抗拉强度与抗剪强度存在线性相关性,在无抗拉条件对土体进行抗拉测试时,可通过性状相同的非饱和粘性土抗剪强度参数折减计算非饱和粘性土的抗拉强度。
     本论文主要创新点在于:
     (1)建立了粗粒土渗透系数与其不均匀系数和曲率系数的相关模型。
     (2)采用剔除延伸法解决了求取超粒径粗粒土最大干密度问题。
     (3)提出了采用单点击实试验法进行细粒土击实试验观点,从而可克服常规五点法击实试验费时费力的缺点。
Currently, there is a big waste of phenomenon of the dam process of water conservancy and hydropower engineering earth-rock dams in China,it has resulted in great economic burden and loss of the country and the people, it was mainly due to lack of awareness of the hydraulic property and general safety factor value was higher.It was historic mission of water conservancy and hydropower and geotechnical workers that to accelerate the pace of research and awareness of the property of hydro project of dam soil material and to construct the engineering of safe,reliable,economical and reasonable of water conservancy and hydropower and to promote social development and to save money for the state.It was of great guiding significance to the theory and actual production of meaning that to carry out in-depth study of the property of water conservancy and hydropower of dam soil material, it was not only rich in scientific theory in the water conservancy and hydropower and geotechnical engineering,but also directly alleviated the burden on the national economy of the infrastructure.
     In order to more comprehensive and thorough understanding of the property of water conservancy and hydropower of dam soil material and to provide theoretical and experimental basis for the future water conservancy and hydropower projects, this paper main relying on the actual water conservancy project of Xi'an Heihe, it was main line to the property of water conservancy projects of dam soil material and it was kind of focus on the compaction of soil material, permeability, seepage deformation characteristics and tensile properties of cohesive soil,and the author had carried out laboratory study on thematic issues of some properties of water conservancy projects of dam soil material.Study was divided into three parts, namely, the maximum dry density of soil, soil hydraulic properties and tensile strength of unsaturated clay.
     (1) In the study of maximum dry density, the author discussed some of the major problems on the clay.They were the main factors of the maximum dry density of clay, water content to maximum dry density of clay controlling, determine the maximum dry density of clay simple method, the oversized coarse grained soil maximum dry density of test handling and construction control program.
     (2) In the study of mechanical properties of soil water, the author discussed some of the major problems on the soil permeability coefficient of variation They were coarse-grained soil permeability coefficient and the relationship between the graded index, correlation of coarse-grained soil infiltration parameters of slope and particle size distribution and clay and gravelly soil in various degrees of crack slotted changes of erosion.
     (3) In the study of the tensile strength of unsaturated cohesive soil, the author tested the tensile strength of unsaturated cohesive soil using two methods of the uniaxial and triaxial tension, a comparison of the same traits unsaturated cohesive tensile and shear strength of the law and analysis of the intrinsic link between them.
     The author summed up the following conclusions through experimental analysis.
     The first, the dam of the soil maximum dry density mainly affected by two factors of the compaction function and moisture, in some cases,moisture content,dry density increases with the increase of compaction features. Compaction features in certain circumstances, the soil dry density and moisture content would showing the relationship between normal curve, soil dry density was the greatest at a certain moisture content under one medium,in other words there was an optimum moisture content and maximum dry density. The maximum dry density of soil limited by the moisture content, it would not exceed the soil water content under the restricted by compaction to achieve saturation of maximum dry density.
     The second, remove method used to gradually remove large-size coarse-grained soil material,study materials maximum dry density of the remaining, following an analysis of the law that was a strong linear correlation rules between the maximum dry density and eliminate the amount of residual of the coarse-grained soil. Pointed out the idea that indirect found the maximum dry density of the original grade ingredients of super-size coarse-grained soil after the law of extrapolation.The density of super-size coarse-grained soil compacted was continues to show non-uniform,analysis of compaction process changes in soil dry density, obtained results that fine material was the last to be compacted in the super-size coarse-grained soil compaction process and the various parts of the soil compacted was still very uneven density, pointed out that the view was fine materials maximum dry density test as the standard for compaction quality construction control of minimum dry density of fine materials after the discounting giant grain groups.
     The third, the coarse-grained soil permeability coefficient and void ratio were closely related to,under the conditions of gradation determined, there was showing a linear positive correlation between them,the greater the void ratio, the permeability coefficient the greater; there was a linear positive correlation between the permeability coefficient and the non-uniform coefficient of the square root of the coarse-grained soil, the greater the non-uniform coefficient,the permeability coefficient the greater; There was a positive correlation between the permeability coefficient and the curvature coefficient of the square root, the greater the curvature coefficient,the permeability coefficient the smaller, The author established a model of related factors of coarse-grained soil permeability and size distribution index based on the correlation and regression analysis.
     The fourth, there was a link with the coarse-grained soil seepage deformation gradient and the particle size distribution, in certain areas there were some changes in the law, and the asymmetry coefficient, curvature coefficient in the different areas related to memory in different forms.With 5% of the group and the level of fine granular soil with good infiltration and sabotage was generally flow of soil type damage, destruction of large slope, generally up to about 4.5, and more literature that the seepage failure slope was generally not more than 1.5 higher than the results.Crack in clay and gravel soil erosion would change the original filter layer structure, their mechanism was the same as changing the original filter layer structure,as the gravel soil than in clay cohesive force was weak,and it easily dispersed by water erosion, it could form the finer secondary filter with layer structure than the clay when erosion crack.Two kinds of erosion cracks could form a secondary filter layer, This allowed the original filter with thinner layer structure,and soil conservation performance enhancement.Crack had a self-healing function as hydraulic scour.
     The fifth, there was a kind of relationship between the triaxial tensile strength and confining pressure of the unsaturated cohesive soil, it expressed as tensile failure when confining pressure was low,it expressed as necking damage when confining pressure was high.There were several conclusions after doing the triaxial elongation test of the unsaturated cohesive soil, Mohr circle satisfied the coulomb criterion as drawing with different confining pressures for the major principal stress and axis of stress for the minor principal stress; There was a linear correlation between the tensile and shear strength of the same physical shape of unsaturated cohesive soil; it could be calculated tensile strength of unsaturated cohesive soil that to reduce shear strength parameters of the same characteristics of unsaturated clay, if there was no tensile conditions on the soil to tensile test.
     The author established a correlation model of the coarse-grained soil permeability coefficient and its coefficient of uniformity and curvature. Solved maximum dry density of the super-size coarse-grained soil by the extension removed method. Pointed out the compaction test of fine-grained soil by the single compaction test method, can overcome the conventional five-point compaction test the shortcomings of time-consuming. These are the innovation of this thesis.
引文
中国新闻网http://www.chinanews.com.cn/cj/kong/news/2009/03-06/1591627.shtml
    保华富,屈智炯.1990.粗粒土的本构模型研究.成都科技大学学报,4(4):25-28
    曹敦侣.1985.渗流管涌的随机模型.长江科学院院报,(2):42-49
    常中华,张二勇,柴建峰.1995.应用主成分分析法研究渗透介质的渗透稳定问题.水文地质,(1):16-21
    陈定安.2001.塑性混泥土渗透及渗透变形试验模型与指标测定.工业安全与防尘,(11):14-16
    陈宏伟.2004.粗粒土压实试验研究.[硕士学位论文].西安:长安大学
    陈建生,李兴文,赵维炳.2000.堤防管涌产生集中渗流通道机理与探测方法研究.水利学报,(9):48-54
    陈建生.2000.堤防管涌渗流破坏机理及地水位综合示踪探测方法研究.[硕士学位论文].南京:河海大学
    陈希哲.1994.粗粒土的强度与咬合力的研究.工程力学,12(4):56-63
    崔伯华.1996.一种粗粒土室内渗透比较试验研究.大坝观测与土工测试,4(2):15-18
    党进谦,郝月清,李靖.2001.非饱和黄土抗拉强度的研究.河海大学学报,29(6):106-108
    党进谦,张伯平,李靖.2001.黄土单轴拉裂特性的研究.水力发电学报,(4):44-48
    党进谦,张伯平,熊永.2001.单轴土工拉伸仪的研制.水利水电科技进,21(5):13
    丁金粟.1971.粘性土抗拉特性的试验研究.岩土工程学报,(5):15-19
    范振国,孟昭惠.1987.黄河中游河床覆盖层渗透变形特性研究.水文地质工程地质,(2):36-39
    冯郭铭,付琼华.1997.测定土的双向渗透系数的仪器装置和方法.大坝观测与土工测试,(6):25-28
    冯国栋.1995.土力学.北京:水利电力出版社
    冯忠居,谢永利.2003.利用理论方法确定击实试验的最大干密度与最佳含水量.长安大学学报, 23(2):10-13
    冯忠居,张永清.2004.粗粒土路基的压实试验证明.长安大学学报,24(3):9-12
    高大钊.2001.岩土工程的回顾与前瞻.北京:人民交通出版社
    龚晓南.1996.高等土力学.杭州:浙江大学出版社
    顾淦臣.1980.土石坝的变形和拉伸、剪切破坏的验算.岩土工程学报,2(4):3-14
    郭飞,何昌荣,朱安龙.2005.粘性土抗拉强度的轴向压裂法实验研究.水电站设计,21(2):66-68
    郭见扬.1998.防汛堤防、坝基结构与渗透变形.岩石力学与工程学报,12(6):674-678
    郭庆国,李鹏,史彦文.2001.土石坝的压实标准及应用中存在的问题.西北水电,(3):33-36.
    郭庆国,刘贞草.1993.超粒径粗粒土最大干密度的近似测定方法.水利学报,(10):72-80
    郭庆国.1992.粗粒土在高层建筑黄土地基处理中的应用.岩土工程师,11(4):22-26
    郭庆国.1998.土石混合料的工程特性及应用.郑州:黄河水利出版社
    郭庆国.1999.粗粒土的工程特性及应用.郑州:黄河水利出版社
    郭庆国.2002.砂石滤层准则的研究与进展.西北水利水电,(3):35+48+54
    郭增玉.1985.超强固结土边坡平面问题有限元非线性分析.西北水力发电,(1):23-28
    国家地震局兰州大队渗流力学研究组.1973.国外渗流力学研究的某些近况.力学进展,3(3): 5-17
    胡一三,朱太顺.1998.长江抗洪抢险及对黄河防洪的思考.人民黄河,(12):10-12
    黄会勇.2004.变分法求解边坡稳定问题.武汉:武汉大学出版社
    黄卫东.2005.高速公路土石混填路基压实质量控制与评级价.重庆交通学院学报,24(4):49-54
    黄文熙.1983.土的工程性质.北京:水利水电出版社
    黄英,符必昌.2002确定土的最大干密度和最优含水率的数解法.岩土工程学报,24(4):538-540
    贾革续2003.粗粒土工程特性的试验研究.[博士学位论文].大连:大连理工大学
    蒋彭年.1982.土的本构关系.北京:科学出版社
    重庆公路科研所,广西柳桂一级公路总指挥部.1995.土石混填压实评定方法试验研究,(7):1-33
    康顺祥.1999.天然滤层.防渗技术,(3):2-6+18
    雷永,原思训,郭宝发.2004.秦兵马俑表层风化状况的研究.文物保护与考古科学,16(4):36-42
    李广诚.2002.南水北调工程地质分析研究论文集.北京:中国水利水电出版社
    李佩成.1996.怎样建立经验公式.西安:西安地图出版社
    李全明.2006.高土石坝水力劈裂发生的物理机制研究及数值仿真.[硕士学位论文].北京:清华大学
    李守存.2005.黄土抗拉特性研究.[硕士学位论文].杨凌:西北农林科技大学
    李晓军,张登良,任钰芳.2000.路基填土抗拉强度测定的实验研究.西安公路交通大学学报, 20(2):20-22
    李云蜂.1994.黄土渗透性与空隙性关系的研究.北京:地质出版社
    李占文.2005.由大禹治水引发的思考.校长阅刊,(9):76
    李钟.1994.土工模型试验研究状况综述.军工勘察,(4):41-43
    林祖玖.1999.高速公路路基粗粒土填筑压实工艺.西部探矿工程,5,11:56-59
    刘恩龙,沈珠江.2005.岩土材料的脆性研究.岩石力学与工程学报,24(19):3449-3453
    刘宏.2002.砂砾石土料的压实特性.三峡大学学报,24(4):297-299
    刘建刚,陈建生,赵维炳.2001.堤基渗透变形与计算.长江科学院院报,12(6):38-40
    刘杰,罗玉再.1987.高土石坝心墙裂缝的自愈机理及反滤层的防护.水利学报,(7):45-53
    刘杰.1992.土的渗透稳定与渗流控制.北京:水利电力出版社
    刘俊杰,刘帅,那彦良.2001.长城的基石.人民教育,(10):60-62
    刘开明,屈智炯.1993.粗粒土的工程特性及本构模型研究.成都科技大学学报,6(6):45-50
    刘黎.2007.粗粒料渗透特性及渗透规律试验研究.[硕士学位论文].成都:四川大学
    刘婉茹,何昌荣,朱安龙.2005.轴压法测定黏性土抗拉强度若干问题探讨.水电站设计,21(6):69-71
    刘先珊,张立君.2004.改进的渗流参数反演方法及其工程应用.水电能源科学, 9(3):12-16
    刘原英.1994.海滨含水层渗透系数的估计.地下水,6(2):37-39
    刘贞草.1987.大粒径粗粒材料相对密度试验研究.土石坝工程,(2):45-48
    刘忠玉.2001.无粘性土中管涌的机理研究.[博士学位论文].兰州:兰州大学
    刘祖典.1997.黄土力学与工程.西安:陕西科技出版社
    鲁布契柯副夫. 1960.无粘性非管涌土.水利学报,(3):23-30
    陆会青.1994.关于粗粒土原级配大型固结试验的几点体会.大坝观测与土工测试,(12):42-45
    陆士强.1980.填土的断裂机理.岩土工程学报,(2):22-27
    陆兆溱.1989.工程地质学.北京:水利水电出版社
    罗刚.2004.邓肯-张模型和沈珠江双屈服面模型的改进,岩土力学.(6):15-20
    骆亚生,邢义川.1998.黄土的抗拉强度.陕西水力发电,14(4):6-10.
    骆亚生.1998.黄土的抗拉强度.陕西水力发电,(4):6-10
    马骏.2002.超粒径含量高的砂卵石填方压实质量控制指标.路基工程,(1):31-33
    马松林,马龙,王哲人.2001.土石混合料室内振动压实研究.中国公路学报,14(1):5-8
    毛昶熙.1981.电模拟试验与渗流研究.北京:水利出版社
    毛昶熙.2003.渗流计算分析与控制.北京:水利水电出版社
    毛洪录.2003.含砂砾低液限粉土路基压实标准的探讨.山东大学学报,(5):77-80
    梅国雄,宰金珉.2001.考虑变形的朗肯土压力模型.岩石力学与工程学报,20(6):851-854
    米切尔.1988.岩土工程土性分析原理.南京:南京工学院出版社
    钮泽明,陆士强.1983.粘性填土单轴抗拉强度的几个影响因素.岩土工程学报,5(2):12-17
    阿拉文,奴米罗夫.1959.土工建筑物的渗流计算.北京:水利电力出版社
    乔南,李可可.2005.都江堰的文化探寻.河海大学学报,7(1):155-56
    屈智炯,吴剑明.1984.压实石渣料渗透变形的实验研究.成都科技大学学报,2(2)
    任劲松.1997.圆砾土填筑铁路路基压实质量标准研究.石家庄铁道学院学报,9,10:33-38
    汝乃华,牛运光.2001.大坝事故与安全.土石坝.北京:中国水利水电出版社
    闰秀萍.2001.关于土石混合料填筑路基压实检测方法的探讨.公路交通科技,18(4):40-42
    沈新惠.1982.压实粘性土的抗拉特性.北京:水利出版社
    沈珍瑶,李国鼎.1998.高压实澎润土吸湿-脱湿过程研究.地下水,20(20):44-45
    盛金保.1996.沟后坝溃坝渗流初步分析.大坝观测与土工测试,10(5):11-15
    石金良.1991.砂砾石地基工程地质.北京:水利电力出版社
    史彦文.1981.大粒径砂卵石最大密度的研究.土木工程学报,(2):55-60
    世华财讯网http://content.caixun.com/NE/01/ia/NE01ia7c.shtm
    陕西黑河国家森林公园http://www.heihepark.com/jianjie5.asp?letterKind=41
    孙亚平.1985.水力劈裂机理研究.[博士学位论文].北京:清华大学
    孙耀东.2000.山区道路路基最佳振动压实方法的研究.吉林林学院学报,16(3):147-152
    孙耀东.2000.土石混合料最佳工艺参数的确定.华北大学学报,1(6):540-543
    太沙基著,泼克著,蒋彭年译.1960.工程实用土力学.北京:水利电力出版社
    太沙基著,徐志英译.1960.理论土力学.北京:地质出版社
    腾素珍.2000数理统计.大连:大连理工大学出版社
    田树玉,史颜文.1994.测定粗粒料最大密度之HUMPHREY公式的校正.水力发电学报,(1):28-34
    田树玉.1992.用渐近线辅助拟合法确定大粒径砂卵石最大容重.岩土工程学报,(1):37-45
    田思进,王英敏.1994.崩落矿岩渗漏风特性的实验研究.金属矿山,9(9):28-31
    童羽湘,郭培鑫.1997.岩土工程的现状与发展.电力勘测,(4):1-10
    土石坝抗裂研究小组.1973.粘性土抗拉特性的测量和对土石坝裂缝的初步研究.清华大学学报, (3):61-71
    王传雷,许顺方,潘志炎.1994堤坝管涌隐患的综合物探勘察与加固处理实例.工程勘察, (4):69-71
    王昆耀,常亚屏,陈宁.2000.往返荷载下粗粒土的残余变形特性.土木工程学报,33(3):48-52
    魏瑞.2007.压实粘土拉伸特性试验研究.[硕士学位论文].北京:清华大学
    吴良骥.1980.无粘性土管涌临界坡降的计算.水利水运科学研究,(4):90-95
    吴明友.2004.路基压实参数及其工程意义.铁道建筑技术,(5):1-8
    吴铭炳.2000.圆弧特征角计算法.福建建设科技,(4):6-7
    吴志雄.2003.高速公路填石路堤的施工与质量控制.中外公路,(1):48-51
    武明.1996.土石混合非均质填料压实特性试验研究.公路,(5):25-29
    肖四喜,李银平.1994.大堤管涌型成机理分析及治理方法.湖南大学学报,4(2):11-16
    肖晓军.1992.不同应力路径下粗粒土的应力应变强度特性.成都科技大学学报,5(5):32-38
    谢定义.1997.21世纪土力学的思考.岩土工程学报,19(4):111-114
    谢红,张家发,吴昌瑜.1999.水布娅水利枢纽三维渗流场有限元分析.长江科学院院报,16(1):37-41
    邢义川,骆亚生,李振.1999.黄土的断裂破坏强度.水力发电学报,67(4):36-44
    熊承仁,刘宝琛,张家生.2005.重塑粘性土的基质吸力与土水分及密度状态的关系.岩石力学与工程学报,24(2):321-325
    徐立东.1999.土石混合非均质填方的压实质量检测方法初探.辽宁交通科技,22(3):44-46
    许宝田,阎长虹,李小昭.2002.隧道开挖过程中的渗透变形问题分析-结合南京地区工程实例.水文地质工程地质,(2):47-50
    许锡昌,陈善雄,余飞,余颂.2006.备样方法对标准吸湿含水率的影响.岩石力学与工程学报, 25(10):2135-2139
    薛定谔.1982.多孔介质中的渗流物理.北京:石油工业出版社
    杨光煦.1999.堤防险情及其处理.人民长江,9(9):15-20
    杨建平.1994.赵洲桥为何至今仍“安然无恙”.中国历史教学参考,(2):35:23-26
    杨世基.1998.公路填石路堤压实标准与检测方法.公路,(5):56-59
    杨维训.2001.秦沈客运专线A5标段粗粒土填筑路基技术.铁道标准设计,(10):41-42
    殷建华.1998.土堤管涌区渗流的有限元模拟.岩石力学与工程学报,17(6):51-55
    余湘娟.1997.粘土的拉裂试验及声发射检测.水利水电科技进展,17(3):29-32
    曾国熙.1993.比萨斜塔的历史、现状及加固方案.地基处理, 4(1):6-24
    张斌,屈智炯.1991.考虑剪胀和软化特性的粗粒土应力-应变模型.岩土工程学报,(11):66-71
    张伯平,党进谦.2001.土力学与地基基础.西安:西安地图出版社
    张家发,王满星,丁金华.2000.典型条件下堤身堤基渗流规律分析.长江科学院院报,17(5): 23-27
    张俊兵,李海鹏,林传年.2003.饱和冻结粉土在常应变率下的单轴抗压强度.岩石力学与工程学报,(S2):2865-2870
    张美聪.2006.土石坝裂缝计算分析方法研究.[硕士学位论文].北京:清华大学
    张少宏,康顺祥,骆亚生.2005.分段法确定无粘性超粒径粗粒土最大干密度.水资源与水工程学报, 16(3):51-53
    张少宏,骆亚生,郭敏霞.2006.非饱和土的三轴拉伸试验研究.人民黄河,28(10):75-76
    张士辰,李雷.2004.粗砂渗透系数与抗剪强度的概型分布.水利水运工程学报,9(3):14-18
    张小江.1995.纤维加筋土的静动力特性和断裂特性试验研究.[硕士学位论文].北京:清华大学
    张志权,王志勇.2004.最大干密度和最优含水率的准确性探讨.长安大学学报(建筑与环境科学版),21(4):7-10
    张致,寇菊茹.1991.东输林水库坝基应用塑模防渗防止坝基渗透变形的分析.水利水电技术, (7):45-49
    张智,屈智炯.1990.粗粒土湿化特性的研究.成都科技大学学报,5(5):63-70
    章国辉.2003.高速铁路碎石土路基压实质量检测方法标准的研究.铁道建设,(4):1-8
    赵久柄,王正良.1996.熙-宝高速公路粗粒土路基压实度的试验研究.国外公路,12(6):69-72
    赵明华,张常耀,梁伟民.1995.处理颗分曲线的最佳数值方法.勘察科学技术,(6):27-30
    郑建国.1993.岩土原位测试技术的现状与发展.地基处理,(3):12-16
    中国能源网http://www.china5e.net/www/dev/news/viewinfo-water-200406010118.html
    中华人民共和国国家标准.2002.建筑地基基础设计规范GB50007-2002.北京:中国建筑工业出版社
    中华人民共和国建设部.2001.岩土工程勘察规范GB50021-2001.北京:中国建筑工业出版社
    中华人民共和国水电部.1984.土石坝设计规范SDJ218-84.北京:中国水电出版社
    中华人民共和国水利部.1999.土工试验规程SL237-1999.北京:中国水利水电出版社
    中华人民共和国水利部.1991.土的分类标准GBJ145-90.北京:中国建筑工业出版社
    中华人民共和国城乡环境保护部.1989.建筑地基基础设计规范GBJ7-89.北京:中国建筑工业出版社
    周鸿逵.1984.三轴拉伸试验中试样的断裂机理.岩土工程学报,6(3):11-23
    周蓉.土工织物反滤机理研究.2000.青岛大学学报,15(4):41-43
    周娟.2007.土石混合料压实质量试验研究.[硕士学位论文].长沙:长沙理工大学
    周建,张刚.2004.管涌现象研究的进展与展望.地下空间,24(4):536-542
    朱崇辉.2006.粗粒土的渗透特性研究.[硕士学位论文].杨凌:西北农林科技大学
    朱崇辉,刘俊民,王增红.2005.无粘性粗粒土的渗透试验研究.人民长江,36(11):53-55
    朱崇辉,刘俊民,王增红.2007.巨粒混合土的压实标准研究.水利水电科技进展,(S2):89-91
    朱崇辉,刘俊民,严宝文,巨娟丽.2008.非饱和粘性土的抗拉强度与抗剪强度关系试验研究.岩石力学与工程学报,(27):5345-5348
    朱崇辉,王增红,刘俊民.2006.粗粒土的渗透破坏坡降与颗粒级配的关系研究.中国农村水利水电,(3):72-74
    朱崇辉,严宝文,刘俊民,王增红.2007.超粒径粗粒土最大干密度试验研究.岩石力学与工程学报, (S2):4090-4094
    朱崇辉,严宝文,刘俊民.2007.巨粒混合土的相对密度试验研究.水利学报,(6):749-753
    朱伟,山村和也.1999.堤防地基渗透破坏机制及其治理.南京水利科学研究院,水利水运科学研究,(4):30-39
    邹广电.2004.基于一个上限分析方法的基坑坑隆起稳定分析.岩土力学,25(12):1873-1878
    Ajaz A, Parry R H G. 1975.Stress-Strain Behavior of Two Compacted Clays in Tension and Compression.Geotechnique,25(3):495-512
    Bhatia S K,Schwab J,et al. 1985.The influence of static shear stress on the cyclic volume change behavior of ottawa sand.In: Proceedings of the 2nd International Conference On Soil and Earthquake Engineering.Computational Mechanics Ltd Southampton, England:217-226.
    Bishop, A.W.and Garga,V.K. 1969. Drained Tension Test on London Clays.Geotechnique, 16(2):28-33
    Bishop,A.W.and Garge,V.K..1969.Drained Tension Test on London Clay. Geotechnique, 19(2):310-313
    C R I Clayton,S A Khatrush,et al. 1989.The use of hall effect semiconductors in geotechnical instrumentation.Geotechnical Testing Joumal.ASTM,12(l):69-76
    Casagranda, A.1937.Seepage Through Dams.Journal of the New England Water Works Association.BSCE:1403-1433
    Chugaev,R.R.1958.Design and Calculation of the Underground Profile of Dam on Pervious Foundation.Proc.Of the 6th ICOLD,New York,Question,2(21):14
    Davies,J.D.and Bose,D.K. 1968.Stress Distribution in Splitting Tests.Proc.J.Am. Concrete Inst.65(8):154-157
    Donaghe,R.T. 1991.A compaction Test Method for Soil-Rock Mixtures in which equipment size effects are Minimized. Geotechnical Testing Jounal,17(13): 98-102
    Duncan J M,Byme Pet al. 1980.Strength,stress-strain and bulk modulus parameters for finite element analysis of stress sand movements in soil masses.In:Report No.UCB/GT/80-01, University of Califomia,Berkerley
    Eiichi Taniguchi,Robert V,et al. 1983.Prediction of Earthquake-Induced Deformation of Earth Dams.Sails and Foundation, 23(4):126-132
    Evans M D,Zhou S. 1995.Liquefaction behavior of sand-gravel composites.Journal of Geotechnical Engineering,ASCE, 121(3):287-298.
    F Tatsuoka,Diego Lo Presti,et al. 1995.Deformation Characteristics of Soils and Soft Rocks under Monotonic and Cyclic loads and Their Relationships.Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, (4):88-93
    F Tatsuoka,S Shibuya, X J Kong. 1990.Discussion on‘the use of hall effect semiconductons on geotechnical instrucmentation’by C R I Clayten,et al. Geotechnical Testing Joumal.ASTM. 13(l):63-67.
    F Tatsuoka, S Shibuya. 1992.Deformation characteristics of soils and rocks from field and laboratory tests.Keynote Lecture,9thAsian Regional Conf.On SMFE,2:101-170.
    Forssblad. 1985.L.Soil Compaction and Compaction Control.Pr.3dInternational Geotechnica,Seminar,(3):l-8,
    Fuller,w.b.and Thompson,S.E.1907.The Laws of Proportioning Concrete. Transactions of The ASCE, 59:67-172
    Grifith A.A. 1924.Theory of Rupture.Proceedings of the First international Congress for Applied Mechanics,6(5):55-63.
    Hardin B O,Blandford G E. 1989.Elasticity of Particulate Materials JGE Div.ASCE, (6):234-238.
    Hardin B O,Dtnevich V P. 1972. Shear modulus and damping in soils:design equations and curves.Journal of the Soil Mechanics and Foundation Division,ASCE, 98(7):667-692
    Hardin B O. 1978.The Nature of Stress-Strain Behavior of Soil.Engineering and Soil Dynamic. Pasadena CA, 1:3-90.
    Hatanaka M,Suzuki Y,et a1. 1988.Cyclic undrained shear properties of high quqlity undisturbed Tokyo grave.Soils and Foundations,Japanese Society of Soil Mechanics and Foundation Engineeing,28(4):57-68.
    Hiorshi Hasegawa and Masayuki Ikeuti. 1964.On the Tensile Sterngth Test of Distur-bed Soil, Rheology and Soil Mechanics,IUTAM Symposium, Grenoble
    Hyodo M,Murata S,et al. 1990.Effects of relative density for undrained cyclic shear strength of anisotropic consolidation sand.In:The 25th Janpan National Conference on Soil Mechanics and Foundation Engineering,Japanese Society of Soil Mechanics and Foundation Engineering,(6):747-750.
    Iane,E.W.1935.Security from underseepage:Masonary dams on earth foundations.Trans. Am.Soc.Civ.Eng.,100(19):1235-1272
    J B Burland,M J Symes. 1982.A simple axial displacement gauge for use in the triaxial apparatus.Geotechnique,32(1):62-65
    Kezdi, A.1973. Tensile and Flexural Strength of Earth Dam Materials, Transactions of the Eleventh International Congress on Large Dams,4:38-43
    Koenders,M.A.,and Sellmeijer,J.B.1992.Mathematical model for piping..J.Geotech.Eng,118(6):943-948
    Kokusho T,Tanaka Y . 1993.Geotechnical dynamic properties of gravel layers investigated by in-situ freezing sampling.In:Ground Failures Under Seismic Conditions.Geotcchnical Special Publication. ASCE,New York,USA,(44):121-140.
    Kokusho T. 1980.Cyclic Triaxial Test of Dynaic Soil Properties for Wide Stran Range.Soil andFoundation, 20(2):45-60.
    Kokusho T,Esashi Y,Sakurai A.Dynamic properties of deformation and damping of coarse Sails for wide strain range.Central Research Institute of Electric Power Industry,Civil Engineering Laboratory Report,38(2):55-60
    Krishnayya,A.W.and Garge, V.K. 1969. Drained Tension Test on London Clay, Geotechnique , 19(2):56-59
    Lawton, Erert C, Khire, Milind Y, et al. 1993.Reinforcement of Soils by Multioriented Geosynthetic Inclusions.Journal of Geotechnical Engineering, 119(2):257-275
    Leonards, G.A., and Narrain, J..1963.Flexibility of Clay and Cracking of Earth Dams.Journal of the Soil Mechanics and Foundations Division, ASCE, 89(SM2), Part1, Mar
    Leps T M. 1983.Review of shearing strength of roekfill.Journal of the Soil Mechanics and Foundation Division,ASCE,96(SM4):667-678.
    lida R Matsumoto N,et al. 1984.Large-scale tests for measuring dynamic shear moduli and damping ratio of rckfill materials.In:Sixteenth Joint Meeting of U.S-Japan Panel on Wind and Seismic Eflects.Washington,D.C.
    Mosaid A. 1981.Tensile Properties of Compacted Soils.Labortory Shear Strength of Soil. Special Technical Publication, ASTM,6:207-225
    Nakajima, Y. 1968. Study of the Failure of Piping in Polder Dikes for Land Reclamation.Soils and Foundations,8(4):30-47
    Nesmark N M. 1965.Effects of earthquakes on dams and embankments.Geotechnique,15(2):139-160
    Ojha,C.S.P.,Singh,V.P.,and Adrian,D.D. 2003. Determination of Critical Head in Soil Piping.Journal of Hydraulic Engineering,129(7):511-518
    Park.C-S. 1993.Deformation and Strengh Characteristics of a Variety of Sand by Plane Strain Compression Test. PhD thesis, University of Tokyo, Japan
    Rollins K M,Evans M D,et al. 1998.Shear modulus and damping relationships for gravels.Journal of Ceotechnical and Geoenvironmental Engineering,ASCE, 124(5):396-405
    Rowe P W. 1962.The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact. Proc.Royal.Soc.A., 296:500-527
    S Shibuya,F Tatsuoka, X J Kong. 1992.Elastic Deformation Properties of Geomaterials.Soils and Foundations, 32(3):55-60
    S.Goto,F.Tatsuoka,et al. 1991.A simple gauge for local small strain measurements in the laboratory.Soil and Foundation,31(1):167-180
    S.Shibuya, X J Kong,et al. 1990.Deformation characteristics of gravels subjected to dynamic and static Loadings.Proc.of the Eight Japan Earthquake Symposium
    Seed H B,Wong R T,et al. 1986.Moduli and damping factors for dynamic analyses of cohesionless soils.Journal of Geotechnical Engineering,ASCE, 122(12): 1016-1032.
    Serff N,Seed H B,et al. 1976.Earthquake induced deformations of earth dam.In:Report No.EERC76-4,Earthquake Engineering Research Center,University of California,Berkeley
    Skempton,A.W.,and Brogan,J.M. 1994.Experiments on piping in sandy gravels.Geotechnique, 44(3):449-460
    Stephenson,R.J..Relative density tests on rock Fillat Catters Dam.ASTMSTP532, 1973
    Tang G X, Graham J.A .2000.Method for Testing Tensile Strength in Unsaturated Soils.GeotechnicalTesting Journal, 23(3):377-382
    Tatsuoka F,Sakamo M,et al. 1986.Strength and Deformation Characterstics of Sand in Plane StrainCompression at Extremely Low. Soil and Foundations, 26(1):65-84
    Tatsuoka F,Shibuya S,et al. 1990.Discussion on"The use of hall effect semiconductors on geotechnicalinstrumentation" by C R I Clayton, et al.Geotechnical Testing Joumal.ASTM, 13(l):63-67
    Terzaghi,K.1922.Der Grundbruch an Stauwerken und seine verhuetung.Die Wasserkraft, 17:445-449
    Tschebotarioff,G.P.,Ward,E.R.and Dephilippe,A.A.1953.The Tensile Strength of Distributed andRecompacted Soils, Proceedings of the Third International Conference on Soil Mechanics and FoundationEngineering. International Society for Soil Mechanics and Foundation Engineering, 1:15-18
    Umakant,Dash,and Lovell.1972.C.W.Tensile Sterngth of Clays,Proc.3rd Southeast Asian Conf.on SoilEngineering
    Wang J Z. 1993.Test of coarse material under iso-stress ratio and study of its deformationcharacteristics.InTroceeding of International Symposium on High Earth-Rockfill Dams(Sponsored byChinese Society for Sponsored by Chinese Society for Hydro-electric Engineering and InternationalCommission on Large Dams).Beijing
    X J Kong, F Tatsuoka,et al. 1992.Effect of Cyclic Prestraning on Deformation Characteristics of a CrushedSandstone.SEISAN-KENKYU,(44):6-8
    Yasuda N,Matsumoto N. 1994.Comparisons of deformation characteristics of rockfcll materials usingmonotonic and cyclic loading laboratory tests and in situ tests.Canadian GemechnicalJoumal,31(1):162-174
    Yasuda N,Matsumoto N. 1993.Dynamic deformation characteristics of sands and rockfill materials.Canadian Cemechnical Journal,30(30):747-757.
    Yasuda N,Ohta N,et al. 1996. Dynamic deformation characteristics of undisturbed riverbedgravels.Canadian Geotechnical Journal,(33):237-249
    25100-95.МежгосударственныйСтандартГрунты.Москва. 1996.ИздательствоМосковского
    B.C.истомина.1957.фильтрацонная:устйчивостьгрунтов,госстройиздат
    в.н.кондратьев.1958.фильтрацияимеханическаясуффозиявнесвазныхгрунтах.крымиадат
    и.и.зауерей.1932.квопросуокоэффциентефильграцийгрунтовиметовдикеегоисследования,известиявнииг
    ПодРедакциейВ.Т. 2005.Трофимова.Грунтоведение.Москва:ИздательствоМосковского

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700