用户名: 密码: 验证码:
掺高吸水树脂内养护高性能混凝土的性能和作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高吸水树脂内养护技术是高强和高性能混凝土技术的一个重大变革,对提高混凝土力学性能、耐久性等都具有重要作用。本文通过大量试验系统地研究了高吸水树脂掺量、额外引水量等因素对多种胶凝材料体系混凝土的力学性能、体积稳定性、抗冻性能及膨胀性能的影响规律,并从微观层次对高吸水树脂内养护高性能混凝土的水化产物及水化机理进行了研究分析。建立了基于二维正态分布的高吸水树脂内养护混凝土的抗压强度预测模型,为高性能混凝土配合比设计提供了重要的依据;通过高吸水树脂内养护混凝土内部湿度场的建立,为混凝土体积稳定性的定量分析提供了有效途径;研究了高吸水树脂掺入水泥、矿粉和粉煤灰不同组合体系中的抗冻融效果和作用机理;通过不同龄期混凝土的微观试验揭示了高吸水树脂对水化产物及其进程的影响;探讨了高吸水树脂掺量及额外引水量等因素对高性能混凝土膨胀与强度协调发展的影响规律。
Super Absorbent Polymer (SAP) internal-curing method is a significant change inthe high-strength and high-performance concrete technology. It plays an importantrole in improving mechanical properties and durability properties of concrete. Thispaper made a systematic study on the law of SAP dosage and additional amount ofwater which influence mechanical properties, volume stability, frost resistance andexpanding properties of a variety of cementitious materials system of concretethrough a large number of experiments. And hydration products and hydrationmechanism of SAP-HPIC was studied and analyzed on the micro-level. Theprediction model of compressive strength of SAP-curing concrete based ontwo-dimensional normal distribution was established, which is an important basis ofthe high-performance concrete mix design. Through the establishment of theSAP-curing high performance concrete internal humidity field, an effective way wasfound for the quantitative analysis of the volume stability of concrete. The study onanti-freezing effect and mechanism of SAP mixing with cement, slag and fly ash ofdifferent combinations of system revealed the effects of SAP on hydration productsand the hydration processes of the concrete with different ages. The principles of thecoordinated development of expansion deformation and strength development ofhigh-performance concrete were discussed and paramemeters of SAP content andadditional amount of water were determined.
引文
1.罗晖,刘华萨.混凝土养护剂的研究与发展综述.新型建筑,2001(2):8-9
    2.沈璐. SC-90型混凝土养护剂在路面养护中的应用.公路,1996(2):40-43
    3.沈璐. SC-90型混凝土养护剂在工程中的应用.混凝土,1996(5):15-16
    4. Powers, T.C.Brownyard, T.L. Studies of physical properties of hardended Portland cement paste. ResearchLaboratories, PCA.Bulletin,1948,22:473-488
    5. T.C.Powers, T.L.Brownyard. Studies of the properties of Hardened Portland Cement Paste. ResearchLaboratories of the Portland Cement Association,1948:45-89
    6. D.Cusson, Z.Lounis, L.Daigle. Benefits of internal curing on service life and life-cycle cost ofhigh-performance concrete bridge decks-A case study. Cement&Concrete Composites,2010(32):339-350
    7. D. Causson, T.Hoogeen. Preventing autogenous shrinkage of high-performance concrete structures byintemal curing. Measuring, Monitoring and Modeling Concrete Properties,2006:83-89
    8. O.Mejlhede Jensen. Clinker mineral hydration at reduced relative6humidities. Cement and ConcreteResearch,1999(29):1505-1512
    9. O.Jensen, P.F.Hansen. Water-entrained cement-based materialsⅡ:Principles and theoretical background.Cement and Concrete Research.2002,32:937-978
    10. Ole Mejlhede Jensen, Pietro Lura. Techniques and materials for internal water curing of concrete. Materialsand Structure,2006,39:817-825
    11. O.Jensen, P.Lura, K.Kovler. Volume Changes of Hardening Concrete:Testing and Mitigation. Lyngby,Denmark,2006:57-65
    12. O.Mejihede Jensen. Thermodynamic limitation of self-desiccation. C.C.R,1995,25(1):157-164
    13. O.Mejihede Jensen, P.F. Hansen Autogenous relative humidity change in SF modified cement paste. Adv.Cem. Res,1995,7(25):33-38
    14. Burcu Akcay, Mehmet Ali Tasdemir. Effect of distribution of lightweight aggregate on internal curing ofconcrete. Cement&Concrete Composites,2010(32):611-616
    15. Burcu Akeay, Mehmet Ali Tasdemir. Optimisation of using lightweight aggregates in mitigating autogenousdeformation of concrete. Construction and Building Materials,2009(23):353-363
    16. Semion Zhutovsky, Konstantin Kovler, Arnou Bentur. Influence of cenment paste matrix properties on theautogenous curing of high-performance concrete. Cement&Concrete Composites,2004(26):499-507
    17.田耀刚,胡曙光,王发洲等.高强轻集料混凝土的抗冻性能研究.混凝土与水泥制品,2006(2):15-17
    18.田耀刚,丁庆军,王发洲等.高强轻集料混凝土的早期自收缩研究.混凝土,2005(2):22-24
    19. Dhir R K Hewlett P C Dyer T D. Influence of microstructure on physical properties of self-curing concrete.ACI Materials Journal,1996:05-06
    20.高美蓉,秦鸿根,庞超明.高性能内养护技术的研究现状.混凝土与水泥制品,2009(3):09-12
    21.邹新禧.超强吸水剂.化学工业出版社,2002:284-334
    22.王启宝,刘治华,王栋民等.高吸水树脂(SAP)在混凝土内养护中的应用前景.第四届全国混凝土外加剂应用技术专业委员会年会论文集,2009:340-344
    23.林润雄,姜斌,黄毓礼.高吸水性树脂吸水机理的探讨.北京化工大学学报,1998(3):20-25
    24.丁以兵.高性能混凝土自养护技术研究.合肥工业大学,2006:17-19
    25. Ole Mejlhede Jensen, Per Freiesleben Hansen. Water-entrained cement-based materials Principle andtheoretical background. Cement and Concrete Research,2001,31(4):647-654
    26. Ole Mejlhede Jensen, Per Freiesleben Hansen. Water-entrained cement-based materialsⅡ:Experimentalobservations. Cement&Concrete Research2002,32(6):973-978
    27. Ole Mejlhede Jensen, Per Freiesleben Hansen. Water-entrained cement-based materials I: Principles andtheoretical background. Cement and Convrete Research,2001(31):647-654
    28. Ole Mejlhede Jensen, Per Freiesleben Hansen. Influence of Temperature on Autogenous Deformation andRelative Humidity Change in Hardening Cement Paste. Cement and Concrete Research,1999,29(4):567-575
    29. Ole Mejlhede Jensen, Per Freiesleben Hansen. Autogenous deformation and RH-change in perspective.Cement and Concrete Research,2001,31(12):1859-1865
    30.许华胜,蒋正武.高性能混凝土自身相对湿度变化与自干燥的研究.重庆建筑大学学报,2004,26(2):121-125
    31.舒冬梅.高吸水树脂对水泥性能的影响.第六届中国功能材料及其应用学术会议论文集,2007:188-191
    32.张宝华,张剑秋,孙莹.耐盐高吸水性树脂的合成与性能.上海化工,2001:24-26
    33. Gaston Espinoza-Hijazin, Mauricio Lopez. Extending internal curing to concrete mixtures with W/C higherthan0.42. Construction and Building Materials,2011,25(3):1236-1242
    34. Mehta PK, Monteiro PJM. Concrete: microstructure. properties and materials.3rd ed. McGraw-Hill,2006:105-108
    35. Lopez M, Kahn LF, Kurtis KE. Internal curing in high performance concretes–a new paradigm. Rev IngenConstr2005,20(2):117–26
    36. Lopez M, Kahn L, Kurtis K. Effect of internally stored water on creep of high performance concrete. ACIMater J2008,105(3):265–73
    37. Ole Mejlhede Jensen, Pietro Lura. Techniques and materials for internal water curingof concrete. Materialsand Structures,2006,39:817–825
    38. D. Cusson, Z. Lounis, L. Daigle. Benefits of internal curing on service life and life-cycle cost ofhigh-performance concrete bridge decks—A case study. Cement&Concrete Composites,2010,32:339-350
    39. Thomas MDA. Chloride diffusion in high-performance lightweight aggregate concrete. ACI Spec Publ SP,2006:797–812
    40. Reinhardt H-W, M nning S. Superabsorbent Polymers(SAPS)—An admixture to increase the durability ofconcrete. International Congference on Microstructure Related Durability of Cementitious Composites,2008:313-323
    41. P.Lura, Ye Guang, V.Cnudde, P.Jacobs. Preliminary results about3D distribution of Superabsorbent Polymerin mortars. Proc. Microstructure related Durability of Dementitious Composites,2008,Vol.2:1341-1348
    42. P. Lura. Autogenous deformation and internal of high performance concrete. Concrete a with internal oftechnology,2003:61-65
    43. Pietro Lura, Klaas van Breugel, Ippei Maruyama. Autogenous and drying shrinkage of high-strengthligheweight aggregate concrete at early ages-the effect of specimen size. Proceedings of RILEMInternational Conference on Early Age Cracking in Cementitions Systems,2001:337-344
    44. Sven M nnig, Pietro Lura,Superabsorbent Polymers. An Additive o Increase the Freeze-Thaw Resistance ofhigh. Strength Concrete,2004:46-49
    45.胡曙光,周宇飞,王发洲,等.高吸水性树脂颗粒对混凝土自收缩与强度的影响.华中科技大学学报(城市科学版),2008,25(1):16-22
    46.胡曙光,王发洲,丁庆军等.轻集料的吸水率与预处理时间对混凝土工作性的影响.华中科技大学学报(城市科学版),2002(2):33-37
    47.陈德鹏,钱春香,高桂波等.高吸水树脂对混凝土收缩开裂的改善作用及其机理.东南大学学报,2007,38(3):475-478
    48.陈德鹏,钱春香,赵洪凯,等.内养护措施改善混凝土收缩开裂性能.特种结构,2007,24(1):57-60
    49.丁以兵,詹炳根.超强吸水剂对混凝土早期内部相对湿度的影响.合肥工业大学学报(自然科学版),2006,29(9):1151-1154
    50.姚明甫,詹炳根.养护对高性能混凝土塑性收缩的影响.合肥工业大学学报(自然科学版),2005,28(2):180-184
    51.詹炳银.超强吸水剂对混凝土早期内部相对湿度的影响.合肥工业大学学报(自然科学版),2006,29(9):102-105
    52.姚明甫,詹炳根,黄晓梅.养护对高性能混凝土的脆性影响的试验研究.合肥工业大学学报(自然科学版),2004(11):308-311
    53.丁以兵,詹炳根.自养护作用下的高性能混凝土抗冻与抗渗性能.合肥工业大学学报(自然科学版),2007,30(5):603-606
    54.何真,陈衍等.内养护对混凝土收缩开裂性能的影响.新型建筑材料,2008(8):6-10
    55.王德智,孟云芬,韩静云.超吸水树脂内养护对混凝土抗冻性的影响.混凝土与水泥制品,2010(1):1-3
    56.余红发,孙伟.在盐湖环境中高强与高性能混凝土的抗冻性.硅酸盐学报,2004,32(7):842-848
    57.余红发,黄东升,孙伟等.高强混凝土抗冻性对养护环境的湿度敏感性及其改进方法研究.高性能混凝土和矿物掺合料的研究与工程应用技术交流会,2006:32-37
    58.刘俊龙,麻海燕,王甲春.干燥环境条件下大掺量矿物掺合料高强混凝土的抗冻性.混凝土,2009(,2):69-72
    59. Jensen O.M., Hansen PF. Water-entrained cement-based materials-I. Principles and theoretical background.Cement Conerete,2001,31(4):647-654
    60. Jensen O.M., Hansen P F. Water-entrained cement-based materials-II. Experimental observations. CementConerete,2002,32(6):973-978
    61.盛骤,谢式千,潘承毅.概率论与数理统计.高等教育出版社(浙大四版),2008
    62. GB8077-2000混凝土外加剂匀质性试验方法.中国建筑工业出版社,2002
    63. GB/T50080-2002普通混凝土拌合物性能试验方法标准.中国建筑工业出版社,2002
    64. GB/T50081-2002普通混凝土力学性能试验方法标准.中国建筑工业出版社,2003.2
    65.林润熊,姜斌,黄毓礼.高吸水树脂吸水机理的探讨.北京化工大学学报,1998,25(3):20-25
    66.孙莺,王海波,罗辉旭,等.聚丙烯酸高吸水树脂的制备.武汉化工学院学报,2004,26(2):5-7
    67.张玉红,韩燕蓝.聚丙烯酸型吸水树脂的合成及性能研究.湖北大学学报,2006,9(28):286-287
    68. DL/T5150-2001水工混凝土试验规程.中国电力出版社,2001
    69.黄颖星.水泥砂浆与混凝土干缩的相关性.南京工业大学,2006
    70. JGJ/T70-2009建筑砂浆基本性能试验方法标准.中国建筑工业出版社出版,2009
    71. GBJ82-85普通混凝土长期性能和耐久性能试验方法.中国建筑工业出版社出版,2009
    72.丁以兵.高性能混凝土自养护研究.合肥合肥工业大学,2006
    73.阮士业.内养护混凝土强度与体积稳定性研究.山东建筑大学,2011(04)
    74. GB/50119-2003混凝土外加剂应用技术规范.中国建筑工业出版社出版,2003
    75. T.C. Powers,T.L. Brownyard. Studies of the properties of Hardened Portland Cement Paste. ResearchLaboratories of the Portlmld Cement Association,1948:45-89
    76. MEHTA P K,AITCIN P C.Principles undedying production ofhigh performance concrete.Cem ConcrAggr,1990,12(2):70-78
    77.蒋正武.大流动度高强混凝土(HFS-HPC)配制技术及其水分扩散与自收缩研究.同济大学,2002
    78. JGJ55-2011普通混凝土配合比设计规程.中国建筑工业出版社,2011
    79.马保国,何永佳,吕林女.高性能混凝土配合比设计.武汉理工大学学报,2002(7):14-17
    80. J.A. Rossignolo, Marcos V.C. Agnesini. Mechanical properties of polymer-modified lightweight aggregateconcrete. Cement and Concrete Research,2002,32(3):329-334
    81. Y. Lo, X.F. Gao, A.P. Jeary. Microstructure of pre-wetted aggregated on lightweight concrete. Building andEnvironment,1999,34(6):759-764
    82.周宇飞.高强混凝土内养护机制与控制技术研究.武汉理工大学,2008
    83. J. Pierard, V. Pollet, N. Cauberg. Mitigating autogenous shrinkage in hpc by internal curing usingsuper-absorbent polymers. Proceeding of the International RILEM Conference on Volume changes ofHardening Concrete: Testing and Mitigation,2006,8:97-106
    84. H.W. Reinhardt, A. Assmann, S. M nnig. Superabsorbent polymers (SAPs)-an admixture to increase thedurability of concrete.1st International Conference on Microstructure Related Durability of CementitiousComposites,2008:313-323
    85. J. Benjamin, K. L. Hood, G. R. Buchanan. Mitigation of autogenous shrinkage in mortars analysis andmodeling of water migration and comparison of various internal curing materials. Proceeding of theInternational RILEM Conference on Volume changes of Hardening Concrete: Testing and Mitigation,2006,8:127-136
    86. A.M.内维尔.混凝土的性能.中国建筑出版社,1983,12
    87. DL/T5150-2001水工混凝土试验规程.中国电力出版社,2001
    88. GB/T50081-2002普通混凝土力学性能试验方法标准.中国建筑工业出版社,2002
    89.乔艳静,费治华,田倩,刘加平.矿渣、粉煤灰掺量对混凝土收缩、开裂性能的研究.《国外建材科技》,2007.10.15
    90.肖佳,周士琼,徐亦冬.粉煤灰、硅灰对水泥胶砂性能影响的试验研究.混凝土,2003,166(8):28-36
    91.丁蕴斌.浅谈矿粉、粉煤灰对混凝土早期性能的影响.江西建材,2008(1):11-14
    92.李迁,刘冬霞.矿粉对水泥及混凝土性能的影响与应用.辽宁建材,2008(12):50-51
    93.高瑾,郭超江,栗湘君.水工混凝土的碳化与耐久性.混凝土,1994(2):10-14
    94.杨庆国,袁培,陈德伍等.掺硅灰对中等强度混凝土力学性能影响的试验研究.交通标准化,2009,23:88-91
    95.姜德民.硅灰对高性能混凝土强度的作用机理研究.建筑技术开发,2001,28(4):44-46
    96.郑峰.水泥基材料自收缩的动力学研究.北京清华大学,2005
    97.吴中伟,廉慧珍.高性能混凝土.中国铁道出版社,1999
    98. Ei-ichi Tazawa,Shingo Miyzawa. Influence of cement and mixture on autogeneous shrinkage of concrete.C.C.R.1995,25(2):281-287
    99.安明喆.高性能混凝土的自收缩研究.北京清华大学,1999
    100.黄国兴,慧荣炎.混凝土的收缩.中国铁道出版社,1990
    101.龙广成.降低水胶比水泥基材料的自收缩.混凝土与水泥制品,2011.8(4):3-5
    102.蒋正武,孙振平等.国外混凝土自收缩研究进展评述.混凝土,2001(4):30-33
    103.申爱琴.水泥与水泥混凝土.北京人民交通出版社,2000:165-166
    104. ASTM C596-89. Standard test method for drying shrinkage of mortar containing Portland cement
    105. P.Lura. Autogenous Deformation and Internal Cuing of Concrete. DUP Science,2003:63-65
    106.黄颖星.水泥砂浆与混凝土干缩的相关性.南京工业大学,2006
    107.李顺凯.水泥砂浆的干缩研究.南京工业大学,2004.4
    108.王发洲,周宇飞,胡曙光.基于湿度补偿原理的混凝土自收缩控制方法.中国硅酸盐学会混凝土与水泥制品分会七届二次理事会议暨学术交流会论文集,2007:46-53
    109.姜德民.硅灰对高性能混凝土强度的作用机理研究.建筑技术开发,2001,28(4):44-46
    110.安明颉.高性能混凝土自收缩研究.北京清华大学土木工程系,1991
    111. Dhir R.K,Hewlett P.C,Lota J.S,Dyer T.D.An Investigation Into the Feasibility of Formulating Self-CureConcrete.Materials and Structures,1994,27:606-615
    112. Bazant Z P, Najjar L J. Nonlinear water diffusion in nonsaturated concrete. Matericals and Structures.1972,5(25):3-20
    113. Kim J K. Lee C S. Prediction of differential drying shrinkage in concrete. Cement and concrete Reasearch,1998,28(7):985-994
    114. Jensen O M, Hansen P F. Autogenous deformation and RH change in perspective. Cement and ConcreteResearch,2001,31(12):1859-1865
    115. Comite Euro-International du Beton. CEB-FIP Model Code1990. Thomas Telford,1993
    116.晁鹏飞,郑建岚,王雪芳.高性能混凝土水分扩散数值解法.福州大学学报,2007,35(6):898-894
    117.郭利霞,朱岳明,钟锐等.基于遗传算法的混凝土湿度场特征参数求解及反分析.天津大学学报,2010,43(8):712-716
    118.王建,戴会超,顾冲时.混凝土湿度运移数值计算综述.水力发电学报,2005,02:85-89
    119. Wong S F, Wee T H, Lee S L. Study of water movement in concrete. Magazine of ConcreteResearch,2001,53(6):205-220
    120. Yuan Y, Wan Z L. Prediction of cracking within early-age concrete due to thermal drying shrinkage andcreep behavior. Cement and Concrte Research,2002,32:1053-1059
    121. BREUGEL KV. Numerical modeling of volume changes at early ages-potential pitfalls and challenges.Materials and Structures,2001,34(5):293-301
    122.张士萍,邓敏,唐明述.混凝土冻融循环破坏研究进展.材料科学与工程学报,2008:12-20
    123. Powers T C. The mechanisms of frost action in concrete. Durabillity of Concrete, SP-8,1965:42-47
    124. Litvan G G. Frost action in cement in the presence of deicers. Proceedings of6th International Congress onthe Chemistry of Cement,1974,2:145-152
    125. Petersson P E. Influence of minimum temperature on the scaling resistance of concrete. SP-Report,1994,22
    126. Fagerlund G. Material and Structures,1977,(10):58-65
    127. TC. Powers. A wording hypothesis for further studies of frost resistance of concrete. ACI Journal,1945(41):245-272
    128. Fagerlund G. Durability of concrete. American Conrete Institute,1975:13-65
    129.吴中伟,廉慧珍.高性能混凝土.中国铁道出版社,1999
    130.张士萍,邓敏,吴建华,唐明述.孔结构对混凝土抗冻性的影响.武汉理工大学学报,2008,06:20-25
    131.方秋清,杜如楼等.混凝土.北京中国建筑工业出版社,1989
    132.黄效蘅,徐彩虹,王丽文.硬化混凝土中气泡性质对抗冻性影响的试验研究.港湾建设,2003,3(3):14-17
    133. GBJ50082-2009普通混凝土长期性能和耐久性能试验方法.北京中国建筑工业出版社,2010
    134. GB/T50081-2002普通混凝土力学性能试验方法标准.北京中国建筑工业出版社,2003
    135.丁以兵.高性能混凝土自养护研究.合肥合肥工业大学,2006
    136.蔡永涛.超强吸水性树脂SAP混凝土抗冻性能的研究.山东建筑大学硕士论文,2011-04-01
    137.阮士业.内养护混凝土强度与体积稳定性研究.山东建筑大学硕士论文,2011-04-01
    138.王栋民.高性能膨胀混凝土(HPEC)组成、结构与性能的研究.中国建筑材料科学研究院博士论文,2002-08-01
    139. Dale P. Bentz. Influence of Curing Conditions on Water Loss and Hydration in Cement Paste with andwithout Fly Ash Substitution. National Institute of Standards and Technology,2002:1-15
    140.王晓飞.水泥混凝土路面裂缝扩展机理及磨细矿渣改性超细水泥裂缝修补材料研究.长安大学硕士论文,2005-02-01
    141.钟业盛.镁质混凝土膨胀剂效能的研究.南京工业大学硕士论文,2006-05-01
    142. Bentz D.P., Garboczi, E.J. Percolation of Phases in a Three-Dimensional Cement Paste MicrostructuralModel. Cement and Concrete Research,1991,21:324-344
    143. Fagerlund G. Durability of concrete. American Conrete Institute,1975:13-65
    144.朱蓓蓉,吴学礼,黄士元.混凝土中气泡体系形成及其稳定性的影响因素.混凝土,1999,02
    145. Pietro Lura, Klaas van Brengel, Ippei Maruyama. Autogenous and drying shrinkage of high-strengthlightweight aggregate concrete at early ages-the effect of specimen size. Proceedings of RILEMIntemational Conference on Early Age Cracking in Cementitious Systems,2001:337-344
    146. Ole Mejlhede Jensen, Per Freiesleben Hansen. Water-entrained cement-based materials:I.Principles andtheoretical background. Cement and Concrete Research,2001(31):647-654
    147.王剑. C70负温高强泵送混凝土配制技术及性能的研究.哈尔滨建筑大学,1999
    148..武汉理工大学,2008(5)
    149.王静薇.混凝土细微观结构与强度的关系.浙江大学,2007(6)
    150.吴文选.内养护混凝土的微观结构及其性能研究.武汉理工大学,2010(5)
    151.李素昉.水泥微观结构形貌的图像分析.济南大学,2004(6)
    152. H. F. W. Taylor, C. Famy, K. L. Scrivener Delayed Ettringite Forma2tion. cement and concrete research,2001,31:683
    153. H. Siedel, S. Hempel, R. Hempel. Secondary ettringite formationin heat treated portland cement concrete:Influence of different WPC ra2tios and heat treatment temperatures. Cement and Concrete Research,Volume23, Issue2, March1993
    154.王信刚,马宝国,胡明玉.水泥基材料的微观结构与离子传输性能.材料科学与工程学报,2009,122(6)
    155. Larrad F. D.Sedran T. Optimazation of ultra-high-performance concrete by the use of packing model.Cenment and Concrete Research.1991,24(6):997-1009
    156. Jean Mare Boisnauh, Dominique Guillot, Abderrahim Bourahla etal. Concrete developments in cementingtechnology,1999,11(3)
    157.黄柏宗,王德顺等.紧密堆积理论与高性能矿物胶凝体系的发展.商品混凝土,2004(3)
    158.水中和,万惠文,钟杰.离子传输与混凝土耐久性.国外建材科技,2003,24(3)
    159.秦鸿根,高美蓉,庞超明,等. SAP内养护剂改善膨胀混凝土性能及其机理研究.建筑材料学报,2011,14(3):394-399
    160.胡曙光,何永佳,吕林女,等.内养护机理在高强微膨胀钢管混凝土中的应用研究.膨胀剂与膨胀混凝土,2008,04:5-8
    161. GB/T50081-2002普通混凝土力学性能试验方法标准.北京中国建筑工业出版社,2002
    162. GB/50119-2003《混凝土外加剂应用技术规范》.北京中国建筑工业出版社,2003
    163.马冬花.高性能混凝土膨胀剂效用的试验研究.西安建筑科技大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700