用户名: 密码: 验证码:
不同调度方案下三峡库区垂向二维水动力模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡水库蓄水运行后干支流水文情势发生巨大变化,库区支流水体水质恶化,非汛期支流的局部水域易暴发“水华”现象。其主要原因是蓄水后支流由天然状态的流速1~2m/s变成几乎静止,水体紊动和水流流速的降低造成营养盐的聚集和藻类快速生长。而三峡电站非汛期采用调峰运行,电站调峰有利于干、支流水体的交换,增大水体紊动和水流流速,从而为改变支流的水质提供了新契机。传统研究多采取一维水动力模型,其数值模拟结果不能反映深水水库显著的垂向水动力特性。基于此,开展不同调度方案下三峡库区垂向二维水动力模型研究。具体研究内容和结论如下:
     (1)分析CE-QUAL-W2垂向二维水动力学和水质模型的基本原理、功能及限制条件和模型的优点。采用CE-QUAL-W2垂向二维水动力学和水质模型,建立了三峡库区垂向二维水动力模拟模型。
     (2)模拟分析了日调峰运行与日不调峰均匀泄流运以及不同调峰幅度下的库区水动力过程。数据表明:与不调峰运行方式相比,调峰运行方式提高了支流水体流速,加强了干支流的水体交换和掺混。而且随着调峰幅度的增加,水体交换量和交换速度同步提高。
     (3)模拟分析了相同日运行方式和不同典型库水位条件下的三峡库区水动力过程。数据表明:随着库水位的升高,支流水体流速增大,干支流水体交换量增大,有利于稀释支流污染物浓度。
     (4)模拟了相同日运行方式和不同水位蓄放方式下的三峡库区水动力过程。数据表明:与水位不变运行方式相比,水位蓄放方式缩短了水体置换时间短,加强了干支流水体交换,有利于支流水质的改善。而且在先蓄后放方式下,干支流水体掺混最强。
After the Three Gorges Reservoir tributaries hydrological run a big change in reservoir tributary water quality deterioration, non-flood prone tributaries of the local waters outbreak "bloom" phenomenon. Because the high water level results in the decreases of the flow velocity and turbulence, which leads to the enrichment of nutrient and fast growth of algae. While in the non-flood season, the Three Gorges Power Station will be in peak load operation, which will benefit the water exchange between main stream and tributaries and increase the water turbulence and velocity. Therefore, the peak load operation will provide a new way to improve the water quality of the tributaries. One-dimensional hydrodynamic model is used in traditional research, the numerical simulation result can not reflect the deep reservoir significant vertical hydrodynamic characteristic. Based on this, study on a two-dimensional,laterally averaged, hydrodynamic model to three-gorge reservoir under different scheduling mode is necessary.
     Specific content and conclusion of the study are as follows:
     (1) Analysis of the CE-QUAL-W2 vertical two-dimensional hydrodynamic and water quality model's basic principles, functions, restrictions and benefits of the model. This article use CE-QUAL-W2 vertical two-dimensional hydrodynamic and water quality model simulate to a two-dimensional,laterally averaged, hydrodynamic model to three-gorge reservoir
     (2) The simulation analysis with no load uniform load operation discharge operation and the peak amplitude under different water reservoir. Data shows that compared with no load operation mode, the peak load regulating operation ways to improve the water velocity, strengthen the tributary of the uprising water exchange and mixing. But with the peak amplitude increase, water exchange volume and exchange synchronous speed is increased.
     (3) The simulation analysis water dynamic process of the three gorges reservoir under the condition operation mode and the same in different typical water. Data shows that, with the increase of water, the water velocity increasing, the tributary exchange volume uprising, to dilute the tributary pollutant concentration.
     (4) Simulate water dynamic process of three gorges reservoir under the same operation mode and different levels of regenerative. Data shows that compared with constant water level, water storage operation to shorten the water displacement put short time, strengthen the tributary, increased water exchange separately, improved water quality. And after the first storage, the tributaries water exchange is the strongest.
引文
[1]林秋奇,韩博平.水库生态系统特征研究及其在水库水质管理中的应用[J].生态学报, 2001, 21(6):1034~1040.
    [2]李锦秀,廖文根.三峡库区富营养化主要诱发因子分析[J].科技导报,2003:49~52.
    [3]冯民权,郑邦民,周孝德.河流及水库流场与水质的数值模拟.北京:科学出版社,2007:208~210.
    [4]曹祖德,王运洪.水动力泥沙数值模拟.天津:天津大学出版社,1994:165~166.
    [5] Robert.V.Thomann,John A.Mueller,Principles of Surface Water Quality Modeling and Control[M],New York : Harper Collins Publisbers Inc,1987.
    [6] Christopher J. Berger,Scott A. WellsAndRobert Annear.Laurance Lake Temperature Model.2001.
    [7] Hernan G. Rodriguez, M.S.Robert L. Annear Jr., M.S.,Scott A. Wells, Ph.D,P.E.andChris Berger, Ph.D. Lower Willamette River Model:Boundary Conditions and Model Setup. November 2001.
    [8] JOHN C.RISLEY. Effects of Hypothetical Management Scenarios on Simulated Water Temperatures in the Tualatin River, Oregon. 2000.
    [9] Wen-Cheng Liu. Wei-Bo Chen. Impact of phosphorus load reduction on water quality in a stratified reservoir-eutrophication modeling study. Environ Monit Assess, 2009:393–406.
    [10] Rui Zou and Wu-Seng Lung. Hydrodynamic and Temperature Modeling of Loch Raven and Pretty Boy Reservoirs,23-25.
    [11]陈小红.湖泊水库垂向二维水温分布预测[J].武汉大学学报(工学版), 1992,(04) :40~47.
    [12]陈小红,刘美南,林艳珊.水库垂向二维水质分布研究[J] .水利学报, 1997,(04) .
    [13]雒文生,周志军.水库垂直二维湍流与水温水质耦合模型[J] .水电能源科学, 1997,15(3):1~7.
    [14]蒲灵.季节性冰封水库垂向水温分布研究[D].四川大学, 2005.
    [15]邓云,李嘉,罗麟.河道型深水库的温度分层模拟[J] .水科学进展,2004,(05):604~609.
    [16]邓云,李嘉,罗麟.水库温差异重流模型的研究[J] .水科学报,2003(7):7~11.
    [17]郝红升,李克锋,梁瑞峰.支流影响下的水库水温预测模型[J].水利水电科技进展,2006,(05) .
    [18]冯民权.大型湖泊水库平面及垂向二维流场与水质数值模拟[D] .西安理工大学,2003.
    [19]王冠,韩龙喜,常文婷.基于立面二维水动力-水温耦合模型的水库水温分布[J].水资源保护,2009,(02):59~62.
    [20]冯小香,张小峰,崔占峰.垂向二维非恒定流及悬浮物分布模型研究[J].水科学进展, 2006,(04):518~523.
    [21]朱哲果.分层水库垂向二维水温模型模拟研究[D].西安建筑科技大学, 2009.
    [22]王冠.大型深水库纵竖向二维水温模拟[D].河海大学, 2007.
    [23]张耀新,吴卫民.剖面二维非恒定悬移质泥沙扩散方程的数值求解[J].泥沙研究,1999,(2):40~45.
    [24]江春波,张庆海,高忠信.河道立面二维非恒定水温及污染物分布预报模型[J].水利学报,2000,(09):20~24.
    [25]冯民权,周孝德,郑邦民.糯扎渡水电站垂向二维非恒定流的数值模拟[J].水力发电学报, 2003,(03).
    [26]叶守泽,夏军等.水库水环境模拟预测与评价[M].北京:中国水利水电出版社,1998:l~3.
    [27]叶闽.河道型水库岸边污染带特性分析.环境科学研究,2003(4):8~11.
    [28]高庆先,胡铭等.湖泊流体动力学模型及实验,环境科学研究,2001(5):47~50.
    [29]黄胜,卢启苗.河口动力学[M] .北京:水利电力出版社,1995.
    [30]时钟,李世森.垂向二维潮流数值模型及其在长江口北槽的应用[J].海洋通报, 2003,(03):1~7.
    [31]李世森,时钟,刘应中.河口潮流垂向二维有限元数学模型[J] .海洋科学, 2001,(09):67~70.
    [32]于庆峰.海漫加糙影响下水流垂向二维数值模拟[D].内蒙古农业大学, 2006.
    [33]苏利红.潮汐水流宽度平均的垂向二维数值模拟研究[D].太原理工大学, 2005:84~85
    [34]王义刚,朱留正.河口盐水入侵垂向二维数值计算[J].河海大学学报(自然科学版), 1991,(04):1~2.
    [35]卢薇,朱照宇,刘卫平.填海工程对海水入侵影响的数值模拟研究[J].自然灾害学报,2010,(01):39~43.
    [36]张晟,李崇明,魏世强等.三峡库区富营养化评价方法探讨[J].西南农业大学学报(自然科学版),2004, 26(3):340~343.
    [37]Nandalal K.D.W., Bogardi J.J. Optimal operation of a reservoir for quality control using inflows and outflows[J].Water Science and Technology.1995.8,31(8):273~280.
    [38] Michael McKillip, Scott Wells. Examing the hydrodynamic effects of reservoir operations on water quality and fish growth in Franklin D. Roosevelt Lake, WA,using the hydrodynamic and waterwater quality model CE-QUAL-W2[R].2007.
    [39]周建军.关于三峡电厂日调节调度改善库区支流水质的探讨[J].科技导报,2005.10, 23(10):8~12.
    [40]周建军.优化调度改善三峡水库生态环境[J].科技导报,2008.7, 26(7):64~71.
    [41]王玲玲,戴会超,蔡庆华.香溪河水动力因子与叶绿素a分布的数值预测及相关性研究[J].应用基础与工程科学学报,2009.10, 17(5):652~658.
    [42]马超.梯级水利枢纽多尺度多目标联合优化调度研究[D].博士学位论文,天津大学,2008.
    [43]王雅萍.基于水质智能预测的水库优化调度研究[D].硕士学位论文,天津大学,2008.
    [44]王俊娜.改善三峡水库非汛期水质的调度方式研究[D].硕士学位论文,天津大学,2008.
    [45]王健.耦合水质目标的三峡水库非汛期优化调度研究[D].硕士学位论文,天津大学,2009.
    [46] Thomas M. Cole, Scott A. Wells. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.6 User Manual [R] .2010.
    [47]彭辉,刘德富,三峡库区水库水质Streeter-Phelps模型修正及COD变化规律的新探讨[J],长江流域资源与环境,2007,16(2): 227~230.
    [48]张艺,许文年,方艳芬等,三峡库湾香溪河生态环境研究进展[J],三峡大学学报(自然科学版),2007,29(1):20~24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700