用户名: 密码: 验证码:
青藏铁路抛石路基通风性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抛石路基作为一种主动冷却路基的工程措施在青藏铁路建设中得到了广泛应用,其降温过程主要是通过抛石层内空气的对流换热作用实现。在青藏高原这样一个特定的气候条件下,由大气风场引起的强迫对流在抛石层内空气的对流换热过程中起主导作用。因此,研究大气风场与抛石路基内流速场、温度场的关系对明确抛石路基的降温机理、指导抛石路基的设计具有重要意义。
     本文在前人的研究基础上,通过室内试验、数值模拟、理论推导及现场测试等手段对抛石路基通风性能进行了系统研究,重点研究了抛石路基中强迫对流作用对抛石路基降温效果的影响。
     (1)对粒径分别为5-8cm,8-15cm和15-20cm的抛石组进行了系统地室内试验,研究了边界温度变化条件下自然对流的形成机制以及抛石层内风速场和温度场的变化规律,提出了抛石层内自然对流流速与对流传热温差的函数关系式。
     (2)对抛石护坡路基和抛石路基的通风性能进行了系统的现场试验,重点研究了块碎石护坡和块石路基两种结构在通风条件下的强迫通风特性以及抛石层内部流速场、温度场与外界大气风场的关联变化规律。此外,通过对抛石层通风性能现场试验数据的理论分析,研究提出了大气风场与强迫对流在抛石路基降温过程中所占影响权重的关系。
     (3)基于多孔介质中流体热对流的连续性方程、非达西流动量方程和能量方程,对强通风条件下青藏铁路典型抛石护坡路基内温度场和流速场的分布规律进行了数值模拟研究。
     (4)通过对抛石层通风性能现场试验数据的理论分析研究了流动阻力与流速的关系。结果表明,Ergun型方程能较好地反映抛石层中孔隙形状和粘性的影响,故可以用于抛石路基内流动阻力的分析计算。以实际工程为例计算了抛石路基的阻力系数,并对实测最大风速条件下的影响深度进行了分析,结果表明在实测最大风速情况下,大气风场对块石护坡阳坡的影响深度最大,约为47cm。
Riprap embankment is widely used in Qinghai-Tibetan railway as a measure for cooling the permafrost. The cooling effect of riprap is achieved by convective heat transfer in embankment. Because of the particular weather conditions, forced convection usually plays the leading role during convective heat transfer in embankment in the Qinghai-Tibet Plateau. So, it is meaningful to make clear the relationship between atmospheric wind field and velocity and temperature fields in embankment, which will provide a useful basis for the riprap embankment engineering design in Qinghai-Tibet railway engineering.
     The ventilation performance of riprap embankment will be investigated in this study through multiple method including laboratory tests, in-situ tests, numerical simulation and theoretical analysis. And more attention was paid to clarify that the convection mechanism and its affect on cooling effect of riprap embankment.
     (1) Laboratory tests of different grain size including5-8cm,8-15cm and15-20cm were performed to study the formation mechanism of free convection and the characteristics and distributional pattern of temperature and velocity in riprap layer. The relation equation of natural convection velocity with temperature difference was proposed based the laboratory results.
     (2) In-situ tests of riprap cooling embankment and riprap slope embankment were also performed and compared to study the ventilation characteristics of riprap layer. The focus of this study is to make clear the ventilation characteristics of layer under forced convection condition and achieve the change rule of temperature and velocity with external wind condition of riprap layer. Wind speed and forced convection contribution on cooling process was studied based on the in-situ tests results.
     (3) Based on the continuity, non-Darcy momentum and energy equations for convection of incompressible fluid in porous media, and considering outside wind condition, the mathematical model of convective heat transfer for open riprap embankment in permafrost regions was established, and verified by in-situ monitoring data. Then, the velocity and temperature fields of open riprap embankments were studied numerically in permafrost regions along the Qinghai-Tibet railway.
     (4) According to the convection, conduction and fluid-solid coupled heat transfer theories, the important relationship between flow resistance and velocity was achieved based the theoretical analyses to in-situ monitoring data and test results. Besides, the influence depths of atmospheric wind field to riprap layer were calculated and analyzed through a practical project, and the calculation results show that the influence depths of atmospheric wind field to riprap layer was47cm. Those conclusions provide a basis for the solution of the technical problems in roadway construction in cold regions, such as choosing the reasonable embankment style, design parameters and so on.
引文
[1]周幼吾,郭东庆,邱国庆等.中国冻土[M].北京:科学出版社,2000.
    [2]Esch DC. Roadway embankments on warm permafrost problems and remedial treatments. Proceedings of the 5th international conference on permafrost,1988,1223-1228.
    [3]Cheng Guodong. Glaciology and Geocryology of China during the past 40 years:progress and prospect[J]. Journal of Glaciology and Geocryology,1999,21(4):289-309.
    [4]吴紫旺,程国栋,朱林楠等.冻土路基工程[M].兰州:兰州大学出版社,]998.
    [5]程国栋.青藏铁路工程与多年冻土相互作用及环境效应.中国科学院院刊,2002,(1):21-25.
    [6]秦大河.中国西部环境演变评估综合报告[M].北京:科学出版社,2002.
    [7]孙志忠.青藏铁路多年冻土区块石护坡路基试验研究[D].中国科学院研究生院博士学位论文,2006.
    [8]李治平.多年冻土地区道路病害及其防治对策[J].东北公路,2003,26(4):69-70.
    [9]Cheng Guodong. Constructing of the Qinghai-Tibet railroad using the principle of cooling the roadbed[J]. Journal of Glaciology and Geocryology,2005,27(1):1-7.
    [10]徐学祖,孙斌祥,赖远明等.青藏铁路片石路基长期使用效果分析[J].冰川冻土,2004,26(1):101-105.
    [11]刘建坤,童长江,房建宏等.寒区岩土工程引论[M].北京:中国铁道出版社,2005.
    [12]王绍令,赵秀峰,郭东信等.青藏高原冻土对气候变化的影响[J].冰川冻土,1996,18(增):157-165.
    [13]李述训,吴紫汪.青藏高原多年冻土区沥青路面下融化盘形成变化特征[J].冰川冻土,1997,19(2):133-140.
    [14]Harris SA, Pedersen DE. Thermal regimes beneath coarse blocky materials[J]. Permafrost and Periglacial Progress,1998,9:107-120.
    [15]Goering D J, Instanes A, Knudsen S. Convective Heat Transfer in Railway Embankment Ballast [A]. Ground Freezing 2000[C]. Rotterdam:Balkema Publishers,2000,31-36.
    [16]Goering DJ. Experimental investigation of air convection embankments for permafrost-risistant roadway design [C]. Proc,7th Int. Conf. on Permafrost, Yellowknife, N.W.T., Canada, Laval Univ., Que., Canada,1998,319-326.
    [17]Goering DJ. Passively cooled railway embankments for use in permafrost areas [J]. Journal of cold regions engineering,2003,17:119-133.
    [18]Sun Binxiang, Xu Xuezu, Lai Yuaning. Experimental researches of thermal diffusivity and conductivity in embankment ballast under periodically fluctuating temperature[J]. Cold Regions Science and Technology,2004,38(2):219-227.
    [19]Yu Wenbing, Lai Yuanming, Zhang Xuefu. Laboratory investigation on cooling effect of coarse rock layer and fine rock layer in permafrost regions[J]. Cold Regions Science and Technology,2004,38 (1):31-42.
    [20]Sun Zhizhong, Ma Wei, Li Dongqing. In situ test on cooling effectiveness of air convection embankment with crushed rock slope protection in permafrost regions[J] Journal of Cold Regions Engineering,2005,19(2):38-51
    [21]何平,程国栋,马巍等.块石通风性能实验研究[J].岩土工程学报.2006,28(6):789-792.
    [22]邱国庆,刘经仁,刘鸿绪.冻士学词典[M].兰州:甘肃科学技术出版社,1994.
    [23]王志坚.青藏铁路建设中的冻土工程问题[J].中国铁路.2002,12:31-37.
    [24]木下诚一.冻土物理学[M].长春:吉林科学技术出版社,1985.
    [25]马巍,程国栋,吴青柏.解决青藏铁路建设中冻土工程问题的思路与思考[J].科技导报,2005,1:23-28.
    [26]Zhang Tingjun, Mark AP, Roger GB. Statistic of global permafrost distribution[C]. Asian Conference on Permafrost, Lanzhou, China,2006,7-8.
    [27]Jin Huijin, Li shuxu, Cheng Guodong. Permafrost and climatic change in China[J]. Global and Planetary Change,2000,26,387-404.
    [28]Rooney JR. Rock fill embankment application for convective embankment cooling on the BAM railway system[C]. Proceedings of 5th international symposium on cold region development, ASCE, Anchorage, Alaska,1997,399-402.
    [29]Vinson TS. Mitigation options to reduce icing and thaw instability problems on the Denali Park access road[J]. Journal of Glaciology and Geocryology,2005,27(1):17-32.
    [30]朱林楠,吴紫汪,刘永智,青藏高原东部的冻土退化[J].冰川冻土,1995.17(2):120-124.
    [31]李东庆,青海省214国道(青康公路)多年冻土退化与路基稳定性分析研究[D].中国科学院兰州冰川冻土研究所博士学位论文,1999.
    [32]臧恩穆,吴紫汪,多年冻土退化与道路工程[M].兰州:兰州大学出版社.1999.
    [33]王绍令,米海珍,青藏公路铺筑沥青路面后路基下多年冻土的变化[J].冰川冻土,1993.15(004):566-573.
    [34]张鲁新,原思成,杨永平,青藏铁路多年冻土区路基变形裂缝发生机理及其防治[J].第四纪研究,2003.23(6):604-610.
    [35]原喜忠.大兴安岭北部多年冻土地区路基沉陷研究[J].冰川冻土,1999.21(2):155-158.
    [36]汪双杰,霍明锦,周文.青藏公路多年冻土路基病害[J].公路,2004(005):22-26.
    [37]窦明健,青藏公路路面病害成因分析[J].冰川冻土,2003.25(004):439444.
    [38]王羽,冻土地区路基特点及其治理措施[J].甘肃科技纵横,2007.36(2):129.
    [39]孙永福.青藏铁路多年冻土工程的研究与实践[J].冰川冻土,2005,27(2):153-162.
    [40]程国栋,赖远明,孙志忠等.碎石层的“热半导体”作用[J].冰川冻土,2007,29(1):1-7.
    [41]程国栋.局地因素对多年冻土分布的影响及其对青藏铁路设计的启示[J].中国科学(D辑),2003,33(6):602-607.
    [42]冯文杰,李东庆,马巍等.不同边界条件对多年冻土上限影响的模型试验研究[J].冰川冻土,2001,23(4):353-359.
    [43]徐学祖,孙斌祥,李东庆等.边界温度周期波动下块石的温度变化规律[J].岩土工程学报,2003,25(1):91-95.
    [44]徐学祖,孙斌祥,刘琦等.碎石铺设位置及粒径对路基降温效果的室内试验[J].岩土工程学报,2005,27(3):254-257.
    [45]徐学祖,孙斌祥,赖远明等.青藏铁路片石路基长期使用效果分析[J].冰川冻土,2004,26(1):101-105.
    [46]孙斌祥,徐学祖,赖远明,等.碎石粒径对寒区路堤自然对流降温效应的影响[J].岩土工程学报,2004,26(6):809-814.
    [47]汪双杰,孙斌祥,徐学祖等.路堤块石自然对流机理的室内模拟试验研究[J].中国公路学报,2004,17(2):18-23.
    [48]喻文兵,赖远明,张学富等.多年冻土区铁路通风路基室内模型试验研究[J].铁道学报,2002,24(6):78-83.
    [49]喻文兵,赖远明,张学富等.多年冻土区块石路基室内试验研究[J].岩土工程学报,2005,27(10):1233-1236.
    [50]赖远明,张明义,喻文兵等.封闭条件下抛石路堤降温效果及机理的试验研究[J].冰川冻土,2004,26(5):576-581.
    [51]赖远明,张明义,喻文兵等.边界条件对碎石层降温效果及机理的影响[J].冰川冻土,2005,27(2):163-168.
    [52]张明义, 赖远明,喻文兵等.封闭与开放抛石路堤降温效果及机理对比试验研究[J].岩石力学与工程学报,2005,24(15):2671-2677.
    [53]张明义,赖远明,高志华等,开放条件下粒径对块石和碎石护坡降温效果影响的试验研究[J].岩土工程学报,2006,28(11):1986-1990.
    [54]何树生,张明义,张耀等.多年冻土区开放块石护坡降温特性室内试验研究[J].铁道学报,2008,(4):1-7.
    [55]Goering DJ and Kumar P. Winter-time convection in open-graded embankments [J]. Cold Regions Science and Technology,1996,24(1):57-74
    [56]Goering DJ, Instanes A, Knudsen S. Convective heat transfer in embankment ballast[M]. Ground Freezing,2000, Rotterdam:Balkema.
    [57]Lai Yuanming, Zhang Luxin, Zhang Shujiuan. Cooling effect of ripped-stone embankments on Qing-Tibet railway under climatic warming [J]. Chinese Science Bulletin,2003,48(6): 598-604.
    [58]米隆,赖远明,吴紫汪等.高原冻土铁路路基温度特性的有限元分析[J].铁道学报,2003,25(2):62-67.
    [59]姜凡,刘石,王海刚等.冻土碎(块)石路堤传热与对流特性数值计算分析[J].中国科学(D辑),2003,33(增):133-144.
    [60]姜凡,刘石,王海刚,等.冻土块石路基的保冷效果数值计算研究[J].铁道学报,2004,26(4):109-115.
    [61]赖远明,张鲁新,张淑娟等.利用块石护坡调节冻土路基阴阳坡的温度分布[J].岩石力学与工程学报,2004,23(24),4212-4220.
    [62]赖远明,张明义,刘志强等.开放边界条件下青藏铁路抛石路基的降温效果分析[J].中国科学:D辑,2005,35(6),578-585.
    [63]王爱国,马巍,吴志坚.块碎石路堤上覆砂砾石厚度对冻土路基冷却效果的研究[J].岩石力学与工程学报,2005,24(13):2333-2341.
    [64]张明义,赖远明,李双洋等.青藏铁路封闭块石路基流场与温度场特性数值分析[J].自然科学进展,2006,16(12):1575-1582.
    [65]张明义,赖远明,高志华等.青藏铁路开放边界块碎石类路基速度场和温度场特征非线性分析[J].铁道学报,2007,29(5):73-78.
    [66]李国玉,李宁,康佳梅.青藏铁路冻土区开放块石护坡路基降温机制研究[J].岩石力学与工程学报,2007,26(S1):3161-3169.
    [67]Li Guoyu, Li Ning, Quan Xiaojuan. The temperature features for different ventilated-duct embankments with adjustable shutters in the Qinghai-Tibet railway[J]. Cold Regions Science and Technology,2006,44(2),99-101.
    [68]Li Guoyu, Li Ning, Kang Jiamei. Preliminary study on cooling effect mechanism of Qinghai-Tibet railway embankment with open crushed-stone slide slope in permafrost regions[J]. Cold Regions and Science and Technology,2006,45(3),193-201.
    [69]马辉.片碎石护坡结构维持青藏铁路多年冻土区路基稳定的作用机理和适用性研究[D].中国铁道科学院研究院博士学位论文,2006.
    [70]卞晓琳,何平,吴青柏等.不同粒径块石层自然对流特性的室内试验研究.中国铁道科学.2011,32(1):1-6.
    [71]卞晓琳,何平,吴青柏等.路堤块石自然对流特性的室内试验研究.铁道学报.2010,32(5):77-81.
    [72]孙斌祥,徐学祖,赖远明等.基于对流降温效应的青藏铁路碎石护坡层厚度研究[J].铁道学报,2005,27(4):96-103.
    [73]孙斌祥,徐学祖,赖远明等.基于对流效应的寒区路堤块碎石临界高度研究[J].中国公路学报,2005,18(4):1-6.
    [74]田亚护,刘建坤,张鲁新.青藏铁路多年冻土地区碎石护坡路基非线性分析[J].工程地质学报,2006,14(4),470-475.
    [75]贝尔.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983.
    [76]吴青柏,于晖,蒋观利等.青藏铁路块石护坡温度场及路基冷却作用机理分析[J].岩土工程学报,2008,30(7),1011-1016.
    [77]杨德全,韩庆书.二维粘性流动的边界元方法[J].水动力学研究与进展,1995,10(1),20-27.
    [78]李炜,徐孝平.水力学[M].武汉:武汉水力电力大学出版社.2000,156-171.
    [79]Neto HL, Quaresma JN, Cotta RM. Natural convection in three-dimensional porous cavities: integral transform method[J]. International Journal of Heat and Mass Transfer,2002,45(14): 3013-3022.
    [80]Ahmed N, Sundada DK. Nonlinear flow in porous media[J]. Journal of the Hydraulic Division, ASCE,1969,95,1847-1857.
    [81]米隆,赖远明,张克华.冻土通风路基温度场三维非线性分析[J].冰川冻土,24(6)765-769.
    [82]赖远明,张鲁新,徐伟泽等.青藏铁路抛石路基的温度特性研究[J].冰川冻土,2003,25(6):291-296.
    [83]Lai Yuanming, Zhang Luxin, Zhang Shujiuan, et al. Cooling effect of ripped-stone embankments on Qing-Tibet railway under climatic warming [J]. Chinese Science Bulletin, 2003,48(6):598-604
    [84]徐学祖,王家澄,张立新等.冻土物理学[M].北京:科学出版社,2001.59-77,86-90.
    [85]李述训,程国栋,郭东信.气候持续变暖条件下青藏高原多年冻土热状况变化特性的数值模拟[J].中国科学(D辑),39(4):434-441.
    [86]赵鸣,苗曼倩,王彦昌.边界层气象学教程[M].北京:气象出版社,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700