用户名: 密码: 验证码:
船舶舵/翼舵—鳍/翼鳍智能鲁棒控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用舵/翼舵、鳍/翼鳍是改善船舶操纵性能行之有效的方法,目前工程中使用的舵和翼舵(鳍和翼鳍)之间依靠导杆或齿轮传动,舵角和翼舵角(鳍角和翼鳍角)之间具有确定的转角比,因此未能有效利用翼舵(翼鳍)的效能。为了充分发挥翼舵(翼鳍)的作用,本文将舵和翼舵(鳍和翼鳍)作为两个相互独立的面进行控制设计,即对于船舶航向/横摇控制而言,系统的输入量为舵角、翼舵角、鳍角和翼鳍角,其实质为矢量控制。由于对应舵(鳍)上产生的一个扶正力矩值,有多种不同的舵角/翼舵角(鳍角/翼鳍角)组合与之对应,本文采用遗传优化的方法设计舵角/翼舵角(鳍角/翼鳍角)智能分配规则,并针对系统存在的干扰和不确定性,应用鲁棒控制理论设计系统控制律。因此,本文的研究内容为船舶航向/横摇-舵/翼舵-鳍/翼鳍智能鲁棒控制,目的在于提高航向、横摇控制精度,降低能耗,增强系统鲁棒性。
     首先,建立舵/翼舵、鳍/翼鳍水动力特性数学模型。根据舵/翼舵、鳍/翼鳍水动力系数图谱,通过分析图谱曲线的特点,选择合理的回归模型,对图谱进行数据采样,应用最小二乘法对回归模型的参数进行拟合,并对拟合结果进行显著性检验,以确定可用于工程计算的水动力特性数学模型。
     其次,建立船舶航向/横摇-舵/翼舵-鳍/翼鳍控制系统数学模型。建立了船舶横荡、艏摇、横摇三自由度运动非线性耦合模型,并给出舵/翼舵、鳍/翼鳍对船舶作用力及力矩的计算模型。研究给出了海浪、海风、海流的干扰力(及力矩)的算法。研究了系统驱动能量方程的建模,从分析舵机和翼舵机(鳍伺服系统和翼鳍伺服系统)所需克服的负载力矩入手,建立了舵/翼舵(鳍/翼鳍)驱动能量方程,为控制系统的设计奠定基础。
     然后,研究了舵角/翼舵角(鳍角/翼鳍角)智能优化分配规则。在建立系统驱动能量方程的基础上,本文提出了“系统驱动能量最小”原则下的舵角/翼舵角(鳍角/翼鳍角)分配规则,并采用基于不可行度法的改进遗传算法(IFD-IGA)对舵角/翼舵角(鳍角/翼鳍角)进行智能优化。
     接着,设计了船舶航向鲁棒控制系统、船舶横摇鲁棒控制系统和船舶航向/横摇鲁棒控制系统。在分析系统模型不确定性和干扰随机性的基础上,采用基于线性矩阵不等式(LMI)的状态反馈H~2/H~∞鲁棒控制方法和μ鲁棒控制方法对船舶航向控制、横摇控制、航向/横摇控制进行了设计研究。
     最后,对所设计的船舶航向控制系统、横摇控制系统、航向/横摇控制系统进行仿真,在多种海情、不同浪向、标称模型和摄动模型下进行仿真。仿真结果表明,与传统的自动舵系统和减摇鳍系统相比,本文设计的舵/翼舵-鳍/翼鳍智能鲁棒控制系统具有更高的控制精度、显著的节能效果和良好的鲁棒性能。尤其在高海情下,舵/翼舵、鳍/翼鳍能够提供更大的扶正力矩,显著提高了系统对航向和横摇的控制能力。
Main/flap rudder and main/flap fin are the effective way to improve ship's maneuverability.Nowadays,the main and flap rudders(main and flap fins) are connected by leaders or gears in engineering.It has certain angle ratio,and the effect of flap rudder(flap fin) is restricted.To exert the function of flap rudder (flap fin) fully,the thought that main and flap rudders(main and flap fins) are divided into two independent control systems is put forward in this paper.For the ship yaw/roll control,the system inputs are the main rudder angle,flap rudder angle,main fin angle,flap fin angle,so it also can be called vector control. Because there are many different main/flap rudder angles(main/flap fin angles) for a yaw(roll) lifting moment,the genetic algorithm is adopted to design the intelligent optimizing assignment rule of main/flap rudder angles(main/flap fin angles).There are disturbance and uncertainty existing in the system,and the robust control theory is adopted to design the system control rules.So the study content of this paper is ship yaw/roll-main/flap rudder-main/flap fin vector intelligent robust control,and the purpose is to enhance the course and roll control effect,low the energy consumption,and improve the system's robust performance.
     Firstly,the hydrodynamic performance model of main/flap rudders and main/flap fins were founded.This paper founded the calculating models of main/flap rudder and main/flap fin by their hydrodynamic coefficient chats.The reasonably regress models were chosen,and then the data sampling of chats was done.The coefficients of regress models were acquired by means of the least square algorithm.And the remarkable test was carried out to make sure that the regress models can be used in engineering calculating.
     Secondly,the system mathematic model of main/flap rudder and main/flap fin joint control for ship course/roll was founded.The ship's 3-DOF nonlinear coupling dynamic models of yawing,rolling and swaying were founded.The models of force and moment of main/flap rudder and main/flap fin were given. The disturbance force and moment of sea wave,wind and current were studied. The model of system driven energy was studied primarily,the driven energy equation of main/flap rudder(main/flap fin) was modeling by analyzing the moment that rudder servo system and flap rudder servo system(fin servo system and flap fin servo system) overcame,and it established the base for the design of control system.
     Then,the intelligent optimizing assignment rule of main/flap rudder angles (main/flap fin angles) was studied.For a restoring moment in the main/flap rudder (main/flap fin),there are many kinds of main/flap rudder angles(main/flap fin angles).So this paper studied the assignment rules of main/flap rudder angles (main/flap fin angles).And the improved genetic algorithm based on the infeasible degree(IFD-GA) was adopted to optimize the main/flap rudder angles(main/flap fin angles).
     And then,the ship course robust control system,the ship roll robust control system,and the ship course/roll synthesis coordinated robust control system were designed.The uncertainty of system models was analyzed.The theory of state feedback H~2/H~∞robust control based on linear matrix inequality(LMI),and the theory ofμrobust control were adopted to design those systems.
     At last,the system simulations were given with different sea conditions and encounter angles,nominal model and perturbation model.The simulation results showed that,compared with common rudder and fin in traditional control style, the systems designed in this paper had higher control precision,much less energy consumption,and better robust performance.Especially in high sea situation,the main/flap rudder and main/flap fin can provide bigger lifting moment,it improved the system's control ability for course and roll remarkably.
引文
[1]冯崇谦.船用襟翼舵.北京:国防工业出版社,1989:27-32页
    [2]Sperry E.Directional stability of automatically steered bodies.Journal of the American Society of Naval Engineers.1992,42(1):2-13P
    [3]K(a|¨)llstrt(o|¨)m C G,et al..Adaptive autopilots for tankers.Automatic.1979,15(2):241-254P
    [4]Amerongen J V.Adaptive steering of ships-A model reference approach.Automatica.1984,20(1):3-14P
    [5]Ohtsu K,et al..A new ship's autopilot design through a stochastic model.Automatica.1979,15(2):255-268P
    [6]Amerongen J V.An autopilot for ships designed with fuzzy sets.Proceedings of IFAC Conference on Digital Computer Applications to Process Control,The Hague,USA.1977:101-106P
    [7]Sutton R.Neuro-fuzzy techniques applied to a ship autopilot design.Journal of Navigation.1996,49(3):410-430P
    [8]Sutton R.A fuzzy autopilot optimized a genetic algorithm.Journal of Navigation,1997,50(1):120-131P
    [9]Burns R S.The use of artificial neural networks for the intelligent optimal control of surface ships.IEEE Journal of Oceanic Engineering,1995,20(1):65-72P
    [10]Burns R,Richter R.A neural-network approach to the control of surface ships.Control Engineering Practice,1996,4(3):411-416P
    [11]赵国良,姜仁锋.极点优化配置船舶自适应自动舵.黑龙江自动化技术与应用.1988(3):1-5页
    [12]张炎华,刘思行.船舶操舵系统的鲁棒自适应控制.船舶工程.1995(4):40-44页
    [13]马壮,万德钧基于遗传算法的操舵仪控制参数在线优化.船舶工程.1999(1):43-46页
    [14]程启明,万德钧.船舶航迹自动舵的神经网络控制方法研究.仪器仪表学报.1999,20(4):371-375页
    [15]程启明,万德钧.船舶自动舵的单神经元自适应PID/PSD控制.东南大学学报.1997,27(6):133-137页
    [16]贾欣乐,张显库.H~∞控制器应用于船舶自动舵.控制与决策.1995,10(3):250-254,260页
    [17]张显库,贾欣乐.H~∞积分控制在船舶自动舵中的应用.大连海事大学学报.1998,24(4):44-47页
    [18]杨盐生.不匹配不确定系统的变结构鲁棒控制及应用.交通运输工程学报.2001,1(2):103-107页
    [19]丁玲玲,刘胜.舰船主舵/襟翼舵广义预测联合控制规律研究.哈尔滨工程大学学报,2000(6):1-6页
    [20]康林道.减摇鳍(消摆装置)的采用与发展.船舶工业技术经济信息.1997.(9):27-29页
    [21]Daniel L A,et al..Roll Reduction in Ships by Means of Active Fins Controlled by a Neural Network.Ship technology research.2000,47(2):79-89P
    [22]Gokcek C,Kabamba P T,and Meerkov S M.Analysis of H~2Performance Robustness with Respect to Disturbance Model Uncertainty.IEEE Transactions on Automatic Control.2000,45(8):1541-1544P
    [23]Haddara M R,Wishahy M.An investigation of roll characteristics of two full scale ships at sea.Ocean Engineering.2002,29(6):651-666P
    [24]叶瑰昀,罗辉华.减摇鳍模糊参数自整定PID控制器设计及仿真研究.船舶工程.2002,(3):39-42页
    [25]于萍,刘胜.船舶减摇非线性系统神经网络控制研究.信息与控制,2003(6):264-268页
    [26]王科俊,苏闽.减摇鳍单神经元控制方法研究.船舶工程.1999(3):35-37页
    [27]刘胜,姚波.船舶减摇鳍系统最小方差控制.信息与控制,1994(6):178-182页
    [28]焦侬.减摇鳍自适应控制系统的研究和仿真船舶工程.1998(4):37-39页
    [29]杨盐生.船舶减摇鳍不确定非线性系统的变结构鲁棒控制.中国造船.1998(3):31-37页
    [30]杨盐生,贾欣乐.不确定线性系统的鲁棒切换函数变结构控制.控制理论与应用.2001,18(2):289-292页
    [31]孙静川,刘胜.船舶减摇鳍系统H~∞控制器设计.船舶工程,2000(1):41-44页
    [32]张晓宇,金鸿章.船舶力控减摇鳍系统建模与仿真.中国造船.2002,43(2):64-70页
    [33]于萍,刘胜.非线性自抗扰控制器在船舶减摇鳍系统中的应用.哈尔滨工程大学学报,2002(10):7-11页
    [34]刘胜,陈胜仲.主鳍/襟翼鳍船舶减摇联合控制系统的研究.哈尔滨工程大学学报,1999(8):20-26页
    [35]孙静川,刘胜.船舶襟翼鳍伺服系统H~∞控制器设计.信息与控制,2000(8):360-364页
    [36]金鸿章.减摇鳍变参数最优控制器及其设计.中国造船.1992,(4):107-118页
    [37]于萍,刘胜,邓志红,金鸿章.减摇鳍升力反馈与鳍角反馈控制的对比.船舶工程,2001(2):56-59页
    [38]金鸿章,姚绪梁.船舶控制原理.哈尔滨工程大学出版社,2001:108-143页
    [39]金鸿章.船舶控制和特种装置控制系统.哈尔滨船舶工程学院出版社.1993:135-142页
    [40]Cowley W E,Lambert T H.The use of rudder as roll stabilizer.Proceeding of SCSS'72,Vol.2,Bath,UK,1972,(Ⅶ):C-1
    [41]王燕婕.舵鳍联合控制系统的模型建立.哈尔滨工程大学硕士学位论文.1995:8-9页
    [42]杨承恩,田园,毕英君.船舶舵阻摇技术的回顾与展望.世界海运,2002,(4):4-7页
    [43]Baitis E,Woolaver D A,Beck T A.Rudder roll stabilization for coast guards cutters and frigates.Naval Engineers Journal,1983:267-282P
    [44]Baitis,E,Woolaver D A,Beck T A.Ship roll stabilization in the US Navy.Naval Engineers Journal,1989:43-53P
    [45]K(a|¨)llstr6m C G,Wessel P.Sjolander S.Roll reduction by rudder control.Proceeding of SNAME Spring Meeting/STAR Symposium,Pittsburg,Pennsylvania,USA.1988:67-76P
    [46]Amerongen J,Van der Klugt P G M,Van Nauta Lempke H R.Rudder roll stabilization for ships.Automatic,1990(4):679-690P
    [47]鲍刚(译).美海岸警卫队901级舰的舵/鳍减摇系统.国外舰船工程.2001,(1):33-39页
    [48]鲍刚(译).美海岸警卫队901级舰的舵/鳍减摇系统.国外舰船工程.2001,(2):38-45页
    [49]Roberts G N,et all.H~∞ optimization technique applied to the design of a combined steering/stabilizer system for warships.Proceedings of the 13~(th)World Congress of IFAC.San Francisco,USA.1996:291-296P
    [50]缪国平,朱文蔚,费乃振等.舵减摇的试验研究.中国造船.1991(1):39-46页
    [51]朱文蔚,缪国平等.舵减摇仿真研究.中国造船.1997(1):33-42页
    [52]沈建清,陈家和,赖延辉.自适应准则的舵减横摇控制系统的仿真研究.海军工程学院学报.1994(6):44-51页
    [53]郑明辉,杨松林,王志东.一种采用模糊控制的舵减摇系统的仿真研究.船电技术,1997(1):17-20页
    [54]罗凯,李俊,许汉珍.舵减摇系统的滑动控制.交通部上海船舶运输科学研究所学报,1999,22(2):130-134页
    [55]刘胜,于萍,方亮.船舶舵减横摇H~∞鲁棒控制研究.中国造船,2007(3):45-51页
    [56]于萍,刘胜.基于~∞设计法的非线性舵鳍联合控制系统仿真研究.系统仿真学报,2002(8):1041-1042页
    [57]刘胜,方亮.舰船舵/鳍联合减摇鲁棒控制研究.哈尔滨工程大学学报, 2007(10):1109-1115 页
    [58]M.Gen and R.Cheng.Genetic Algorithms and Engineering Optimization.Hoboken,N J:Wiley,2000
    [59]Yi-Chun Xu,Ren-Bin Xiao.Solving the Identifying Code Problem by a Genetic Algorithm.IEEE Transactions On Systems,Man,And Cybernetics,2007,vol.37:41-46P
    [60]Amine Nait-Ali.Genetic Algorithms for Blind Digital Image Stabilization under Very Low SNR.IEEE Transactions on Consumer Electronics,2007,vol.53,857-862P
    [61]H.Okuda,M.Hashimoto,K.Sumi,and S.Kaneto.Optimum motion estimation algorithm for fast and robust digital image stabilization.IEEE Transactions on Consumer Electronics,vol.52,2006,276-280P
    [62]Yuehe Ge,Karu P.Esselle.Design of low-profile high-gain EBG resonator antennas using a genetic algorithm.IEEE Antennas and Wireless Propagation Letters,vol.6,2007,480-483P
    [63]Y.Ge and K.P.Esselle.GA/FDTD technique for the design and optimization of periodic metal materials.IET Proc.Microw.Antennas Propag.,Special Issue on Metamater.,vol.1,2007,158-164P
    [64]Rowlins G(Ed).Foundations of Genetic Algorithm.Morgan Kanfmann,1991
    [65]Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning.Addison-Wesley,1989
    [66]Harp S,et al.Towards the Genetic Synthesis of Neural Networks.ICGA,1989.360-369P
    [67]Miller G,et al.Designing Neural Networks Using Genetic Algorithm.ICGA,1989
    [68]Stender J(Ed).Parallel Genetic Algorithms:Theory and Application.IOS Press,1993
    [69]Hoffmeister R,Back T.Genetic Algorithms and Evolution Strategies:Similarities and Differences.PPNS-1,455P
    [70]Mario Fernández Pantoja,Peter Meincke,and Amelia Rubio Bretones.A Hybrid Genetic-Algorithm Space-Mapping Tool for the Optimization of Antennas.IEEE Transactions On Antennasand Propagation,2007,vol.55,777-781P
    [71]J.T.Tsai,T.K.Liu,and J.H.Chou.Hybrid Taguchi-genetic algorithm for global numerical optimization.IEEE Trans.Evol.Comput.,2004,vol.8,365-377P
    [72]Joel R.Florestal,Pierre A.Mathieu.A genetic algorithm for the resolution of superimposed motor unit action potentials.IEEE Transactions on Biomedical Engineering,2007,vol.54,2163-2170P
    [73]Erol Gelenbe,Peixiang Liu.Genetic algorithms for route discovery.IEEE Transactions on Systems,Man,and Cybernetics,2006,vol.36,1247-1252P
    [74]Yang Yu,Yu Xinjie.Cooperative Coevolutionary Genetic Algorithm for Digital IIR Filter Design.IEEE Transactions On Industrial Electronics,2007,vol.54,1311-1319P
    [75]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,2005:32-64,74-76页
    [76]Doyle J C,Stein G.Multivadable feedback design:Concepts for a classical/modem synthesis.IEEE Transaction on Automatic Control,1981,26(1):4-16P
    [77]G.Zames.Feedback and optimal sensitivity:model reference transformations,multiplicative Seminorms,and approximate inverses.IEEE Trans.Auto.Control,1981,Vol.AC-26,301-320P
    [78]B.A.Francis.A course in control theory.Letter Notes in Control and Information Science 88,New Youk,Springer-Vedag,1987P
    [79]K.Glover,J.C.Doyle.State-space formulate for all stabilizing controllers that satisfy an H~∞ norm bound and relations to risk sensitivity & control letters,1988,11:167-172P
    [80]H.Berg.Robust position and speed control of variable displacement Hydraulic motors.IFAC robust control design,Budapest,1997:473-478P
    [81] Guoxiang Gujie Chen,and E.Bruce Lee. Parametric H~∞ loop shaping and weighted mixed sensitivity minimization. IEEE Transaction on Automatic control,1999,vol.44, 846-852P
    [82] Hitoshi Katayama and Akira Ichikawa. Receding Horizon H~∞ Control for Time-varying Sampled-data Systems. 44th IEEE Conference on Decision and Control, Seville, Spain, 2005
    [83] Jian Sun and G. P. Liu. Observer-based H~∞ control for a class of nonlinear networked systems. Proceedings of the 2007 IEEE International Conference on Networking, Sensing and Control, London, UK, 2007
    [84] F. Yang, Z. Wang, Y. S. Hung, M. Gani, H~∞ control for networked systems with random communication delays, IEEE Transactions on Automatic Control, 51,2006, 511-518P
    [85] Kimura H. Robust stabilization for a class of transfer function, IEEE Trans.Automat. Contr.,1984,29:778-793P
    [86] G. Lu, D. W. C. Ho, Robust H~∞observer for nonlinear discrete systems with time and IEE Proc. Control delay parameter uncertainties, Theory Appl., vol. 151,2004,439-444P
    [87] Fuwen Yang, Mahbub Gani, and Didier Henrion. Fixed-Order Robust Controller Design With Regional Pole Assignment. IEEE Transactions on Automatic control, vol. 52,2007:223-231P
    [88] Zames G, Francis B A. On H~∞ optimal sensitivity theory for SI-SO feedback systems. IEEE Transaction on Automatic Control, 1984,29(1):9-16P
    [89] Chiharu Sakai, Takashi Terasawa and Akira Sano. Integration of Bilinear H~∞ Control and Adaptive Inverse Control for Semi-Active Vibration Isolation of Structures. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 2005,12-15P
    [90] Francis B A, Helton J W, Zames G. H~∞ optimal feedback controllers for linear multivariable systems. IEEE Transaction on Automatic Control,1984,29(7): 888-900P
    [91]Acho L.,Orlov Y.and Solis V..Non-smooth H~∞ position control of mechanical manipulators with frictional joints",International Journal of Control,2004,vol.77,1062-1069P
    [92]Safonov M G,Verma M.L~∞ optimization and Hankel approximation.IEEE Transaction on Automatic Control,1985,30(7):297-290P
    [93]E.Fridman and U.Shaked.Delay-dependent stability and H~∞ control:constant and time-varying delays.International Journal of Control vol.76,2003,48-60P
    [94]陆国平等.带有不确定参数的线性时滞系统的强鲁棒H~∞ 控制:LMI方法.控制理论与应用.2000,17(1):46-49页
    [95]胡中骥,施颂椒等.积分二次约束线性系统的H~∞ 控制器设计:一种LMI方法.控制理论与应用.2002,19(4):647-649页
    [96]E.Fridman and U.Shaked.A descriptor system approach to H~∞ control of linear time-delay systems.IEEE Transactions on Automatic Control vol.47,no.2,2002,252-270P
    [97]Gustavo Willmann,Daniel Ferreira Coutinho.Multiple-Loop H~∞ Control Design for Uninterruptible Power Supplies.IEEE Transactions on Industrial Electronics,vol.54,2007,1591-1602P
    [98]R.Amidfarand N.Sadati.Low-order H~∞ controller design for an active suspension system via LMIs.IEEE Trans.Ind.Electron.,vol.53,2006,554-560P
    [99]Doyle J,Glover K,Khargonekar P,Francis B A.State-space solution to standard H~2 and H~∞ control problem.IEEE Transaction on Automatic control,1989.34(8):831-842P
    [100]D.Georgiev,D.Tilbury.Packet-based control:The H~2-optimal solution,Automatic,vol.42,2006,137-144P
    [101]M.J.Khosrowjerdi,R.Nikoukhah and N.Safari-Shad.A mixed H~2 / H~∞approach to simultaneous fault detection and control.Automatic,vol.40,2004,261-267P
    [102]Xu Jun,Xie Lihua.An Improved Approach to Robust H~2 and H~∞ Filter Design for Uncertain Linear Systems with Time-varying Parameters.Proceedings of the 26 Chinese Control Conference,China,2007
    [103]Liqian Dou,Qun Zong and Weijia Wang.A LMI Approach for Robust Fault Detection Based on H~2 /H~∞ Setting.Proceedings of the 6th World Congress on Intelligent Control and Automation,China,2006
    [104]M.J.Khosrowjerdi,R.Nikoukhah,and N.Safari-Shad.Fault Detection in a Mixed H~2 /H~∞ Setting.IEEE Transactions on Automatic Control,Vol.50,2005,1063-1068P
    [105]Sadaaki Kunimatsu and Takao Fuji.Robust H~2 Control for Two-Degree of Freedom Control Systems.Proceeding of the 2004 American Control Conference Boston,Maroachusetts,2004
    [106]Jinjun Shan,Dong Sun.Design for Robust Component Synthesis Vibration Suppression of Flexible Structures with On-Off Actuators.IEEE Transactions on Robotics and Automation,vol.20,2004,512-524P
    [107]Doyle J C.Structured uncertainty in control system design.Proc.24~(th)IEEE Conf.On Decision and Control.1985:260-265P
    [108]Doyle J C.Analysis of feedback systems with structured uncertainties.IEEE Proceedings 1982,129(6):242-250P
    [109]Doyle J C,Wall J E,Stein G.Performance and robustness for structured uncertainty.IEEE Conference on Decision and Control,1982:629-636P
    [110]周克敏,Doyle J C,Glover K著.毛剑琴等译.鲁棒与最优控制.国防工业出版社,2002,101-123页
    [111]Lin J L,Postlethwaite I,Gu D W.μ-K interation:A new algorithm for μ-synthesis.Automatica,1993,29(1):219-224P
    [112]Postlethwaite I,Lin J L,Gu D W.Robust control of a high purity distillation collumn using μ-K interation.IEEE Conference on Decision and Control,1991:1586-1590P
    [113]Yamada Y,Hara S.An LMI approach to local optimization for constantly scaled control problems.International Journal of Control,1997,67(2):233-250P
    [114]Doyle J,Lenz K,Packard A.Design examples using μ synthesis:space shuttle lateral axis FCS during reentry.IEEE Conference on Decision and Control,1986
    [115]Dale F.Enns.Structured singular value synthesis design example:rocket stabilization.Proc.Of the American Control Conference,1990,2514-2520P
    [116]Wise K A,Mears B C,Poola K.Missile autopilot design using H~∞optimal control with μ synthesis.American Control Conference,1991,2363-2373P
    [117]Mario R,Nouredine H,et al..Power systems stability robustness evaluation by μ analysis.IEEE Transactions on Power Systems,1999,14(2):648-653P
    [118]M.Yue and R.'Schlueter.A μ-synthesis Power System Stabilim Design.American Control Conference,2003
    [119]T.-S.Lee,K.-S.Tzeng,and M.-S.Chong.Robust controller design for a single-phase UPS inverter using μ-synthesis.Proc.Inst.Electr.Eng.-Electr.Power Appl.,vol.151,no.3,,2004,334-340P
    [120]Keehoon Kim.Quantitative Comparison of Bilateral Teleoperation Systems Using μ-Synthesis.IEEE Transactions on Robotics,vol.23,2007,776-789P
    [121]Guodong Yin,Nan Chen,Pu Li.Improving Handling Stability Performance of Four-Wheel Steering Vehicle via μ-Synthesis Robust Control.IEEE Transactions on Vehicular Technology.vol.56.2007.2432-2439P
    [122]虞海军.敞水及桨后襟翼舵水动力性能理论计算方法研究.哈尔滨船舶工程学院硕士学位论文,1994,5-15页
    [123]许汉珍,周漠蟾.船用襟翼舵流体动力系数的计算.华中工学院学报,1983,83-87页
    [124]杨建民.襟翼舵水动力性能研究.上海交通大学学报,1997(11):133-136页
    [125]贾欣乐,杨盐生.船舶运动数学模型--机理建模与辨识建模.大连:大连海事大学出版社,1999:16-18,144-173页
    [126]赵希人,刘胜.具有非有理谱平稳随机过程仿真的谱方法.自动化学 报,1990(3):161-164页
    [127]陶尧森.船舶耐波性.上海交通大学出版社.1985,23-46页
    [128]陆祥润.船舶航向自控系统实时仿真器程序.大连海运学院学报.1985,11(4):33-39页
    [129]刘胜,彭侠夫,叶瑰昀.现代伺服系统设计.哈尔滨:哈尔滨工程大学出版社,2001:33-39页
    [130]H.Burchardt and R.Salomon.Implementation of path planning using genetic algorithms on mobile robots.IEEE Congress Evolutionary Computation,Piscataway,N J,2006,1831-1836P
    [131]Theodore W.Manikas,Kaveh Ashenayi.Genetic Algorithms for Autonomous Robot Navigation.IEEE Instrumentation & Measurement Magazine,2007(10):25-31P
    [132]Weizu Xiong.Polarimetric Calibration Using a Genetic Algorithm.IEEE Geoscience And Remote Sensing Letters,2007,vol.4,421-425P
    [133]Goldberg D E.Genetic Algorithms in Search,Optimization and Machine Learning.Addison-Wesley,1989
    [134]王跃宣,吴澄.求解约束优化问题的退火遗传算法.高技术通讯,2004(7):10-11页
    [135]Mu S,Su H,et al.A new genetic algorithm to handle the constrained optimization problem.In:41~(st) IEEE Conference on Decision and Control.Las Vegas,2002,739P
    [136]Michalewicz Z,Attia N.Evolutionary optimization of constrained problems.Proceedings of the Third Annual Conference on Evolutionary Programming.World Scientific,Singapore,1994,98P
    [137]Goldberg D E,Richardson J.Genetic Algorithms with Sharing for Multimodal Function Optimization.In:Proc.of 2~(nd)Int.Conf.on Genetic Algorithms,Lawrence Erlbaum Associates,1987,41-49P
    [138]王跃宣,刘连臣.处理带约束的多目标优化进化算法.清华大学学报(自然科学版),2005(1):103-106页
    [139]巩敦卫,孙晓燕.一种新的优胜劣汰遗传算法.控制与决策,2002(11): 909 页[140]Cavicchio D J.Adaptive Search Using Simulated Evolution.Ph.D Dissertation,University of Michigan,1970
    [141]刘胜,方亮,葛亚明.船舶航向GA-PID自适应控制研究.系统仿真学报,2007(8):3783-3786页
    [142]LIU Sheng,YU Ping.Application of H infinite control to ship steering system.Journal of Marine Science and Application,2006(1):5-9P
    [143]D.W.C.Ho,G.Lu,Robust stabilization for a class of discrete-time non-linear systems via output feedback:the united LMI approach,International Journal of Control,vol.76,2003,105-115P
    [144]D.Henrion,D.Arzelier,and D.Peaucelle.Positive polynomial matrices and improved LMI robustness conditions," Automatic,vol.39,2003,1479-1485P
    [145]M.Zhong,X.Steven,J.Lam,et al.An LMI approach to design robust fault detection filter for uncertain LTI systems.Automatic,Vol.39,no.3,2003,543-550P
    [146]俞立.鲁棒控制-线性矩阵不等式处理方法.清华大学出版社,2002,68-91页
    [147]俞立.具有闭环区域极点约束的鲁棒协方差输出反馈控制器设计.自动化学报,2002.28(5):18-23页
    [148]Sheng Liu,Liang Fang,Jia-lai Li.Application of H~∞ Control in Rudder/Flap Vector Robust Control for Ship Course.International Conference on Mechatronics and Automation,ICMA2007
    [149]Sheng Liu,Liang Fang,Jia-lai Li.Rudder/Flap Joint Intelligent Control for Ship Course System.International Conference on Mechatronics and Automation,ICMA2007
    [150]John Doyle,Hideo Mabuchi.A new physics.Proceedings of the 41~(st) IEEE Conference on Decision and Control,Las Vegas,Nevada USA,2002
    [151]J.Wang,L.Li,S.H.Low,and J.C.Doyle.Can TCP and shortest path routing maximize utility.IEEE INFOCOM,2003,2049-2056P
    [152]K.M.Bobba,J.C.Doyle.Highly optimized transitions to turbulence.Proceedings of the 41~(st) IEEE Conference on Decision and Control,Las Vegas,Nevada USA,2002
    [153]F.Abdollahi and K.Khorasani.A Robust Dynamic Routing Strategy based on H~∞ Control.2007 Mediterranean Conference on Control and Automation,Athens,Greece,2007
    [154]G.Weiss,Q.C.Zhong,T.C.Green,and J.Liang.H~∞ repetitive control of DC-AC converter in micro-grids.IEEE Trans on Power Electronics.Vol.19,No.1,2004,210-230P
    [155]Qinghui Yuan,Perry Y.Li.Robust Optimal Design of Unstable Valves.IEEE Transactions on Control Systems Technology,vol.15,2007,1065-1074P
    [156]Fuwen Yang,Zidong Wang,Daniel W.C.H~∞ Robust Control with Missing Measurements and Time Delays.IEEE Transactions on Automatic Control,vol.52,2007,666-1671P
    [157]Itzhak Levi,Nadav Berman,Amit Ailon.Robust Adaptive Nonlinear H~∞Control for Robot Manipulators.Mediterranean Conference on Control and Automation,Athens,Greece,2007
    [158]于萍.舰船艏摇/横摇鲁棒控制研究.哈尔滨工程大学博士学位论文,2003,62-70,98-99页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700