用户名: 密码: 验证码:
相变蓄热材料研发及在日光温室中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决北方日光温室安全过冬保证率低、冬季生产成本高和生产效率低的问题,本文对相变蓄热技术应用于温室墙体的基本理论和关键技术进行了系统的研究。根据北方的气候特点、日光温室的生产特点、种植作物的生长生产条件等要求,以相变温度和材料的潜热值为主要依据,通过对有研究基础相变材料的重点筛选,优选出了适合日光温室的无机和有机蓄热相变材料。对无机相变材料存在的过冷和相分离弊端,做了大量的相变材料改性试验研究,得到了高低两个温级的温室用蓄热材料体系;采用封装法将选出的蓄热材料应用于温室墙板,测试的温室内温度、湿度和地温等环境因子的改变,验证了相变温室蓄热性能的改善。针对一种有机相变材料相变温度无法满足温室生产要求和固液相变材料在相变过程中的泄漏问题,着重研究了相变材料的复合、定形等方法、原材料配比及复合、定形后的力学和热学特性,得到了适于日光温室的、相变潜热大小不同的两种相变定形材料蓄热体系。采用将定形相变材料直接掺入建筑墙体材料的方法,设计了相变砌块的制备方法和生产工艺,将其用于温室墙体中。温室内环境参数和种植物生长特性的实测结果证明了相变温室蓄热调温功能良好。本研究的主要结论有:
     (1)研发了两温级无机相变蓄热材料体系。针对优选出的适用北方日光温室的无机相变蓄热材料Na2HPO4·12H_2O,通过优选成核剂和增稠剂、对进行改性(消除过冷度和相分离)实验研究,得到相变温度在33℃左右的温室用蓄热材料体系的质量比为Na2HPO4·12H_2O:硅酸钠:石墨=100:3:3的混合物。对上述高温级蓄热材料体系加质量比为8%的KCl降低相变温度,可获得低温级(25~26℃)的温室用蓄热材料体系,但引起了过冷度增加和相分离现象加剧。对其开展进一步的改性实验研究,得到相变温度为25~26℃左右的温室用最优蓄热材料体系为质量比Na2HPO4·12H_2O:KCl:硅酸钠:石墨=50:4:3:1的混合物。两温级最优蓄热材料体系按不同的比例组合应用于温室,能更好适应于不同气候、不同作物的日光温室中。
     (2)无机相变蓄热板墙的应用具有改善温室的作物生产环境、提高温室过冬安全性和生产效益的效果。采用特殊塑料袋封装Na2HPO4·12H_2O相变材料体系,将其镶嵌于温室墙板中形成相变蓄热板墙。典型日和最冷月的连续气温、低温、湿度实测数据显示,相变板墙温室具有提高室内最低温度达2.7℃和平均温度1.5℃,降低室内最高温度1.2℃的明显效果;也有提高室内最低地温0.6℃和平均地温,降低室内最高地温0.7℃的作用;与对室内温度影响相对应,同时也能降低室内最小湿度8%和平均湿度0.5%。相变墙温室与当地的灰砂砖夹沙温室相比,经济性更好。
     (3)研发了两种温室用有机蓄热相变材料体系。利用石蜡(PW)和硬脂酸正丁酯(BS)热性能互补性、化学相容性及稳定性,研究不同配比的复合相变材料的热性能,得到最佳温室用蓄热复合材料配比为石蜡:硬脂酸正丁酯热=1:1。以此为复合相变材料,用真空吸附法将其与稻壳制成BS/PW/稻壳定形相变材料。用差式扫描量热法测定相变蓄热材料的相变热流密度峰值位置分别出现在50.49℃和49.54℃,熔解潜热和凝固潜热分别为63.32J/g和59.82J/g。3000次的熔解/凝固循环后,BS/PW/稻壳具有良好的热稳定性。红外光谱扫描表明,各组分有良好的相容性和化学稳定性;扫描电镜微观结构图证明硬脂酸正丁酯和石蜡复合材料多数被吸附进稻壳内部,致密性良好。用聚苯乙烯颗粒代替稻壳用真空吸附法制成的BS/PW/聚苯乙烯颗粒定形相变材料有更大潜热值,其熔解潜热和凝固潜热分别为93.61J/g和95.58J/g。热稳定性、相容性和化学稳定性具佳,扫描电镜表明其致密性优于BS/PW/稻壳定形相变材料。综合考虑相变温度和潜热值两方面,BS/PW/聚苯乙烯颗粒定形相变材料是更优的温室用蓄热相变材料体系。
     (4)设计了相变混凝土砌块的制备方法,测试了其热学力学性能。对混凝土弱碱化后与有机定形相变材料直接混合即可制备相变混凝土砌块。实验优化出砌块混凝土的质量配合比为水泥:粉煤灰:细沙:砾石:陶粒:石灰:石膏=20:25:17:10:25:1:2。通过对稻壳相变砌块和聚苯乙烯颗粒相变砌块的力学指标(最低抗压强度、最低干密度、最大吸水率、最大软化系数)和砌块的热学指标(最大导热系数、最大比热容、蓄热系数、相变潜热值)的测试结果分析可知,相变聚苯颗粒砌块蓄热性能优于相变稻壳砌块的蓄热性能,相变聚苯颗粒砌块力学性能却劣于相变稻壳砌块的力学性能。但相变材料的最大掺加量受力学性能的低限值的制约,研究建议相变稻壳掺量不大于5%,聚苯乙烯颗粒掺量不大于12%。
     (5)相变混凝土砌块用于日光温室墙体对改善温室生产环境效果明显。将以BP/BS/稻壳为定型相变材料生产的相变混凝土砌块,实测室内的气温发现,该温室的典型日室内气温变化幅度比对照砖温室的小3.5℃,最低温度提高1.7℃和最高温度降低2.4%,北墙内外的温差的变化范围减小3.1℃。温室内种植的金鹏1号番茄,生长初期株高、茎粗、干重、鲜重和生长后期的株高、根长、茎粗、叶数、花序数、结果数、果重、植株总重量等,相变温室较对照温室的状态均有明显优势。
     (6)研究得到的无机相变材料墙体和有机相变材料墙体在北方日光温室中的应用效果表明,相变温室具有良好的蓄热性和对温度的“削峰填谷”的调温性能。对改善温室作物的生产环境,提高温室生产效益,均有明显的积极影响。该研究成果有生产实用性和推广应用价值。
Current greenhouses in Northwest China have low thermal effectiveness, and high costsand low efficiency in production. The phase change heat storage technique was used as thebasis for greenhouse wall design to resolve those issues. We identified optimal inorganic andorganic phase change heat storage materials, based on the characteristics of Northern Chinaclimate, solar greenhouse production, and requirements of growth of plants, with respect tothe phase change temperature and latent heat values. Inorganic phase change materials havelow phase change temperature and phase separation. We carried out various experiments withmodified materials, and two types of materials for high and low temperatures were identified.Encapsulated heat storage materials were used as greenhouse wallboards. Based onmeasurements of internal air temperature, humidity and ground temperature in the greenhouse,improvement in greenhouse characteristics was verified. A single kind of organic phasechange material cannot meet the requirements of all greenhouse productions, and solid-liquidmaterials have leakage problems during phase change. We studied compositions and shapingmethods for composite phase change materials, and the mechanical and thermalcharacteristics of the materials, and two different kinds of phase change material for heatstorage system suitable for solar greenhouses were identified, with different latent heat.Phase change blocks were produced by mixing these materials with wall building materials.Greenhouse environmental parameters and plant growth characteristics show that thegreenhouse based on phase change heat storage materials has excellent temperatureadjustment performance.
     The major conclusions of this thesis are as follows.
     (1) Na2HPO4· H_2O is a phase change heat storage material optimal for solargreenhouses in the north, but its low temperature and phase separation characteristics affectits performance stability. With identified nucleating and thickening agents frommodification experiments, the composition for phase change materials at about33℃isidentified as a mixture with mass ratio of Na2HPO4· H_2O: sodium silicate: graphite=100:3:3.Adding to this high temperature heat storage material system with mass ratio8%KCl toreduce the phase transition temperature, a low temperature (25~26℃) material can beobtained, but this causes over cooling and phase separation. Further modification experiments show that an optimal material with mass ratio of Na2HPO4· H_2O: KCl: sodium silicate:graphite=50:4:3:1has phase transition temperature of25~26℃as well. Heat storagematerials of the two temperatures can be used in solar greenhouses for different crops.
     (2) Special plastic packaging was used for the Na2HPO4·12H_2O phase change materialsystem, for embedding in greenhouse wall to form a phase change heat storage wall. Airtemperature, humidity, and low temperature data for typical days and continuousmeasurements for the coldest month show that the greenhouse built with the phase changematerial clearly increased the lowest and average indoor temperatures, reduces the highestindoor temperature. The materials also improved minimum and lowest indoor soiltemperatures, reduced highest indoor soil temperature. Corresponding to the indoortemperatures, the materials can reduce the minimum and average indoor humidity. Comparedwith control greenhouses with lime-sand bricks, phase change wall greenhouses haveimproved performance. This indicates that the phase transition materials have improved cropgrowth environment, winter performance and production efficiency of greenhouses.
     (3) Paraffin wax (PW) and n-butyl stearate (BS) have complementary thermalperformances, and good chemical compatibility and stability. The optimal ratio of compositeheat storage material is identified for paraffin wax: n-butyl stearate=1:1, based onexperiments on their thermal properties. A composite phase change material is made byvacuum adsorption by rice husk as BS/PW/rice husk phase change material. Differentialscanning calorimetry is used to determine the phase change heat transfer of phase change heatstorage materials, and the density peaks appeared at50.49C and49.54C, respectively; themelting and solidification latent heats, are63.32J/g and59.82J/g, respectively. After3000melting and solidification cycles, BS/PW/rice husk still showed good thermal stability, andinfrared spectral scanning showed that the components were in good compatibility andchemical stability. Scanning electron microscopy showed that most n-butyl stearate andparaffin composites were absorbed inside the rice husk, having good compactness. Withpolystyrene particles replacing rice husk with vacuum adsorption to form BS/PW/polystyreneparticle, a phase change material of higher latent heat value is realized, with its melting andsolidification latent heat of93.61J/g and95.58J/g, respectively. The thermal and chemicalstabilities and compatibility are good. Scanning electron microscopy showed that its densitywas better than the BS/PW/rice husk phase change material. Considering the phase changetemperature and latent heat value, the BS/PW/polystyrene phase change material is a goodheat storage phase change material.
     (4) Weak-alkalinized cement can be mixed directly with organic phase changematerials to make concrete blocks. Experiments show that the optimized mixing ratio of cement, fly ash, sand, gravel, ceramsite: lime, gypsum=20:25:17:10:25:1:2. Based on themechanical characteristics (minimum compressive strength and dry density, maximum waterabsorption and softening coefficients) and thermal indexes (maximum thermal conductivity,specific heat, coefficient of heat storage, phase change latent heat value), polystyrene particlephase change blocks have better heat storage capacity, but the rice husk phase change blockshave better mechanical characteristics. The maximum mixture ratio of phase change materialsis restricted by the lower threshold of mechanical properties. We suggest that phase changerice husk content is not more than5%, and polystyrene particles content is not more than12%.
     (5) In the solar greenhouse built with concrete blocks of BP/BS/rice husk phase changematerial, we found that the measured indoor air temperature, variations in the typical indoortemperature were lower than the control greenhouse of common bricks, the minimumtemperature and average temperature increased, and the temperature difference betweeninside and outside the north wall is reduced. Jinpeng No.1tomatoes grown in theexperimental greenhouse have better early stage plant height, stem diameter, dry weight, freshweight, and later growth stage plant height, root length, stem diameter, leaf number andflower number, fruit number, weight, plant total weight, etc. The phase transition material hasa clear advantage for the experiment greenhouse than the control one.
     (6) Our experiments of inorganic and organic phase change material walls in solargreenhouses show that the new materials have good thermal effects for "cutting peaks andvalleys" in temperature control. The materials can improve the production environment andproduction efficiency of greenhouses. The results of our studies have great practicalapplication values.
引文
曹卫星.2011.作物栽培学总论.北京:科学出版社:153-154
    陈超,果海凤,周玮.2009.相变墙体材料在温室大棚中的实验研究.太阳能学报,30(3):287-293.
    陈德鹏,钱春香,王辉,刘加华.2007.水泥基材料比热容测定及计算方法的研究.建筑材料学报,10(2):127-131
    陈端生,郑海山,刘步洲.1990.日光温室气象环境综合研究Ⅰ.墙体、覆盖物热效应研究初报.农业工程学报,6(2):77~81
    陈名.2005.复合相变蓄热材料的制备及其性能研究.[硕士学位论文].广州:华南理工大学
    陈青云,汪致富.1996.节能型日光温室热环境的动态模拟.中国农业大学学报,1(1):67~72
    陈威,刘伟,黄素逸.2003.温室及其蓄热层中传热与流动的研究.工程热物理学报,24(3):508-510
    程玉蓉.2006.建筑节能的相变蓄热材料热性能研究.[硕士学位论文].杭州:浙江大学
    崔琳,刘磊.2005-03-02.一种相变蓄热浮石岩保温板及其制备方法和应用.中国发明专利,200410080286
    方贵银.2006.蓄能空调技术.北京:机械工业出版社:447
    管勇,陈超,李琢,韩云全,凌浩恕.2012.相变蓄热墙体对日光温室热环境的改善.农业工程学报,28(10):194-201
    广州市气象局,广州市农业局.蔬菜与气象.2003.广州市:广东省地图出版社:26-31.
    郭慧卿,李振海,张振武,崔引安,吴德让.1995.日光温室北墙构造与室内温度环境的关系.沈阳农业大学学报,26(2):193~199
    郭静,相恒学,徐德增,王倩倩.2012.硬脂酸-月桂酸二元复合相变材料.大连工业大学学报,31(1):60-63
    国家技术监督局.1997.混凝土小型空心砌块实验方法测试(GB/T4111-1997).北京:中国标准出版社,1-14
    贺岩峰,张会轩,燕淑春.1994.热能储存材料研究进展.现代化工,14(8):8-10.
    贺有德.2005.新型太阳能产品生产设计新工艺、新技术与质量验收实务全书第1卷.北京:能源出版社:276-279
    胡曙光,王发洲编著.2006.轻集料混凝土.北京市:化学工业出版社.20-23.
    姜勇,丁恩勇,黎国康.1999.相变储能材料的研究进展.广州化学,(3):48-54
    蒋运运,张玉忠,郑水林.2011.复合相变材料的制备与应用研究进展.中国非金属矿工业导刊:(3):4-7
    亢树华,房思强,戴雅东,魏克家,陈端生,郑海山.1992.节能型日光温室墙体材料及结构的研究.中国蔬菜,(6):1-5
    亢树华.1996.日光温室优型结构的研究.农业工程学报,24(8):30~35.
    李爱菊,张仁元,黄金.2004.定形相变储能材料的研究进展及其应用.新技术新工艺,(2):45-48
    李萍萍,毛罕平.1999.我国温室生产现状与亟待研究的技术问题探讨.农业机械学报,27(3):135-139
    李小芳,陈青云.2006.墙体材料及其组合对日光温室墙体保温性能的影响.中国生态农业学报,14(4):185-189
    廉京哲.2007.相变储能建筑材料的应用研究进展.延边大学学报(自然科学版),33(3):215-219
    梁辰,闫全英,王威.2009.墙体储能用石蜡混合物的配制和储热性能实验研究.太阳能学报,(30)7:916-920
    林坤平,张寅平,江亿.2003.夏季“空调型”相变墙设计方法.太阳能学报,24(2):145-151
    林坤平,张寅平.2003.电加热相变材料蓄热地板采暖的热性能研究.太阳能学报,24(1):633-637
    刘栋,徐云龙.2007.成核剂对CaCl2·6H2O相变材料储热性能的影响.太阳能学报,28(7):732-738
    马保国,王信刚,张志峰,袁洪斌.2005.相变蓄能围护结构材料的研究现状与进展.墙材革新与建筑节能,(9):35-39
    马承伟,卜云龙,籍秀红,陆海,邹岚,王影,李睿.2008.日光温室墙体夜间放热量计算与保温蓄热性评价方法的研究.上海交通大学学报(农业科学版),26(5):411-415
    马仲元.2003.供热工程.北京:中国电力出版社:18
    满亚辉,吴文健.2009. Na2SO4·10H2O相变过程及其相变潜热的计算.国防科技大学学报,31(2):41-43
    牟兴瑞.2007.多元醇固—固相变材料的研究.[硕士学位论文].天津:河北工业大学.
    农业部蔬菜生产信息发布.2011.冬贮、设施及南菜北运蔬菜面积增加冬季及元旦、春节供应充足.中国蔬菜,(21):22
    齐文虎,冯新灵.1988.农业气象.郑州:河南农业出版社:66-67
    秦鹏华,杨睿,张寅平等.2003.定形相变材料的热性能.清华大学学报(自然科学版),43(6):833~835
    邱林,魏立峰,吴秀芬,刘星.2007.蓄能地板辐射采暖系统热性能的研究.建筑节能,35(3):51-53
    阮德水;张太平;张道圣;程时洧;梁树勇;胡起柱;李元哲;张家璋;狄洪发.1992.相变贮热材料在太阳房中的应用研究.华中师范大学学报,(4):65-69
    沈学忠,张仁元.2006.相变储能材料的研究和应用.节能技术,24(5):460-463
    水利部长江水利委员会长江勘测规划设计研究院.2009.水工混凝土结构设计规范.SL191-2008.北京:中国水利水电出版社:304
    孙雪莲.2010.掺杂效应和尺寸效应对钼酸钠(Na2MoO4)相变性能的影响.[硕士学位论文].:呼和浩特:内蒙古大学
    谭羽非,展长虹,杨景丽.2006.寒区相变墙板与电热膜采暖系统的匹配研究.哈尔滨工业大学学报,38(9):1496-1500
    唐正生,侯贵华,史世英.2012.稻秆/Na2SO4定形相变板材的制备及性能.新型建筑材料,(2):58-61
    佟国红,王铁良,白义奎,刘文合.2003.日光温室墙体传热特性的研究.农业工程学报,19(3):186-189
    王宏丽,李凯,王剑.2008.适于温室生产的无机盐复合相变材料热性能的测试.西北农林科技大学学报(自然科学版),36(3):141—144
    王宏丽,邹志荣,周长吉.2008.西北地区设施园艺发展现状与对策探析.上海交大学报(农业科学版),26(6):377~380
    王立久,孟多.2009.有机相变材料的建筑节能应用和研究.材料导报,23(1).97-100
    王彦华.2001.农业生产机构调整与设施园艺发展趋势.北方园艺,(1):2-3.
    王智平,郭长华,王克振,赵静.2010.相变储热材料CH3COONa·3H2O的研究及发展趋势.材料导报,24(8):60-63,76
    武汉大学等.1994.无机化学(第三版).北京:高等教育出版社:1175
    武六元编.2003.全国一级注册建筑师执业资格考试应试指导.北京:中国建材工业出版社:289
    夏春森,陈重明.2003.南方塑棚蔬菜生产技术.北京:中国农业出版社:48-50
    肖敏,龚克成.2001.良导热、形状保持相变蓄热材料的制备及性能.太阳能学报,4(22):427-430
    肖伟,王馨,张寅平.2011.轻质建筑中定形相变内隔墙板冬季应用效果研究.工程热物理学报,32(1):123-125
    肖伟,王馨,张寅平.2009.定形相变墙板改善轻质墙体夏季隔热性能研究.工程热物理学报,30(9):1561-1563
    徐伟箭,陈海明,熊远钦.2005.相变物质正十八烷微胶囊的制备和表征.湖南大学学报(自然科学版),32(1):69-72
    徐燕,刘伟,于观成,王智军,黄学金.2011.十水硫酸钠储热材料在农业大棚中的应用.郑州轻工业学院学报(自然科学版),26(2):98-100,110
    鄢瑛,林小花,张会平.十二水磷酸氢二钠相变材料的改性研究.高校化学工程学报,2011,(第6期).
    闫全英,良辰,周然.2007.用于相变墙体中的石蜡和多元醇相变材料的研究.建筑节能,35(5):37-39
    阎立诚,丁益民.1991. Na2So4.10H2O系储热材料研究.上海科技大学学报,14(4):99-102
    杨丽.2009.相变材料在建筑结构中的应用综述.建筑,(10):65-67
    杨睿,张寅平.2003-12-24.建筑采暖用的加热定形相变蓄热材料及其制备方法.中国发明专利,03137556.1
    杨勇康,张雄,陆沈磊.2007.相变材料用于控制混凝土水化热的研究.混凝土与水泥制品,(5):9-11
    叶宏,葛新石,焦冬生.2002.带定形PCM的相变贮能式地板辐射采暖系统热性能的数值模拟.太阳能学报,23(4):482-487
    叶宏,葛新石.2000.一种定形相变材料的结构和理化分析.太阳能学报,2(4):417—421
    叶宏.2000.新型相变贮热材料.太阳能,(3):10-11
    于长顺,王岩,尹宇新,刘学.2004.对无机蓄热材料磷酸氢二钠性能的改进.大连轻工业学院学报,23(4):246-248
    曾翠华,张仁元.2005.无机水合盐相变储热材料的过冷性研究.能源研究与信息,25(1):44-49
    张焘,张东.2008.无机盐高温相变储能材料的研究进展与应用.无机盐工业,40(4):11-14
    张东,周剑敏,吴科如,李宗津.2003.相变储能混凝土制备方法及其储能行为研究.建筑材料学报,6(4):374-380
    张东.2007.多孔矿物介质对有机相变材料导热性能的影响.矿物岩石,109(3):12-16
    张东.2008.有机相变蓄热复合材料导热性能的实验研究.建筑材料学报.,11(1):42-46
    张仁元.2009.相变材料与相变储能技术.北京:科学出版社:1-498
    张兴祥,王馨,吴文健.2009.相变材料胶囊制备与应用.北京:化学工业出版社:15-32
    张雄,张永娟.2012.建筑节能技术与节能材料.北京:化学工业出版社:184-218
    张寅平,胡汉平,孔祥冬,苏跃红.1996.相变储能—理论和应用.合肥:中国科学技术大学出版社:8-30
    张永娟,张雄,郑雯,张耀忠.2010.复合相变纳米组件用于大体积混凝土控温研究.同济大学学报(自然科学版),38(9):1335-1339
    张永娟,张雄.2007.相变材料对砂浆热效应的影响.同济大学学报(自然科学版),35(7):965-969
    章学来,盛青青,葛轶群.2009.十二水磷酸氢二钠相变性能改进研究.化学工程,37(5):53-56
    赵金玲,陈滨,王永学,陈翠英.2008.被动式太阳能加热系统动态热特性研究.大连理工大学学报,48(4):580~586
    赵淑梅,山口智治,王蕊,马承伟.2008.日本现代设施园艺的节能对策及措施.上海交通大学学报,26(5):373-376
    中国建筑科学研究院.2002.轻骨料混凝土技术规程JGJ_51-2002..北京:中国建筑工业出版社:62-71
    中国石油化工股份有限公司科技开发部编.2010.石油产品国家标准汇编.北京:中国标准出版社:600
    中国灾害防御协会编.2000.西部开发的警示.辽宁:辽宁科技出版社:97
    周长吉.1999.日光温室结构优化设计及综合配套技术(四).日光温室围护结构——墙体的保温性能.农村实用工程技术,(4):7
    周卫兵,张磊,朱教群,孙正,程晓敏.2012.硬脂酸/膨胀石墨复合相变储热的动力学研究.武汉理工大学学报,34(7):9-13
    周晓明,刘亚楠.2012.可生物降解PEG/PBS高分子相变储能材料的制备.合成树脂及塑料,29(6):54-57
    朱孝钦,陆建生,孙加林.2007.用六水氯化钙作为相变材料的换热器储热性能研究.无机盐工业,39(8):56-58
    邹志荣.2002.园艺设施学.北京:中国农业出版社:8
    Al-Abidi, A. A.2012. Review of thermal energy storage for air conditioning systems. RENEW SUSTENERG REV.5802-5819
    Athienitis A K, Liu C, Hawes D,Banu D, Feldman D.1997. Investigation of the thermal performance of apassive solar test-room with wall latent heat storage. BUILD ENVIRON,32(5):405-410
    Belen Z, Jose M M, Luisa F C, Harald M.2003. Review on thermal energy storage with phase change:Materials, heat transfer analysis and applications. Appl Therm Eng,23:251-283
    Biswas D. R.1977. Thermal energy storage using sodium sulfate deca-hydrate and water. SOL ENERGY,19(1):99
    Bot G P A.1989. Greenhouse simulation models. Acta Hort,(245):315~325
    Businger J A.1963.The glasshouse climate. In: Physics of Plant Environment. North-Holland PubL Co.Amsterdam:277-318
    Businger J A.1963.The glasshouse climate. Physics of plant environment. Amsterdam: North-HollandPublishing Company:277-318
    Carlsson B.2009. Phase change behaviour of some latent heat storage media based on calcium chloridehexahydrate. SOL ENERGY,83(4):485-500
    Colvin D P, Bryant Y G.1998. Protective clothing containing encapsulated phase change materials, ASME362(40):123-132
    Farid M M, Khudhair A M, Razack.2004. A review on phase change energy storage: materials andapplications. ENERG CONVERS MANAGE,45:1597-1615
    Feldman D, Banu D, Hawes D.1995. Low chain esters of static acid as phase change materials for thermalenergy storage in buildings. SOL ENERG MAT SOL C,32(5):405-410
    Feldman D, Banu D.1991.Obtaining an energy storing material by direct incorporation of an organic phasechange material in gypsum wallboard. SOL ENERG MAT SOL C,(22):231-242
    Feldman D.et al.1995.Development and application of organic phase change mixtures in thermal storagegypsum wall-board. SOL ENERG MAT SOL C,36(2):147-157.
    Fellchenfeld H, Sarlg S.1985. Calcium chloride hexahydrate: a phase-changing material for energy storage.IND ENG CHEM RES,24:130-133.
    Hadjieva M,Stoykov R,Filipova T.2000. Composite salt-hydrate concrete system for building energystorage.Renew Energy,19(2):111-115.
    Hale D V,Hoover M J,O'Neill.1971. Phase change materials hand book report NASACR.LoclheedMissles and Space Co.,1971:252-255.
    Hasnain, S.1998. Review on sustainable thermal energy storage technologies, partⅠ: Heat storagematerials and techniques. ENERG CONVERS MANAGE,39(11):1127-1138.
    Hawes D W, Banu D and Feldman D.1989. Latent heat storage in concrete. SOL ENERG MAT SOL C,19(3-5):335-348
    Hawes D W, Banu D, Feldman D.1992. The stability of phase change material in concrete. SOL ENERGMAT SOL C,27:103-118.
    Hawes D W, Feldman D.1992. Absorption of phase change materials in concrete. SOL ENERG MAT SOLC,27:91-101
    Hawladermn A.2004. Manufacture and properties of nano-encapsulated n-octadecane. Journal of JSPACECRAFT ROCKETS,33(2):2782-2840
    He Bo, Martin V, Setterwall F.2004. Phase transition temperature ranges and storage density of paraffinwax phase change materials. Energy,19:1785-1804.
    Inaba H, Tu P.1997. Evaluation of thermo-physical characteristics on shape stabilized paraffin as a solidliquid phase change material. HEAT MASS TRANSFER,(32):307~312
    Jisoo J,Jung-Hun L,Jungki S, Su-Gwang J, Sumin K.2013. Application of PCM thermal energy storagesystem to reduce building energy consumption. J THERM ANAL CALORIM (111):279–288
    Kedle R J, Stovall T K.1989. Activities in support of the wax-impregnated wallboard concept. U. S.Department of energy: Thermal Energy Storage Researches Activity Review, New Orleans, Louisiana,USA:14-16
    Koo K, Park Y, Choe J D.2008. The application of microencapsulated phase-change materials to nylonfabric using direct dual coating method. J APPL POLYM SCI,108:2337-2344
    Kurklu A.1997. Energy storage applications in greenhouse by means of phase change material: a review.RENEW ENERG,13(1):89~103
    Lane,G.A.1986. Solar Heat Storage: Latent Heat Materials, Vol.Ⅱ. Boca Raton, Florida: Technology, CRCPress:2
    Lane. G. A.1981.Adding strontium Chloride or calcinm hydroxide to calcium chloride hexahydrate heatstorage mateiral. SOL ENERGY,27:73~57.
    LOU D.Y. S.1983. Solidification Process in glauber salt mixture. SOL ENERGY,30(2):115~121
    Maris Telkes.1974. ASHRAE J,(9):38-44.
    Notter, W, Hahne, E.1997. Thermal expansion models for polycrystalline salt-ceramics. THERMOCHIMACTA,290(1):93-100
    Py X., Olives R., Mauran S.,2001. Paraffin/porous-graphite-matrix compositeasa high and constant powerthermal storage material. Int. J. HEAT MASS TRANSFER,(44):2727–2737.
    Raoux S, Matthias, W.2008. Phase Change Materials. New York, USA: Springer-Verlag New York Inc:472.
    Sari A, Akcay M, Soylak M,et al.2005. Polymer-stearic acid blends as form-stable phase change materialfor thermal energy storage. J SCI IND RES INDIA,64(12):991-996
    Sari A, Karaipekli A.2007. Thermal conductivity and latent heat thermal energy storage characteristics ofparaffin/expanded graphite composite as phase change material. APPL THERM ENG,27(8-9):1271-1277.
    Sari A, Kaygusuz K.2003.Some fatty acids used for latent heat thermal stability and corrosion of metalswith respect to thermal storage cycling, RENEW ENERG.28:939-948.
    Sari A.2003.Thermal reliability test of some fatty acids as PCMs used for solar thermal latent heat storageapplications,ENERG CONVERS MANAGE,44:2277-2287
    Sari A.2004. Form-stable paraffin/high density polyethylene composites as solid-liquid phase changematerial for thermal energy storage: preparation and thermal properties. ENERG CONVERS MANAGE,45:2033-2042
    Sharma S.D., Sagara. K.2005. Latent heat storage materials and systems: A review. INT J GREENENERGY,2:1-56
    Sharma, A., Sharma, S. D., Buddhi, D.2002. Accelerated Thermal Cycle test of acetamide, stearic acid andparaffin wax for solar thermal latent heat storage applications. ENERG CONVERS MANAGE,(43):1923-1930
    Stephen B. M.1980. An investigation of the thermal energy storage capacity of Glaubers’ salt wih respectto thermal cycling. SOL ENERGY,25:255-258
    Takakura T, Nishina H.1981. A solar greenhouse with phase change energy storage and a microcomputercontrol system. ACTA HORT,115:583~590
    Takeshi Kondo, Tadahiko Ibamoto, Tsubota Yuuji.2001. Research on the storage of PCMwallboard.Proceedings of the Architectural institute of Japan,5(40):23-29
    Tyagi V V, Buddhi D.2008. Thermal cycle testing of calcium chloride hexahydrate as a possible PCM forlatent heat storage. SOL ENERG MAT SOL C,92(8):891-899.
    Xiao Z L, Tan Z C, Quan S, Chang G Y.2007. A novel gelling method for stabilization of phase changematerial Na2HPO4·12H2O with sodium alginate grafted sodium acrylate THERMOCHIM ACTA,463,(1–2):18-20
    Ye H., Ge X.2000. Preparation of polyethylene paraffin compound as a form stable solid liquid phasechange material. SOL ENERG MAT SOL C,64:37-44.
    Zalba B,Marin J M,Cabeza L F.2003. Review on thermal energy storage with phase change: materials,heat transfer analysis and applications. APPL THERM ENG,23,:251~283
    Zhang, L.; Zhu, J.; Zhou, W.2011. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerizationmethod. THERMOCHIMICA ACTA,524(1-2):128-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700