用户名: 密码: 验证码:
青义涪江特大桥施工对流场影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涪江发源于四川松潘县境内岷山雪宝顶北麓,从西北向东南由川西北高山区进入盆地丘陵区,是嘉陵江右岸最大支流,担负着沿岸众多市、县、区的饮用水源的功能。而青义涪江特大桥是绵阳市二环路上重要的组成部分,连接着绵阳市的青义镇和石马镇。大桥起点桩号K34+412.00,止点桩号K34+982.00,全桥长570米,桥梁布置为5跨,共6个桥墩,其中2#、3#、4#、5#桥墩位于涪江中,1#和6#桥墩未落于水中。此次青义涪江特大桥跨越涪江施工主要采用围堰施工,施工过程有两种不同的施工方案。方案一为从两岸同时开始施工,2#、5#桥墩同时施工,完成后3#、4#桥墩同时施工;方案二为从一岸向另一岸开始施工,2#桥墩开始施工,然后完成后依次进行3#、4#、5#桥墩的施工,施工过程中对原有的河流流场可能产生一定的影响。因此,有必要针对青义涪江特大桥施工可能对流场产生的影响,展开相关研究,掌握围堰施工对涪江流场的影响范围,从而指导施工。
     本文采用Delft-3D软件对青义涪江特大桥施工过程中的流场进行模拟,模拟主要针对两种不同的施工方案展开,对施工前原始二维流场模拟、方案一施工期间二维流场模拟、方案二施工期间二维流场模拟。对比分析了围堰施工前后流场变化、以及方案一和方案二的施工影响范围。通过对结果的分析确定对流场影响较小的施工方式。
     从模拟结果可以看出,两种施工方案对河流原有整体流向并没有改变。围堰施工对河流出入口和整个研究的流速影响不大。围堰施工降低了围堰上下游的流速,主要是因为围堰建成后,对水流产生阻隔作用,从而产生了紊流和漩涡,降低了流速。方案一由于两个围堰同时进行,对河流的流场影响范围相对较大,但是影响的时间相对较短,流场可以在较短的时间内趋于稳定。方案二对流场的影响范围相对较小,但是持续影响的时间较长,流场要在相对较长的时间内才能趋于稳定。总体来说,两种方案都会对河流流场产生一定的影响,方案二对流场的影响相对较小。
Fujiang is originated from the northern foothills of Minshan Xuebaoding in Songpan County,Sichuan.It flows from high mountain area on the northwest of Sichuan to basin hills area on the southeast.It is the biggest tributary of all on the right bank of Jialing.It's the source of drinking water to many cities,counties and districts. However Qingyi-Fujiang Bridge is an important part of the second ring road in Mianyang City. It attaches Qingyi Town to Shima Town in Mianyang.The bridge starts by Stake K34+412.00,ends by Stake K34+982.00and it's570m long.It has5bridge openings and6bridge piers.Among them,NO.25NO.3,NO.4,NO.5are standing in the water while NO.l and NO.6are not. Cofferdam construction is mainly used in the process of building Qingyi-Fujiang Bridge over Fujiang.There are two different construction program.And the construction may take some effects on the river flow field.So there is a necessity to study on the effect on the original river flow field of the construction,to expand research,to know the area of effects cofferdam construction may take on the Fujiang flow field,so that we can guide the construction.
     This thesis simulates the flow field during the construction of Qingyi-Fujiang Bridge using Delft-3D.The simulation is mainly carried out for two different construction programs.It simulates the original2-D flow field before the construction,the2-D flow field during the construction in Program1,The2-D flow field during the construction in Program2and the2-D flow field after the construction. Changes of the flow field before and after cofferdam construction and area of effects construction may take in Program land Program2have been analyzed and compared.Then make sure which program takes less effects on the flow field by analyzing the results.
     According to the simulation results,neither of the two construction programs changes the original direction of the river. Cofferdam construction takes little effect on the entrances and exits or the whole study on the flow rate.Cofferdam construction slows down the flow rate of upstream and downstream of the river.It's mainly because after the construction of the cofferdam,it may produce barrier effect on water so that to produce turbulence and vortex and slow down flow rate.Programl two cofferdams are built at the same time,it has bigger area of effect but shorter effect time so that the flow field can be stabilized in a shorter time.Program2has smaller area of effect but the effect lasts longer so that the flow field may take a longer time to be stabilized.All in all,both programs may take some effect on the river flow field and Program2takes less effect.
引文
[1]孙丽菲,贝荣塔,马叶,污染河流底质中铅的解吸规律研究[J].环境科技,2009,22(5):7-10。
    [2]黄本生,李西萍,范舟等,河流重金属随水-悬浮物-底泥迁移转化模型[J].中国安全科学学报,2008,1(12):23-28.
    [3]曾远、薛峰,跨河桥梁施工期特征污染物影响范围预测及分析[J].交通环保,2010,(4):37-39.
    [4]卢中一,高正荣,吴丽华等.南京长江三桥桥墩基础的局部冲刷[J].人民长江,2005,36(10):48-50.
    [5]王慧东.桥梁墩台与基础工程[M]中国铁道出版社.2005.
    [6]孟广文,赵卫国等.简明公路桥涵设计实用指南[M]人民交通出版社2005.
    [7]王开,傅旭东,王光谦.桥墩壅水的计算方法比较[J]南水北调与水利科技2006,4(6):53-55.
    [8]Subhasish Dey, Rajkumar V.Raikar.Characteristics of Horseshoe Vortex in Developing Scour Holes at Piers [J]. Journal of Hydraulic Engineering,2007,133(4):399-412.
    [9]Subrata K Chakrabarti, Mark McBride. Model Tests on Current Forces on a Large Bridge Pier Near an Existing Pier[J] Journal of Offshore Mechanics and Arctic Engineering,2005,127(3):212-219.
    [10]Michael A.Stevens, Mohamed M.Gasser, Mohamed B.A.M.Saad.Wake Vortex Scour At Bridge Piers [J]. Journal Of Hydraulic Engineering,1991,117 (7):891-904.
    [11]Gokhan Kirkil, George Constantinescu, Robert Ettema, The Horseshoe Vortex System Around a Circular Bridge Pier on Equilibrium Scoured Bed[R] EWRI.2005.
    [12]李牧,长江口越江大桥对流场及河床调整的影响[D].上海交通大学硕士学位论文,2003.
    [13]LEENDERTSE,J.J.,1970.'a Water-Quality Simulation Model for Well-Mixed Estuaries and Coastal Seas:vol.1:Principles of computation'. Rand Corporation, RM-6230-RC,77p.
    [14]Abbott, M. B,1979. Computational Hydraulics:Element of the theory of free surface flows.Pitman Publishing limited.
    [15]Stelling, G. S,1984. On the construction of computational method for shallow water flow problem. Rijkswatertat Communication, (35).
    [16]沈焕庭,中国河口数学模拟的进展.海洋通报,1997.16(2):80-85.
    [17]何友声、刘桦,2000.大型河口复杂流动研究.力学与工程上海交通大学出版社88-118.
    [18]刘桦何友声等,2000.长江口水环境数值模拟研究水动力数值模拟.水动力学研究与进展15(1):17-30.
    [19]陈毅敏2002.河口越江大桥桥墩群效应数值模拟.硕士学位论文.上海交通大学.
    [20]杨帆,任保良,河湾处斜交桥下水流流场研究.2010.3.
    [21]储鏖Delft3D在天文潮与风暴潮耦合数值模拟中的应用[J].海洋预报,29004,2.1(3):30-34.
    [22]张姝如.太湖风生波流及泥沙运动三维数值模拟[D].天津:天津大学建筑工程学院, 2008:33-42.
    [23]栗苏文,李红艳,夏建新.基于De1ft 3D模型的大鹏湾水环境容量分析[J].环境科学研究,2005,18(5):92-95.
    [24]黄坚,何青,桑永尧,等.长江口南北槽及横沙东滩工程流场数值模拟[J].水运工程,2003,351(4):5-9.
    [25]WL.Delft Hydraulics.Delft3D-Flow User manual.2005,12.
    [26]申宏伟Delft3d软件在水利工程中的数位模拟.水利科技与经济,200511(7):440-441.
    [27]熊风,涪江绵阳市区段水环境容量研究[D],西南交通大学硕士学位论文,2003。
    [28]沈剑飞,涪江遂宁段水环境容量研究[D],西南交通大学硕士学位论文,2007。
    [29]高谦,涪江绵阳段水体水质现状评价研究[D],西南交通大学硕士学位论文,2003。
    [30]李玲,绵阳市涪江水环境承载力研究[D],西南交通大学硕士学位论文,2007。
    [31]四川省绵阳市水利电力局.绵阳式集中式供水水源地保护规划报告.2000.9.
    [32]宋广瑞,涪江绵阳段水质模型参数确定及水质预测[D],西南交通大学硕士学位论文,2001。
    [33]吴小一,河流水环境数值模拟及可视化研究D,重庆大学硕士学位论文。
    [34]杨曜根,流体力学有限元,哈尔滨工程大学出版社,1995年
    [35]王炜,二位洪水数值模拟在太浦河洪水风险图编制中的应用D,同济大学硕士学位论文
    [36]Smith R E.Erikssion L E Algebraic grid generation 1987
    [37]Thompson J F.Warsi Z U A.Nastin C W Numerical Grid Generation Foundations and Applications 1985
    [38]Thompson J F A general three-dimensional elliptic grid generation system on a composite block structure 1987
    [39]Akamura S Marching grid generation using parabolic partial differential equations 1982
    [40]George P L.Seveno E the advancing-front mesh generation method revisited 1994(21)
    [41]Lohner R.Parikh P Generation of three-dimensional unstructured grids by the Advancing-Front Method 1988
    [42]Weatherill N P A method for generating irregular computational grids in multiply connected planner domains 1988(02)
    [43]David F Waston Automatic Mesh Generation for Complex Three-Dimensional Regions Using a Constrained Delauncy Triangulation 1981(99)
    [44]Schneiders R.Schindler R.Weilder F Octree-based generation ofhexahedral element meshes 1996
    [45]Patankar S V.Spalding D B A calculation procedure for heat,mass and momentum transfer in threedimensional parabolic flows 1972
    [46]李红仙,西湖流场和浓度场对引水工程响应的数值模拟研究[D].浙江大学硕士学位论文,2006.
    [47]逢勇,蹼培民.大气—水祸合模式下三维太湖湖流场研究[J].湖泊科学,1996,8(2):97-102.
    [48]Delft-3D-RGFGrid-User-Mannual, WL|DelftHydraulics,2003.
    [49]Delft3D-QUICKIN-User-Mannual, WL|DelftHydraulies,2003.
    [50]Delft3D-Flow-User-Mannual, WL|DelftHydraulies,2003.
    [51]Delft3D-QP-User-Mannual, WL|DelftHydraulies,2003.
    [52]郭晓岚,钱永甫,王谦谦.七月季风环流发展的数值模拟[J].高原气象,1(4):1-27.
    [53]龚春生,姚琪,赵棣.玄武湖风生流数值模拟研究[J].河海大学学报(自然科学版,2005,33(1):72-75.
    [54]韩红娟,胡维平,晋义泉.风速变化对竹湖流场结构影响的数值试验[J].海洋与湖沼,2008,39(6):567-576.
    [55]Delft3D-QUICKIN-User-Mannual, WL|DelftHydraulies,2003.
    [56]胡维平,秦伯强.太湖水动力学三维数值试验研究—4.保守物质输移扩散[J].湖泊科学,2002,14(4):310-316.
    [57]尹海龙,徐祖信.平面二维水质模型浓度场可视化研究[J].同济大学学报(自然科学版),2006,34(10):1355-1359.
    [58]毛根海,姚懿伦,胡云进.多进出水口湖泊流场的水电比拟试验[J].江南大学学报(自然科学版),2005,4(6):626-633.
    [59]Endon.Diagnostic study on the vertical circulation and the maintenance mechanisms of the cyclonic gyre in lake Biwa[J] Journal of the Geophysical Research,1986,9:869~876.
    [60]栗苏文,李红艳,夏建新.基于Delft 3D模型的大鹏湾水环境容量分析[J].环境科学研究,2005,18(5):91-95.
    [61]邓见,黄枉期,任安禄.分块法研究圆柱绕流升阻力[J].力学与实践,2004,26:24-26.
    [62]Murhy C R,Simons T J,Lam D C.Dynamic and transport odeling of the Niagara River Plume in Lake Ontario[J].Explor Mcr,1986,186:150~164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700