用户名: 密码: 验证码:
常压碱性介质预处理中低品位铝土矿应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国特色的高硅中低品位一水硬铝石铝土矿难分解、能耗物耗高、投资大以及高碱赤泥污染严重等瓶颈问题,提出了常压下高浓碱液浸取铝土矿预脱硅新工艺,并进行了其应用基础研究与过程优化,主要创新性结果如下:
     1、为提高高硅铝土矿的品位,提出了常压下高浓碱液处理铝土矿的新方法。并对此体系的溶解特性及处理效果进行了应用基础研究。实验研究结果表明,采用此方法进行铝土矿预脱硅反应速度快,预脱硅时间在5~20min内,远远短于其它预脱硅方法。且脱硅效果理想,足以满足拜耳法生产氧化铝工艺对铝土矿品位的要求;
     2、对常压下采用高浓度的NaOH溶液直接浸取铝土矿预脱硅的主要影响因素进行了研究。结果表明:SiO_2和Al_2O_3的溶出率随温度、初始碱液浓度和液固比的增大而增大,并且Al_2O_3的溶出率受温度影响比受NaOH初始浓度影响大;
     3、研究了常压下高浓碱液浸取铝土矿的动力学特性,测定了铝土矿快速预脱硅反应的表观活化能为23.4kJ/mol,反应级数为0.9,得出脱硅动力学方程为:
     4、对铝硅酸钠溶液中二氧化硅和氧化铝的溶解性及稳定性进行了基础性研究。结果表明,含氧化硅的铝酸钠溶液相当稳定,亚稳区间很宽。因此,饱和的铝硅酸钠很难结晶析出,液相中氧化硅浓度降低困难。但在延长处理时间的情况下,液相中二氧化硅浓度也可以达到较低的水平,从而能够实现碱液的循环利用;
     5、根据上述基础性研究结果,提出了常压下高浓碱液浸取铝土矿预脱硅新工艺的适宜流程,优化了高浓碱液浸取铝土矿预脱硅新工艺的主要工艺参数。
     常压下采用高浓氢氧化钠溶液处理中低品位铝土矿进行预脱硅,液固低,苛性碱使用量少,且常压操作,有望为开发利用我国典型的中低品位铝土矿提供技术支持。
A new process of pre-desiliconization of bauxite ore through leaching by high-concentratied NaOH solution under atmospheric pressure was basically investigated and optimized, which was especially developed to resolve the key problems of great investment of equipments, high energy consumption and pollution of red mud with high alkaline content existing in the alumina industry of China, whose most of bauxite resources with high silica content. Creative points of the study are as follows:
     1. In oder to increase the grade of bauxite ore, pre-desiliconization of bauxite ore through leaching by high-concentratied NaOH solution under atmospheric pressure was proposed in the first time. The dissolving characters and treatment effects of this system was basically studied. The result showed that pre-desiliconization of bauxite ore by this method was speediness, the time of leaching was about 5~20 min, far more quickly than any other method of pre-desiliconizition. The effect was good enough to meet the need of the requirement of the Bayer process on the grade of bauxite ore.
     2. The effects of primary factors on this new process were investigated. The results shoued that the leaching rate of Al_2O_3 and SiO_2 were increased with the accretion of temperature, initial concentration of alkali and mass ratio of alkali to ore , and the affect of temperature on the leaching rate of Al_2O_3 was great than initial concentration of alkali did.
     3. The kinetic characters of this process was studied, apparent activation energy of bauxite ore was 23.4kJ/mol, reaction order of desilicization for it was 0.9,the kinetic equation was obtained as
     4. The basic research were also carried out about dissolving character and stability of Al_2O_3 and SiO_2 in sodium aluminate solution. The result was that sodium alumnate solution with SiO_2 in it was very steady, stable period of metastable was very long, it was uneasily for sodium aluminosilicate hydrate to separate out as crystal, and the concentration of SiO_2 was decreased slowly. However, through desiliconizition treatment , the leaching solution can be cyclic used, but the treatment would last a long time.
     5. Based on the research results above, the principle flowsheet on the pre-desiliconizition of bauxite are by high-concentratied NaOH solution under atmospheric pressure was proposed, and the primary technical parameters of the pre-desiliconizition of bauxite by high-concentratied NaOH solution was optimized.
     Pre-desiliconization of middle and low grade bauxite ore through leaching by high-concentratied NaOH solution under atmospheric pressure has the advantagements of low ratio of solution to bauxite, low consumption of alkali, and without pressure in production process, may provide technical support for the expliotage of our typical middle and low grade bauxite ore.
引文
[1] 罗天骄,黄梦阳,李琴.世界铝工业的现状与发展[J].云南冶金,2004,33(1):42-46
    
    [2] 张论和,何静华,张颖.我国氧化铝工业现状及发展对策[J].轻金属,2006,2:3-7
    
    [3] Laskou M, Margomenou- Leonidopoulou G, Balek V. Thermal Characterization of Bauxite Samples[J]. Journal of Thermal Analysis and Calorimetry,2006,84:141-145
    
    [4] 杨重愚编.氧化铝生产工艺学[M].北京:冶金工业出版社,1993
    
    [5] 邱竹贤.泥土中的铝—科技腾飞的使者[M].清华大学、暨南大学出版,2000,12:5-6
    
    [6] 申慧.世界铝土矿及氧化铝的发展趋势[J].有色金属工业.2003年第8期:24-28
    
    [7] 姜涛,邱冠周,李光辉等.中低品位铝土矿选矿预脱硅的新进展[J].矿冶工程,1999,2:3-6
    
    [8] 罗建川.基于资源约束的氧化铝发展战略[J].矿业研究与开发,2006,11:129-132
    
    [9] 杨纪倩.我国铝土矿与氧化铝生产的现状与探讨[J].世界有色金属,2006,(11):17-19
    
    [10] 于之春等.我国氧化铝生产技术及其发展趋势[J].轻金属,1997,(4):4-6
    
    [11] 曾庆猛.对氧化铝工业可持续发展的再认识[J].世界有色金属,2004,11:17-21
    
    [12] Eric L, Bernard B, Odysseas K. Alumina Production from Diasporic Bauxites[J]. Light Metals, TheMinerals, Metals & Material Society, 1999, 55-61
    
    [13] Seidel A, Zimmels Y. Mechanism and Kinetics of Alluminum and Iron Leaching from Coal Fly Ashby Sulfuric Acid[J]. Chem. Eng. Sci., 1998,53(22): 3835-3852
    
    [14] BurmesterH. Aluminium-herausforderung and perspektiven[J].Erzmetall 2000, 53, 10, 629-636
    
    [15] Capron T L. An Evaluation of Alternative Bauxites for Kaiser's Bayer Plant in GramercyLouisiana[J]. Light Metals, The Minerals, Metals & Materials Society, 1998, 11-14
    
    [16] Reddy B R, Mishre S K,Banerjee G N. Kinrtics of Leaching of a Gibbsitic Bauxite withHydrochloric Acid[J]. Hydrometallurgy,1999, 51:131-138
    
    [17] Fass R, Geva J, Shalita Z P, White M D, Fleming J C. Bioleaching for Recovery of Metal Valuesfrom Coal Fly Ash Using Thiobacillus Strains[J]. Israel Electric Corp. Isreal, Can. Pat. Appl., 1993
    
    [18] 陈万坤,彭关才.一水硬铝石型铝土矿的强化熔出技术[M].冶金工业出版社,1997,(21)
    
    [19] (美)Errol.D.Shenke.王向丽译.二十世纪九十年中期世界铝土矿和氧化铝生产能力[A].氧化 铝生产文集[C].中国长城铝业公司科技部,1997:1-9
    
    [20] 管永诗,张云.我国铝土矿资源及氧化铝工业的现状[J].矿产保护与利用,1998,9:41-44
    
    [21] 王桂琴,王继永.烧结法粗液与拜尔法溶出液进行合流脱硅的工艺研究[J].世界有色金属, 2000,2:26-29
    
    [22] 谢珉.论铝土矿选矿的必要性和可行性[J].国外金属矿选矿,1991(6):12-16
    
    [23] 胡岳华.一水硬铝石型铝土矿铝硅浮选分离的溶液化学[J].中国有色金属学报,2001,11(1): 125-130
    
    [24] 陶英君,杨玉华.我国氧化铝工艺现状与发展建议(第三次全国工艺普查资料分析)[J].轻 金属,1998,(7):3-9
    
    [25] 胡岳华,陈湘清,王毓华.磷酸盐对一水硬铝石和高岭石浮选的选择性作用[J].中国有色金 属学报,2003年2月:222-227
    
    [26] 张国范.铝土矿浮选脱硅基础理论及工艺研究[D].长沙:中南大学,2001,9
    
    [27] 赵世民,王淀佐,胡岳华等.铝土矿脱硅研究现状[J].矿业研究与开发,2004,(10):37-44
    
    [28] 王一雍,张廷安,陈霞等.我国铝土矿溶出技术的发展趋势[J].世界有色金属,2006,(1): 25-27
    
    [29] 白万全,陈湘清.我国铝土矿铝硅分离的研究与进展[J].铝镁通讯,2004(4):1-3
    
    [30] 魏新超,韩跃新,印万忠.铝土矿选矿脱硅的研究现状及进展[J].黄金学报,2001,(4): 269-272
    
    [31] 张国祥.一水硬铝石、高岭石粘土岩和褐铁矿粉碎性质的实验研究[J].中南矿冶学院学报, 1982,(3):75-82
    
    [32] Wang Yuhua, Hu Yuehua, Chen Xiangqing. Aluminum-silicates flotation with quaternaryammonium salts[J]. Trans. Nonferrous Met. Soc.China, 2003, (7): 715-719
    
    [33] Anishchencdo N. M et al. Nauch - Tekh konf vral politekhinst[J]. 1972 ,(1):10-11
    
    [34] P. I. Andreev et al. Izv vyssh vcheb zaved. Tsvet Met[J], 1975 ,(2):13-17
    
    [35] Ishchendo V. Vet al. Nauch - Tekh konf vral politekh inst[J].1972(1):10-11
    
    [36] D Salatic trav com int etude bausites. Alumine Alum[J]. 1979 ,(15):151-159
    
    [37] 于传敏,王宝奎,石建军等.浅论各种因素对铅土矿选矿浮选效果的影[J].轻金属,2007(8): 5-8
    
    [38] 李耀吾,陈东.一水硬铝石—高岭石型铝土矿选矿[J].金属学报,1979,15(3):319-322
    
    [39] 李隆峰.一水硬铝石型堆积铝土矿选矿脱硅除铁研究[J].中南矿冶学院学报,1980(4):82-84
    
    [40] 沈阳铝镁设计研究院,东北工学院[R].山西孝义克俄矿区铝土矿连续浮选试验报告,1972, 4
    
    [41] 沈阳铝镁设计研究院,东北工学院[R].山西孝义克俄矿区铝矿石浮选试验,1971,7
    
    [42] 东北工学院,沈阳铝镁设计研究院[R].低品位铝土矿可选性试验,1971
    
    [43] 程亚辉.硕士研究生毕业论文[D].北京矿冶研究总院,1986,9
    
    [44] 周国华,薛玉兰,蒋玉仁等.浅谈铝土矿生物选矿[J].矿产综合利用,2000(6):38-41
    
    [45] 李聆值.采用生物技术提高铝土矿质量[J].中国有色金属学报,1998,8(增刊2):361-364
    
    [46] 格劳德夫 S N.矿物原料的生物选矿[J].国外金属选矿,2000,(6):2-9
    
    [47] Groudeva V I.铝土矿的微生物选矿[J].国外金属选矿,1998,(11):9-10
    
    [48] 刘玉生.高硅铝土矿微生物脱硅法[J].轻金属,1982,(3):12-14
    
    [49] Bandyopadhyay. Optimization of physical factors for bioleaching of silica and bauxite oreby a mutant strain of Aspergillus Niger[J]. Res. Ind. 1995,40(1): 14-17
    
    [50] 付高峰,田福泉,权昆.中低品位铝土矿石灰拜耳法溶出的研究[J].东北大学学报(自然科 学版),2005,26(11):1093-1095
    
    [51] 刘丕旺,张伦和,张晓风.预脱硅分选拜尔法新工艺的理论依据和工业化技术[J].化工学报, 2000,51(6):734-739
    
    [52] Qiu GF, Chen NY. Phase Study of the System Na_2O-Al_2O_3-H_2O[J]. Canadian Metall. Quarterly,1997,36(2): 111-114
    
    [53] Fricke R, Jucaitis P. Untersuchungen uber die Gleichgewichte in den System Na_2O-Al_2O_3-H_2O andK_2O-Al_2O_3-H_2O[J]. Z. Anorg. Allg. Chem., 1995, 621: 679
    
    [54] Macovicky H C, Osback E. Thermal stability and pozzolanic activity of calcinated kaolin[J].Applied Clay Science, 1994, 9: 165-187
    
    [55] Tao jiang, Guanghui Li, Xiaohui Fan, et al. Thermal behaviors of kaolinite-diasporic bauxite anddesilication from it by roasting-alkali leaching processing[J]. Light Metals 2002, TMS 2002: 89-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700