用户名: 密码: 验证码:
海岸沙坝运动的实验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙坝是沙质海滩的重要组成部分之一。在近岸水域内,沙坝的存在会使波浪在离岸较远的地方发生破碎,以减少波浪对岸滩侵蚀,对海岸起到了一定的保护作用。但目前为止,沙坝产生的机理和演化规律仍不清楚。近年来,研究沙坝产生和演化规律已成为海岸工程的一个重要课题,这对研究海岸的演化、防止海岸的冲刷等都具有重要意义。本文通过一系列的物理模型实验和数值模拟对海岸沙坝的产生和运动进行了研究,主要内容包括:
     (1)进行了海岸沙坝产生和运动的实验模拟,研究了规则波、波群和不规则波作用下近岸沙坝产生和运动的特征。针对沙坝产生的机理和不稳定性运动,对不同波浪形态(规则波、波群和不规则波)作用下产生的海岸剖面形态进行了研究。实验中发现,在某种波况下,沙坝运动呈向岸、离岸的往复运动,而不是持续向一个方向的运动。通过对实验结果的分析,也进一步表明,沙坝运动不是海床对波浪作用的被动响应,而是更接近于一种海床和波浪之间的相互作用。文中还探讨了波群调制系数对沙坝运动的影响,以及不同波况对海岸剖面形态的影响。通过对沙坝速度的分析,进一步讨论了多种波况作用下沙坝的不稳定运动。最后,通过对这种不稳定运动的分析,并结合线性不稳定的理论,给出了一个初步的理论解释,定性的分析了所观测到的往复运动是一种海床剖面不稳定性导致的运动。
     (2)通过对海岸沙坝运动实验的分析可知,本文实验所涉及的海岸属于耗散性海岸,即近岸低频波的影响不可忽视。在波浪条件下,低频波浪对近岸泥沙运动的作用是不容忽视的。为了便于研究低频波浪传播的特性,并且方便验证数学模型中波浪模块对低频波浪的模拟结果,我们也进行了一系列的低频波模型实验研究。低频波浪的模型实验研究包括:实验模型、仪器布置、双波群的生成和实验波况,着重分析了所产生低频波浪的特征,包括反射低频波个数,时间尺度和大小;推导了包含坡度、入射波周期、短波数和波幅的无因次指标M,用于预测反射低频波个数。
     (3)在数值模拟方面,本文中分别采用两种数学模型对近岸水动力进行了模拟计算,即波浪平均模型(Wave-averaged model)和短波相位识别模型(Phase-resolving model)。
     波浪平均模型的控制方程通过将欧拉方程在短波周期上进行平均得到,然后采用WAF方法进行求解,模拟结果与实验吻合较好。在破碎区,波浪平均计算模型在短波能量的计算方面存在一些误差,主要是由于波浪方程中对耗散项的近似表达引起,也可以由此解释低频波浪波面升高的误差由来,即耗散项的近似表达影响了辐射应力的计算精度,因而影响低频波浪的波面升高。为了更精确的模拟波浪破碎后的低频波波面升高和能量,除了短波平均模型外,我们还采用了短波相位识别模型,即Boussinesq型模型对低频波模型实验进行数值模拟。模型的控制方程采用简化的四阶弱非线性方程和二阶完全非线性方程。
     通过与实验结果的对比,分别验证两种模型对低频波浪的模拟效果及精度。虽然波浪平均模型在精确性上不如短波相位识别模型,但是该模型可以单独考虑长波对于近岸输沙的作用,因此,也是本文研究的一个主要内容。而短波相位识别模型的模拟精度更高,且能对短波与低频波浪相互作用进行模拟,有更广泛的适用性。
     (4)海底形态的数值模型包括:计算驱动力的水动力模型、计算输沙通量的泥沙模型以及地形变化模型之间的耦合。模型主要采用基于能量考虑的BBB输沙公式及其修正形式;对海岸变形方程的数值求解采用了由Long推导的Euler-WENO格式。
     (5)将波浪平均模型应用于海岸演变的数值模拟。将其与近岸输沙和海岸变形方程相耦合,对海岸地形的演变进行了数值模拟。模拟结果与实验结果的对比表明:该模型可以模拟出海岸侵蚀,但不能较好的模拟初始直线型斜坡上近岸沙坝的产生过程。模拟内容包括波群及不规则波作用下的沙坝离岸运动过程,讨论了短波、长波和平均水流共同作用及单独作用下的沙坝运动情况。
     (6)将短波相位识别模型应用于海岸演变的数值模拟。将其与输沙和海岸变形模型相耦合,对规则波、波群和不规则波作用下沙坝的产生和运动进行了数值模拟,并与实验结果进行了验证。结果表明:在不同波浪作用下沙坝的产生位置的计算结果和实验结果吻合良好;沙坝的产生主要是由于波浪破碎及其所产生的海底回流所引起的,海底回流所导致的输沙率在空间梯度上的变化是沙坝产生运动的主因。该模型对于预测海岸侵蚀以及沙坝离岸运动能达到很好的结果,并且能够实现对次级沙坝的模拟。
Sandbar is one of the important features of nearshore beach profile. In the nearshore area, the existence of sandbar will make waves break and reduce the erosion of coast beach which is produced by waves and currents. It has an important protective effect for the coast. But so far, the production mechanism of sandbar and its migration is still not clear. In recent years, the sandbar's generation and evolution mechanism has become an important topic in the research of coastal engineering. It has an important significance for preventing coastal area from erosion and siltation. The present study invesgates the generation and evolution of sandbar through a series of physical experiments model and numerical simulations. The main content includes:
     (1) A series of physical model experiments were conducted in a wave flume to investigate sandbar movements under various wave conditions. Wave groups, regular and random waves were considered. It was observed that under certain wave conditions sand bars move alternately onshore and offshore, rather than in a single direction. Analysis further shows that the sandbar migration does not seem to be a passive response of the sea bed to wave forcing, but is most likely caused by the feedback interaction between wave and bed topography. A simple theoretical analysis based on linear instability concept is presented which qualitatively establishes that the observed oscillsating movement of a sandbar is a type of instability of sea bed profile.
     (2) A series of laboratory experiments were also conducted for the reflection of two wave groups over beach slopes of1:20,1:40,1:60,1:80,1:90,1:100,1:120,1:140and1:160in order to study the characteristics of infragravity waves(LFW). The relation between the number of the reflected LFW and the period of incident wave groups and beach slope is studied and an index for the number of the reflected LFW is introduced for the description of the generation mechanism of LFW on different beach slopes. The experimental results also show that the time intervals between two successive reflected LFW crests and troughs are almost equal to the period of incident wave groups.
     (3) Numerical simulations of the observed propagation of LFW in the experiment are also made by using a short wave averaged model and a phase-resolving wave. For the former model, TVD numerical scheme is used to treat the wave breaking of LFW. For the latter model, the simplified version of the fourth-order weakly nonlinear equations and the fourth-order fully nonlinear equations are employed. Eddy Viscosity wave breaking model is included in the model. It is found that by appropriately choosing the model coefficients, agreement with experimental results can be obtained, and the phase-resolving wave model acts better than wave averaged model after wave breaks. The phase-resolving model was also used to simulate some beaches which are not included in experiments,in order to examine the relationship between the number of the reflected LFW and beach slopes.
     (4) A numerical model is developed to simulate beach profile changes under different wave conditions. The model consists of wave model, sediment transport rate and profile evolution model. The wave model includes wave-averaged model and Phase-resolving model respectively. The Euler-WENO scheme and instantaneous Bagnold transportation formula are employs in sediment transport model and profile evolution model.
     (5) Sediment transport and profile evolution models are coupled with wave-averaged model in order to computing beach profile evolution under waves action. The model is validated against data from laboratory experiments, and the results show that the model can simulate the erosion prossess of beach, but is not efficient for the sandbar formation. The simulation of the sandbar offshore movement under irregular wave actions is also considered, and the effects of waves and mean currents to sandbar migration are invesgated.
     (6) Phase-resolving model is used to predict on-off shore sandbar migration in the coastal region. The wave module is based on the BouN2D4equations, which possesses good dispersion, shoaling and fully nonlinearity characteristics and could take many wave phenomena into account, including wave diffraction, wave refraction and wave breaking. The output of this wave model serves as the input to the sediment transport model. With application of this model, the sandbar formation and evolution can be predicted under different wave actions. It is shown that, undertow which casuses strongh spatial gradient of sediment transport rate, has the most important effect on sandbar generation and evolution. The resulting coupled model can successfully predict beach erosion and sandbar offshore migration.
引文
[1]Madsen 0 S, Grant W D. Sediment Transport in the Coastal Environment[R]. Dept. of Civil Engineering, MIT,1976.
    [2]Hoefel F, Elgar S. Wave-induced sediment transport and sandbar migration[R].2003.
    [3]邱筱嵐.以人工岬湾舆养滩综合工法应用於花莲南、北演海岸[D]:(硕士学位论文).台湾:国立中山大学,2004.
    [4]Mei C C. Resonance reflection of surface waves by periodical sand bars[J]. Journal of Fluid Mechanics,1985,152:315-335.
    [5]Yu J, Mei C C. Formation of sand bars under surface waves [J]. Journal of Fluid Mechanics, 2000,416:315-348.
    [6]Colombini M, Seminara G, Tubino M. Finite-amplitude alternative bars[J]. Journal of Fluid Mechanics,1987,181:213-232.
    [7]Falques A, CoCo G, Huntly D A. A mechanism for the generation of wave driven rhythmic pattern in surf zone[J]. Journal of Geophysical Research,2000,105(C10):24071-24088.
    [8]Gallagher E L, Elgar S, Guza R T. Observations of sand bar evolution on a natural beach [J]. Journal of Geophysical Research,1998,103 (C2):3203-3215.
    [9]Thornton E B, Humiston R T, Birkemeier W. Bar/trough generation on a natural beach [J]. Journal of Geophysical Research,1996,101 (C5):12097-12110.
    [10]Sleath J F A. Conditions for plug formation in oscillatory flow[J]. Continental Shelf Research,1999,19:1643-1664.
    [11]Henderson S M, Allen J S, Newberger P A. Nearshore sandbar migration predicted by an eddy-diffusive boundary layer model[J]. Journal of Geophysical Research,2004, 109(C06024).
    [12]Nielsen P, Callaghan D P. Shear stress and sediment transport calculations for sheet flow under waves [J]. Coastal Engineering,2003,47:347-354.
    [13]Trowbridge J, Young D. Sand transport under unbroken water waves under sheet flow conditions[J]. Journal of Geophysical Research,1989,94(C8):10,971-910,991.
    [14]Dean R G. Equilibrium beach profiles:U.S. Atlantic and Gulf coasts. [R]. Department of Civil Engineering, University of Delaware, Newark, Newark, DE.,1977.
    [15]Stive M J F. A model for cross-shore sediment transport. [C]. Edge, B L. Coastal Engineering.1986:1550-1564.
    [16]Roelvink J A, Broker I. Cross-shore profile models[J]. Coastal Engineering,1993,21: 163-191.
    [17]Kit E, Pelinovski E. Dynamical models for cross-shore transport and equilibrium bottom profiles. [J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,1998,124(3): 138-146.
    [18]Komar P D. Beach Processes and Sedimentation[M]. Prentice-Hall (Englewood Cliffs, N. J.) 1998.
    [19]Plant N G, Ruessink B G, Wijnberg K M. Morphologic properties derived from a simple cross-shore sediment transport model[J]. Journal of Geophysical Research,2001,106 (C1):945-962.
    [20]Short A D. Handbook of Beach and Shoreface Morphodynamics. [M]. Chichester:Wiley, 1999.
    [21]Wright L D, Chappell J, Thom B G, et al. Morphodynamics of reflective and dissipative beach and inshore systems:Southeastern Australia[J]. Marine Geology,1979,32(1-2): 105-140.
    [22]Wright L D, Short A D. Morphodynamic variability of surf zones and beaches:A synthesis[J]. Marine Geology,1984,56(1-4):93-118.
    [23]Bowen A J. Simple models of nearshore sedimentation:Beach profiles and longshore bars. [R]. Geological Survey of Canada, Halifax,1980.
    [24]Dean R G. Equilibrium beach profiles:characteristics and application. [J]. Journal of Coastal Research,1991,7(1):53-84.
    [25]Kraus N C, Smith J M. SUPERTANK Laboratory Data Collection Project[R]. Army Engineer Waterways Experiment Station, Vicksburg, MS.,1994.
    [26]Larson M, Kraus N C. SBEACH:Numerical model for simulating storm-induced beach change; Report 1, Empirical foundation and model development[R]. U. S. Army Engineer Waterways Experiment Station, Vicksburg, MS.,1989.
    [27]Dally W R, Barkaszi S F, Jr. High-resolution measurements of sand suspension by plunging breakers in a large wave channel [C]. Proc. Coastal Dynamics'94. ASCE.1994:263-277.
    [28]Agrawal Y C, Hwang P A, Oltman-Shay J. Laser-Doppler velocimetry and sediment concentration in the bottom boundary layer at SUPERTANK, in SUPERTANK Laboratory Data Collection Project[R].1994.
    [29]Arcilla A S, Roelvink J A, O'Connor B A, et al. The Delta flume'93 experiment[C]. The International Conference on Coastal Dynamics. Barcelona; Spain.1994:488-502.
    [30]Shimizu T, Ikeno M. Experimental study on sediment transport in surf and swash zones using large wave flume[C]. Proc.25th Int. Coastal Eng. Conf., Orlando, ASCE.1996: 3076-3089.
    [31]Shimizu T, Kawata Y. Simultaneous observations on irregular waves currents, suspended sediment concentration and beach profile changes in large wave flume[C]. Proc. Coastal Dynamics'97. ASCE. Plymouth.1997:486-495.
    [32]Ribberink J S, Dohmen-Janssen C M, Hanes DM, et al. Near-bed sand transport mechanisms under waves:a largescale flume experiment (SISTEX99)[C]. Proc.27th Int. Conf. Coastal Engrg. ASCE.2000:3263-3276.
    [33]Baldock T E, Manoonvoravong P, Pham K S. Sediment transport and beach morphodynamics induced by free long waves, bound long waves and wave groups [J]. Coastal Engineering, 2010.
    [34]Symonds G, Bowen A J. Interactions of nearshore bars with incoming wave groups[J]. Journal of Geophysical Research,1984,89(C2):1953-1959.
    [35]List J H. A model for the generation of two-dimensional surfbeat[J]. Journal of Geophysical Research,1992,97 (C4):5623-5635.
    [36]Roelvink J A. Surf beat and its effect on cross-shore profile[D]:(Ph. D):Delft Univ. of Technology,1993.
    [37]Schaffer H A, Madsen P A. A Boussinesq model for wave breaking in shallow water[J]. Coastal Engineering,1993,20:185-202.
    [38]Madsen P A, Schaffer H A. Higher-order Boussinesq-type equations for surface gravity waves:Derivation and analysis [J]. Phil Trans R Soc Lond A,1998,356(1749): 3123-3184.
    [39]Zou Z L, Fang K Z. Alternative forms of the higher-order Boussinesq equations: Derivations and validations[J]. Coastal Engineering,2008,55(6):506-521.
    [40]Munk W H. Surf beats[J]. Eos Trans AGU,1949,30(6):849-854.
    [41]Tucker M J. Surf beats:sea wave of 1-5 min period[C]. Proc. Roy. Soc. London.1950: 565-573.
    [42]Nakaza E, Hino M. Bore-like surf beat in a reef zone caused by wave groups of incident short-period waves. [J]. Fluid Dynamics Research,1991,7(2):89-100.
    [43]Longuet-Higgins M S, Stewart R W. Radiation stress and mass transport in gravity waves, with application to "surf beats " [J]. Journal of Fluid Mechanics,1962,13:481-504.
    [44]Symonds G, Huntley D A, Bowen A J. Two dimensional surf beat:long wave generation by a time varying breakpoint [J]. Journal of Geophysical Research,1984,87:492-498.
    [45]Schaffer H A, Svendsen I A. Surf beat generation on a mild-slope beach[C]. Proc. of the International Conference on Coastal Engineering, No 21.1988.
    [46]Schaffer H A. Infragravity waves induced by short-wave groups[J]. Journal of Fluid Mechanics,1993,247:551-588.
    [47]Kostense J K. Measurement of surf beat and set-down beneath wave groups [C]. Proc.19th ICCE. Houston.1984:724-740.
    [48]Watson G, Peregrine D H, Toro E F. Numerical solution of the shallow-water equations on a beach using the weighted average flux method[C]. Computational Fluid Dynamics '92.1992.
    [49]Zou Z L, Nodd N. A nonlinear model of surf beat[C]. Proc.24th Conf. Coastal Engrg. Kobe, Japan.1994.
    [50]董国海,邹志利.海岸碎波拍的计算[J].力学学报,1997.
    [51]Nodd N, Dong G H. A numerical model of surf beat:extension and validation[R]. HR Walling Report,1995.
    [52]Stokes G G. On the theory of oscillatory waves. [C]. Trans. Camb. Philos. Soc.1847: 441-455.
    [53]Boussinesq J. Th'eorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond[J]. J Math Pures Appl,1872, 17(2):55-108.
    [54]Michell J H. The highest wave in water[J]. Philos Mag,1893,36:430-437.
    [55]Berkhoff J C W. Computation of combined refraction-diffraction[C]. Proc.13th Int. Conf. Coast. Engrg.1972:472-490.
    [56]Radder A C. On the parabolic equation method for water-wave propagation[J]. Journal of Fluid Mechanics,1979,95:159-176.
    [57]Kirby J T, Dalrymple R A. Verification of a parabolic equation for propagation of weakly-nonlinear waves[J]. Coastal Engineering,1984,8:219-232.
    [58]Peregrine D H. Long waves on a beach[J]. Journal of Fluid Mechanics,1967,27(4): 815-827.
    [59]Madsen P A, Sorensen 0 R. A new form of the Boussinesq equations with improved linear dispersion characteristics part 2. a slowly-varying bathymetry[J]. Coastal Engineering,1992,18:183-204.
    [60]Nwogu 0 G. An alternative form of the Boussinesq equations for nearshore wave propagation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,1993, 119(6):618-638.
    [61]Wei G, Kirby J T G, S. T., Subramanya R. A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves [J]. Journal of Fluid Mechanics,1995,294: 71-92.
    [62]Gobbi M F, Kirby J T, Wei G. A fully nonlinear Boussinesq model for surface waves. Ⅱ. Extension to 0(kh4)[J]. Journal of Fluid Mechanics,2000,405:181-210.
    [63]Kirby J T. Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents[C]. Advances in Coastal Engineering. Elsevier. V. C. Lakhan(ed).2003.
    [64]Abbott M B. Computational Hydraulics, Elements of theory of free surface flows[M]. London:Pitman Publishing,1978.
    [65]DHI MIKE 21 Coastal hydraulics and oceanography hydrodynamic module reference manual. DHI Water & Environment,2002.
    [66]Walkley M, Berzins M. A finite element model for the two-dimensional extended Boussinesq equations[J]. Int J for Num Meths in Fluids,2002,39(10):865-885.
    [67]Sorensen 0 R, Schaffer H A, Sorensen L S. Boussinesq-type modelling using an unstructured finite element technique[J]. Coastal engineering,2004,50(4):181-198.
    [68]Kirby J T. Fuwave manual[R]. Delaware Uni,1998.
    [69]Shi F, Dalrymple R A, Kirby J T, et al. A fully nonlinear Boussinesq model in generalized curvilinear coordinates[J]. Coastal Engineering,2001,42:337-358.
    [70]Kennedy A B, Kirby J T, Chen Q, et al. Boussinesq-type equations with improved nonlinear behaviour[J]. Wave Motion,2001,33:225-243.
    [71]Chen Q, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of longshore currents[J]. Journal of Geophysical Research,2003,108(C11,3362):26-21-26-18.
    [72]Chawla A, Kirby J T. A source function method for generation of waves on currents in Boussinesq models [J]. Applied Ocean Research,2000,22:75-83.
    [73]Lynett P J. Wave breaking velocity effects in depth-integrated models,2005.
    [74]Svendsen I A, Madsen P A. Turbulent bore on a beach[J]. Journal of Fluid Mechanics, 1984,148:73-96.
    [75]张永刚,李玉成.促进其线性频散特征另一种形式的Boussinesq方程[J].力学学报,1997,29(2):142-150.
    [76]邹志利.高阶Boussinesq水波方程[J].中国科学(E辑),1997,27(5):460-473.
    [77]Zou Z L. Higher order Boussinesq equations [J]. Ocean Engineering,1999,26:767-792.
    [78]Zou Z L. A new form of high-order Boussinesq equations[J]. Ocean Engineering,2000, 27:557-575.
    [79]邹志利.高阶Boussinesq水波方程的改进[J].中国科学(E辑),1999,29(1):87-96.
    [80]邹志利.含强水流高阶Boussinesq水波方程[J].海洋学报,2000,22(4):41-50.
    [81]邹志利.适合复杂地形高阶Boussinesq水波方程[J].海洋学报,2001,23:109-119.
    [82]林建国,邱大洪.二阶非线性和色散性的Boussinesq类方程[J].中国科学(E辑),1998,28(6):567-573.
    [83]张宝善,戴世强Boussinesq方程的发展形势与Airy波理论差异性研究[J].力学与实践,1997,19(4):20-22.
    [84]Bagnold R A. An Approach to the Sediment Transport Problem from General Physics[M]. 1966.
    [85]Bailard J A. An energetics total load sediment transport model for a plane sloping beach[J]. Journal of Geophysical Research,1981,86:10,938-910,954.
    [86]Elgar S, Gallagher E L, Guza R T. Nearshore sandbar migration[R].2001.
    [87]Chanson H. The Hydraulics of Open Channel Flow[M]. London:Wiley,1999.
    [88]Du Boys M P. Estudes du regime et laction exercee par les eaux sur un lit a fond de graviers indefinement affouilable[J]. Ann Ponts Chaussees,1879,18:141-195.
    [89]Shields A. Application of similarity principles and turbulence research to bedload movement (English translation of the original German manuscript)[R].1936.
    [90]Einstein H A. Formulas for the transportation of bed-load[J]. Transactions of the American Society of Engineers,1942,107:561-573.
    [91]Einstein H A. The bed-load function for sediment transportation in open channel flows[J]. US Department of Agriculture Technical Bulletin,1950,1026.
    [92]Meyer-Peter E, Muller R. Formulas for bed-load transport [C]. Rep.2nd Meet. Int. Assoc. Hydraul. Struct. Res. Stockholm.1948:39-64.
    [93]Meyer-Peter E. Transport des matires Solides en Gnral et problme Spciaux(in French) [J]. Bull Gnie Civil d'Hydraulique Fluviale,1951,5.
    [94]Nielsen P. Coastal bottom boundary layers and sediment transport[J]. Advanced series on ocean engineering,1992,4:56-57.
    [95]Grass A J. Sediment transport by waves and currents [R]. SERC London Cent. Mar. Technol, 1981.
    [96]Van Rijn L C. Sediment transport:Part Ⅰ:Bed load transport[C]. Proc. ASCE Journal of Hydraulics Division.1984:1431-1456.
    [97]Van Rijn L C. Sediment transport:Part Ⅱ:Suspended load transport[C]. Proc. ASCE Journal of Hydraulics Division.1984:1613-1641.
    [98]Van Rijn L C. Sediment transport:Part Ⅲ:Bed forms and alluvial roughness[C]. Proc. ASCE Journal of Hydraulics Division.1984:1733-1754.
    [99]Dibajnia M, Watanabe A. Transport rate under irregular sheet flow conditions[J]. Coastal Engineering,1998,35:167-183.
    [100]Soulsby R L, Damgaard J S. Bedload sediment transport in coastal waters[J]. Coastal Engineering,2005,52:673-689.
    [101]Bailard J A, Inman D L. An energetics bedload transport model for a plane sloping beach:local transport[J]. Journal of Geophysical Research,1981,86:2035-2043.
    [102]Dohmen-Janssen C M, Kroekenstoel D F, Hassan W N, et al. Phase lags in oscillatory sheet flow:experiments and bed load modelling[J]. Coastal Engineering,2002,46: 61-87.
    [103]Rakha K A, Deigaard R, Broker I. A phase-resolving cross shore sediment transport model for beach profile evolution[J]. Coastal Engineering,1997,31:231-261.
    [104]Karambas T V, Koutitas C. Surf and swash zone morphology evolution induced by nonlinear waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2002,128(3): 102-113.
    [105]Long W, Kirby J T, Shao Z Y. Cross Shore Sandbar Migration Predicted by a Time Domain Boussinesq Model Incorprating Undertow[J]. Coastal Engineering,2006.
    [106]Hsu T J, Hanes D M. Effects of wave shape on sheet flow sediment transport [J]. Journal of Geophysical Research,2004,109.
    [107]Ribberink J S. Bed-load transport for steady flows and unsteady oscillatory flows. [J]. Coastal Engineering,1998,34:59-82.
    [108]吴国强.沙纹、沙坝和水底泥沙运动相互作用研究[D]:(硕士学位论文).大连:大连理工大学,2011.
    [109]张海飞.海岸沙坝运动和相关泥沙运动的实验研究[D]:(硕士学位论文).大连:大连理工大学,2009.
    [110]尹晶,邹志利,李松.波浪作用下沙坝不稳定性实验研究[J].海洋工程,2008,26(1):40-50.
    [111]Hattori M, Kawamata R. Onshore-Offshore transport and beach profile change. Proc. 17th Coastal Engineering Conference,2. ASCE.1980:1175-1193.
    [112]Kennedy J F. The mechanics of dunes and antidunes in erodible-bed channels [J]. Journal of Fluid Mechanics,1963,16:521-544.
    [113]邹志利.水波理论及其应用.北京:科学出版社,2005.
    [114]Hughes S A. Physical models and Laboratory techniques in coastal engineering. Singapore:World Scientific,1993.
    [115]吴持恭.水力学(下册).北京:高等教育出版社,2003.
    [116]Roelvink J A, Stive M J F. Bar-generating cross-shore flow mechanisms on a beach [J]. Journal of Geophysical Research,1989,94 (C4):4785-4800.
    [117]杨秉心,杨艺洁.最大熵法海浪谱估计重庆交通学院学报,1986,1:104-109.
    [118]Burg J P. Maximum entropy spectral analysis[C].37th Ann. Int. Meet. Soc. Exploration Geophys. Oklahoma City.1967.
    [119]Burg J P. Maximum entropy spectral analysis[D]:(Ph. D.). Stanford:Stanford University,1975.
    [120]聂士忠,王玉泰.最大熵谱分析方法和Matlab中对短记录资料的谱分析[J].山东师范大学学报(自然科学版),2005,20(3):40-51.
    [121]Wijnberg K M, Terwindt J H J. Extracting decadal morphological behaviour from high-resolution, long-term bathymetric surveys along the Holland coast using eigenfunction analysisMarine Geology,1995,136(1-4):301-330.
    [122]邹志利.海岸动力学(第四版)[M].北京:人民交通出版社,2009.
    [123]Holman R A, Sallenger A H. Setup and Swash on a Natural Beach [J]. Journal of Geophysical Research,1985,90(C1):945-953.
    [124]Holman R A. Extreme Value Statistics for Wave Run-up on a Natural Beach[J]. Coastal Engineering,1986,9(6):527-544.
    [125]Bailard J A. Modeling on-offshore sediment transport in the surf zone. Proceedings of the18th Coastal Engineering Conference. ASCE, New York. Cape Town, Republic of South Africa.1982:1419-1438.
    [126]Davies A G, Ribberink J S, Temperville A, et al. Comparisons between sediment transport models and observations made in wave and current flows above plane bedsCoast Engrg, 1997,31(1-4):163-198.
    [127]Nielsen P. Some basic concepts of wave sediment transport, Inst. of Hydrodyn. and Hydr. Eng., Tech. Univ. of Denmark,1979.
    [128]Holman R A. Edge Waves and the Configuration of the Shoreline, Chapter 2, The CRC Handbook of Coastal Processes and Erosion[M]. Boca Raton,1983.
    [129]Russell P E. Mechanisms for beach erosion during storms[J]. Cont Shelf Res,1993, 13(11):1243-1265.
    [130]Holman R A. Infragravity Energy in the Surf Beat[J]. Journal of Geophysical Research, 1981,86(C7):6442-6450.
    [131]Gaza R T, Thornton E B. Swash Oscillations on a Natural Beach [J]. Journal of Geophysical Research,1982,87(C1):483-491.
    [132]冯砚青,陈子燊.长重力波运动与近岸过程研究综述[J].海洋通报,2005,24.
    [133]Beach R A, Sternberg R W. The influence of infragravity motions on Suspended Sediment Transport in the Inner Surf Zone[C]. Proc. Coastal Sediments 87 Conference. American Society of Civil Engineers.1987:913-928.
    [134]Beach R A, Sternberg R. Suspended sediment transport in the surf-zone:response to breaking waves[J]. Cont Shelf Res,1996,16(15):1989-2003.
    [135]Osborne P D, Rooker G. Surf zone and swash zone sediment dynamics on high energy beaches: West Aukland, New Zealand[C]. Proc. Coastal Dynamics 97. ASCE.1998.
    [136]刘艳丽.双波群产生的低频波浪[D]:(硕士学位论文).大连:大连理工大学,2006.
    [137]刘艳丽,邹志利,尹晶.双波群产生的低频波浪实验研究[J].中国科技论文在线,2008,3(7):477-484.
    [138]Le-Mehaute B, Koh R C Y. On the breaking of wave arriving at an angle to the shore [J]. J Hydraul Res,1967,5(1):31-48.
    [139]Collins J I, Weir W. Probabilities of Wave Characteristics in the Surf Zone[C]. Pasadena, CA.1969.
    [140]Battjes J A. Surf-Zone Dynamics[J]. Annual Review of Fluid Mechanics,1988,20: 257-291.
    [141]Dally W R, Brown C A. A modeling investigation of the breaking wave roller with application to cross-shore currents[J]. Journal of Geophysical Research,1995, 100(C12):24873-24883.
    [142]Lippmann T C, Brookins A H, Thornton E B. Wave energy transformation on natural profiles[J]. Coastal Engineering,1996,27(1-2):1-20.
    [143]Nodd N, Dong G H. A numerical model of surf beat:extension and validation[R].1995.
    [144]Toro E F. Riemann problems and the WAF method for solving the two-dimensional shallow water equations[C]. Phil. Trans. R. Soc. Lond.1992:43-68.
    [145]Fang K Z, Zou Z L. Boussinesq-type equations for nonlinear evolution of wave trains[J]. Wave Motion,2010,47(1):12-32.
    [146]Kennedy A B, Chen Q, Kirby J T. Boussinesq modeling of wave transformation, breaking, and runup. Ⅰ:1D[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2000, 47:39-47.
    [147]Lynett P J. Wave breaking velocity effects in depth-integrated models[J]. Coastal Engineering,2006,53:325-333.
    [148]房克照.四阶完全非线性Boussinesq水波方程及其简化模型[D]:(博士学位论文).大连:大连理工大学,2008.
    [149]Zelt J A. The run-up of nonbreaking and breaking solitary waves[J]. Coastal Engineering,1991,15:205-246.
    [150]Kirby J T, Wei G, Chen Q. FUNWAVE 1.0, Fully nonlinear Boussinesq wave model documentation and user's manual[R].1998.
    [151]陶建华.波浪在岸滩上爬高和破碎的数值模拟海洋学报,1984,6(5):692-700.
    [152]Madsen P A, S(?)rensen O R, Schaffer H A. Surf zone dynamics simulated by a Boussinesq-type model. Part Ⅱ. Surf beat and swash oscillations for wave groups and irregular waves[J]. Coastal Engineering,1997b,32:289-319.
    [153]Madsen P A, Sorensen O R, Schaffer H A. Surf zone dynamics simulated by a Boussinesq type model. Part 1:Model description and cross-shore motion of regular waves[J]. Coastal Engineering,1997a,32:255-283.
    [154]Wei G, Kirby J T, Sinha A. Generation of waves in Boussinesq models using a source function method. [J]. Coastal Engineering,1999,36:271-299.
    [155]Watson G, Barnes T C D, Peregrine D H. The generation of low-frequency waves by a single wave group incident on a beach[J]. Coastal Engineering,1994,57:776-790.
    [156]Battjes J A, Janssen J P F M. Energy loss and setup due to breaking of random waves[C]. Proc.16th Coast. Engrg.Conf. Hamburg.1978:569-587.
    [157]Stive M J F, Dingrmans M W. Calibration and verification of a one-dimensional wave energy decay model[R].1984.
    [158]常梅.海岸低频波浪及其引起的海岸变形[D]:(硕士学位论文).大连:大连理工大学,1998.
    [159]卢卫.海岸低频波浪数值模拟[D]:(硕士学位论文).大连:大连理工大学,2004.
    [160]Shinji S, Norihiko M. A Number Model of Beach Profile Change Due to Random Wave[J]. Coastal Engineering in Japan,1991,34(2).
    [161]I.O L y. Short-term shoreline changes due to cross-shore structures:a one-line numerical model[J]. Coastal Engineering,1997,31(1-4):59-75.
    [162]Abdelrahman S M, Thornton E B. Changes in the Short Wave Amplitude and Wavenumber Due to the Presence of Infragravity Waves[C]. Coastal Hydrodynamics. American Society of Civil Engineers.1987:458-478
    [163]Drew D A. Turbulent sediment transport over a flat bottom using momentum balance [J]. Journal of Applied Mechanics,1975,3:38-44.
    [164]Drew D A. Production and dissipation of energy in the turbulent flow of a particle fluid mixture, with some results on drag reduction[J]. Journal of Applied Mechanics, 1976,12:543-547.
    [165]Drew D A. Mathematical modeling of two-phase f low[J]. Annual Review of Fluid Mechanics, 1983,15:261-291.
    [166]Hsu T J. A two-phase flow approach for sediment transport[D]:(Ph. D):Cornell University,2002.
    [167]Dong P, Zhang K. Two-phase flow modelling of sediment motions in oscillatory sheet flow[J]. Coastal Engineering,1999,36:87-109.
    [168]Drake T G, Calantoni J. Discrete particle model for sheet flow sediment transport in the nearshore[J]. Journal of Geophysical Research,2001,106(C9):19859-19868.
    [169]Mina K M, Sato S. A transport model for sheetflow based on two-phase flow[J]. Coastal Engineering,2004,46(3):329-367.
    [170]Nielsen P. Coastal bottom boundary layers and sediment transportWorld Scientific, 1992.
    [171]Bagnold R A. Mechanics of marine sedimentation. [J]. The Sea:Ideas and Observations, 1963,3:507-528.
    [172]De Vriend H J, Zyserman J A, Nicholson J, et al. Medium-term2DH coastal areamodel ing [J]. Coastal Engineering,1993,21:193-224.
    [173]Nicholson J, Broker I, Roelvink J A, et al. Intercomparison of coastal area morphodynamic models[J]. Coastal Engineering,1997,31:97-123.
    [174]Kobayashi N, Johnson B D. Sand suspension, storage, advection and settling in surf and swash zones[J]. Journal of Geophysical Research,2001,106(C5):9363-9376.
    [175]Hudson J. Numerical Techniques for Morphodynamic Modelling[D]:(Ph. D). UK:University of Reading,2001.
    [176]Long W. Boussinesq modeling of waves, currents and sediment transport[D]:(Ph. D). Delware, Newark, US:University of Delaware,2006.
    [177]Long W, Kirby J T, Shao Z. A numerical scheme for morphological bed level calculations[J]. Coastal Engineering,2008,55
    [178]Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. J Comput Phys,1994,115:200.
    [179]Jiang G S, Wu C C. A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, [J]. Journal of Computational Physics,1999,150:561-594.
    [180]Shao Z Y, Kim S, Yost S A. A portable numerical method for flow with discontinuities and shocks[C]. Proc.17th Engineering Mechanics Conference. ASCE. University of Delaware, Newark, DE, USA.2004.
    [181]Rubey W W. Settling velocity of gravel, sand, and silt particles [J]. Am J Sci,1933, 25(148):325-338.
    [182]武汉水利电力学院.河流动力学[M].北京:中国工业出版社,1961.
    [183]陈士荫,顾家龙,吴宋仁.海岸动力学[M].北京:人民交通出版社,1987.
    [184]Johnson H K, Zyserman J A. Controlling spatial oscillations in bed level update schemes[J]. Coastal Engineering,2002,46:109-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700