用户名: 密码: 验证码:
急倾斜煤层巷道放顶煤开采的关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急倾斜中厚—厚煤层巷道放顶煤采煤法的关键问题主要有四个:顶煤可放性的影响因素及评价、放煤巷道的布置与维护、顶煤破碎机理、工艺参数等。
     以多个矿井的工业性试验为基础,采用灰色系统理论、模糊数学方法对顶煤可放性的影响因素与评价进行分析和计算,通过筛选各种指标,选取煤层强度、开采深度、煤层厚度、煤层倾角、煤层顶底板岩层、煤层夹矸和安全条件等七项自然指标十二个二级指标进行分析和计算,得出各项指标与顶煤可放性关联度从大到小的顺序为:煤层强度、煤层倾角、煤层厚度、开采深度、煤层夹矸、安全条件和煤层顶底板岩层。同时,通过计算和比较,将顶煤可放性分为五类:可放性好(Ⅰ)、可放性较好(Ⅱ)、可放性一般(Ⅲ)、可放性较差(Ⅳ)、可放性差(Ⅴ),可据此判断顶煤的可放性。
     采用弹塑性理论对顶煤应力环境与变形进行分析,认为顶煤受力主要来自煤层与顶板的重力和放顶煤形成的集中应力,水平地应力与瓦斯压力均对顶煤的破碎产生重要影响。计算的极限平衡带高度与现场深基点位移测试数据基本一致,顶煤应力极限平衡带的高度与顶煤破碎及可放性相关,极限平衡带高度大,则顶煤破碎及可放性差;反之,极限平衡带高度小,则顶煤破碎及可放性好。放煤巷道与放煤小眼施工时的顶煤应力和位移变化,采用FLAC软件进行数值模拟,结果表明,放煤巷道和放煤小眼施工扰动时产生的塑性区和塑性破坏等均出现在巷道的肩部和支架的扎脚处,在生产期间应进行重点维护;巷道围岩的位移迹线和主应力均有利于顶煤的变形破碎。
     顶煤破碎机理分析时,采用弹塑性理论分析顶煤走向的变形破碎过程及顶煤冒落的主要因素;顶煤沿走向的破碎是由于顶煤中部的拉应力超过煤体的抗拉强度所致,顶煤出现“冒落—裂隙带上移—新的冒落—裂隙带进一步上移”的破碎过程,顶煤的冒落与煤体的力学性质及节理裂隙发育程度具有较大的相关性。顶煤沿倾向的变形破碎过程通过非连续介质理论和模拟计算软件(UDEC)进行数值模拟,分析顶煤沿倾向变形破碎的过程和空间形态;顶煤沿倾斜方向在不同冒落高度的力学特性和空间形态基本一致,冒落空间形态具有成拱性,即形成一个“顶板—煤层—底板”的非对称拱型力学结构,拱顶向顶板方向偏移;顶煤和围岩的破坏过程大致分为四个区:顶煤放出区、沿底滑落区、顶板离层破坏区和煤岩滞后冒落区等,煤层顶底板的变形较小,主要是冒落的顶煤给顶底板岩层有一个支撑作用。
     将突变理论用于顶煤破碎冒落机理分析,建立项煤破坏失稳的尖点突变模型,假设顶煤破碎是受节理裂隙的弱面影响而形成的,得出顶煤破碎冒落的判据为顶煤裂隙面内弹性核区介质的刚度与屈服带内介质的刚度之比,即刚度比。在刚度比小于1时,顶煤弹性核区段的刚度越小、屈服段刚度越大,越易于发生顶煤滑移突变失稳,从而形成破碎冒落。
     基于计算机模拟的放矿理论对于项煤生产各工艺参数的优化,可以提高顶煤的回收率和降低含矸率。放煤顺序设置合理可以保持顶煤与矸石接触面近水平下移;分段高度在不同煤层厚度时,其有效范围将不同;放煤口间距的大小与顶煤回收率有密切的关系,间距小时,顶煤回收率高,但间距过小会增加生产管理的难度;顶煤含矸率的适量增加可以提高顶煤的回收率。
     因此,急倾斜中厚—厚煤层巷道放顶煤采煤法的关键问题研究,对完善和推广这一开采方法具有较大的理论意义和实际意义。
There were the mainly four key problems on roadway caving mining method of steep inclined medium-thickness seam, which were top coal falling capability and its evaluation, caving roadway layout and maintenance, the top coal broken mechanism and process parameters.
     Based on the industrial tests of seveal mines, top coal falling capability was analyzed and evaluated by the gray system theory and fuzzy mathematical method. The correlation of indicators and the top coal falling capability is also analyzed and calculated with 12 second indicators and 7 natural indicators. The indicators were seam strength, mining depth, seam thickness, seam dip angle, the roof and floor rock strata, sandwiched rock and safety conditions etal, subdivided in the following order: seam strength,seam dip angle, seam thickness, mining depth, sandwiched rock, safety conditions and the roof and floor strata. Meanwhile, the top coal falling capability is divided into five categories by calculated and comparatived : falling capability good (Ⅰ), falling capability better (Ⅱ), falling capability fair (Ⅲ), falling capability poor (Ⅳ), up poor (Ⅴ). The top coal falling capability can be judged by these indicators.
     Top coal stress environment and deformation is analyzed by elastic-plastic theory and its simulation software (FLAC). The result shows that the main force of top coal from gravity of top coal and concentrated stress of roof. Meanwhile, the level stress and methane pressure on the top coal to broken coal play a major role. The calculated height of limit equilibrium is consistented with field test data of deep displacement. The limit balanced height of top coal stress top is relevanted with coal caving. The more carshed the broken and caving of the top coal is, the more increased the limit balance height increases. Insteadly, the top coal broken and caving is good with limit equilibrium height decreasing. Stress and displacement of caving roadway and caving chute construction disturbance is simulated by FLAC software of numerical model. The plastic area and plastic damage of caving roadway and caving chute appeared in the roadway shoulder and support-foot-binding is caused by construction disturbance. Displacement trace and main stress of roadway rock will be conducive to the top coal broken.
     According to the top coal broken mechanism, the broken process of top coal and main factors of top coal caving are analysied by plasticity theory. Top coal broken along the direction of coal seam is because of the tensile stress of central part of the top coal over the tensile strength of coal. Top coal broken is represented as a process of "falling-shift fracture belt-new falling-fracture zone further upward". Top coal broken is greater relevaned with coal mechanical properties and the joints and fractures. Caving deformation and broken process along the dip direction of coal seam are numerically simulated by non-continuum theory and simulation software (UDEC). The broken process and space shape of the top coal crusher deformation along dip of coal seam are analyzed. Space shape of the top coal with arch form, or the formation of a "roof-seam-floor" asymmetrical mechanical arch structure, vault of caving arch to shift direction of coal seam roof. The destruction process of top coal and rock can be divided into four zones. They are the top coal caving area, slide area along the bottom of floor, damaged area of roof separation,coal and rock falling area backward. Deformation of seam roof and floor is small and mostly falling to the caving roof and floor rock as a supporting role.
     the catastrophe theory is used to analyse the study of top coal broken mechanism. Top coal is destructed by weak of joints and fissures. The cusp catastrophe model of top coal instability is established by the catastrophe theory and reached the criterion of top coal caving that is ratio of stiffness of top coal fissures plane elastic nucleus medium and stiffness of yield zone medium, which is stiffness ratio. When the stiffness ratio is less than 1, the smaller top coal elastic nucleus medium stiffness show, the greater the yield stiffness, more prone to mutation top coal crusher slip instability.
     Based on the drawing theory of computer simulation to produce top coal process parameters are optimized in order to enhance the top coal recovery rate and to decrease top coal gangue rate. The recent levels is moving down on contact of top coal and gangue by caving orders . Sublevel height and thickness of the coal seam is correlated. Seam thickness increasing decreases sublevel height. Caving chute distance and top coal recovery are closely related. Smaller the distance , higher top coal recovery rate. The gangue of the modest increasing in the amount can increase the recovery rate of the topcoal.
     The key problems was studyed on roadway caving mining method of steep inclinedmedium-thickness seam. It is of practical and theoretical significance in application and dissemination of the mining method.
引文
[1]石平五.西部煤矿岩层控制泛述[J].矿山压力与顶板管理,2002,(1):6-8.
    [2]Atkinson,T.Thick,steep and irregular coal seam mining.The Mining Engineer.1979,421-441.
    [3]李栖凤.急倾斜煤层开采[M].北京:煤炭工业出版社,1984.
    [4]陈炎光,徐永圻.中国采煤方法[M].徐州:中国矿业大学出版社,1991.
    [5]石平五,张幼振,张嘉凡.急斜水平分段放顶煤放煤实验研究[J].矿山压力与顶板管理,2005,(1):4-6.
    [6]高召宁,石平五.急斜特厚煤层水平分段放顶煤安全开采的研究[J].矿山压力与顶板管理,2005,(1):18-20.
    [7]张幼振,石平五,董新发.急斜煤层综放开采中液压支架适应性分析[J].煤矿机械,2006,27(1):51-53.
    [8]蒋新军,武建文,石平五.急倾斜水平分段放顶煤放煤规律的离散元模拟研究[J].煤矿开采,2006,11(5):1-3.
    [9]邵小平,石平五.急倾斜放顶煤开采顶煤体结构研究[J].煤炭科学技术,2006,(7):4-7.
    [10]武建文,蒋新军,石平五.急倾斜顶底板处顶煤放出规律研究[J].煤炭工程,2006,(10):62-64.
    [11]王卫军,朱川曲,谢东海等.急倾斜煤层巷道放顶煤理论与实践[M].北京:煤炭工业出版社,2001.
    [12]赵伏军,冯涛,罗章.顶煤松动爆破技术的研究[J].煤炭科学技术,2002,30(11):1-3,51.
    [13]石平五等.大倾角煤层底板破坏滑移机理[J].矿山压力与顶板管理,1993,(324):115-119.
    [14]吴绍倩,石平五.急倾斜煤层矿压显现规律的研究[J].西安矿业学院学报,1990,(2):1-9,58.
    [15]石平五,陈文伟.急斜长壁采场顶板破断和岩块运动规律[J].西安矿业学院学报,1990,10(2):10-21.
    [16]石平五,高召宁.急斜特厚煤层开采围岩与覆盖层破坏规律[J].煤炭学报,2003,28(1):13-16.
    [17]谢东海.巷道放顶煤开采的实践与认识[J].煤矿设计,1996,(8):12-15.
    [18]陈良棚,王卫军.急倾斜煤层巷道放顶煤采煤法[J].煤,1999,8(5):8-9.
    [19]刘章华,王祥和,谭彪.放顶煤开采在急倾斜矿井中的实践[J].煤炭技术,2000,19(2):18-20.
    [20]杨小华.急倾斜高瓦斯中厚煤层巷道放顶煤开采[J].煤,2000,9(3):18-19,33.
    [21]赵伏军,熊仁钦,吕力行.长孔爆破在巷道放顶煤中的试验研究[J].煤炭科学技术,2002,30(2):26-29.
    [22]万建新.急倾斜煤层巷道放顶煤探索与应用[J].湖南安全与防灾,2007,(122):48-49.
    [23]周英.普通放顶煤开采技术[M].北京:煤炭工业出版社,1999.
    [24]晏学功,张伟,褚廷民.大倾角急倾斜厚煤层采煤方法选择[J].陕西煤炭,2001,(2):22-25.
    [25]闫少宏,许红杰,樊运策.3.5~10m大倾角煤层巷柱式放顶煤开采技术[J].煤炭科学技术,2006,34(1):39-42.
    [26]王卫军,侯朝炯,熊仁钦.急倾斜煤层放顶煤分段高度的合理确定[J].岩石力学与工程学报,2001,20(3):355-358.
    [27]王卫军,侯朝炯.急倾斜煤层放顶煤顶煤破碎与放煤巷道变形机理分析[J].岩土工程学报,2001,23(5):623-626.
    [28]王卫军,李学华,贺德安.巷道放顶煤破碎机理研究[J].矿山压力与顶板管理,2000,(1):66-67.
    [29]王卫军,陈良棚.急倾斜煤层巷道放顶煤放煤巷道合理定位分析[J].湘潭矿业学院学报,1999,14(2):12-15.
    [30]王卫军,熊仁钦.巷道放顶煤采场压力分布规律[J].矿山压力与顶板管理,1998,(4):65-66,76.
    [31]王卫军,陈良棚,高军.急斜煤层放煤巷道矿压显现分析[J].矿山压力与顶板管理,1998,(2):42-44.
    [32]王卫军,冉隆明,王寿全.急倾斜煤层顶煤可放性的模糊综合评判[J].煤炭科学技术,2000,28(6):46-49.
    [33]王卫军,朱川曲,熊仁钦.急倾斜煤层顶煤可放性识别的神经网络模型[J].煤炭学报,2000,25(1):36-39.
    [34]王卫军.放煤巷道支护方案分析及模糊优选[J].湘潭矿业学院学报,2000,15(2):1-6.
    [35]王卫军.急倾斜中厚-厚煤层巷道放顶煤计算机模拟[Jr].焦作工学院学报,1997,16(3):81-85.
    [36]王卫军,熊仁钦.瓦斯压力对急倾斜煤层放顶煤的作用机理分析[J].煤炭学报,2000,25(3):248-251.
    [37]朱川曲,缪协兴.急倾斜煤层顶煤可放性评价模型及应用[J].煤炭学 报,2002,27(2):134-138.
    [38]朱川曲,陈良棚.急倾斜煤层巷道放顶煤开采项煤可放性评价[J].焦作工学院学报,1997,16(6):1-5.
    [39]朱川曲,王卫军,陈良棚.基于神经网络的放顶煤巷道支护方案优选[J].岩石力学与工程学报,2002,21(10):1483-1486.
    [40]朱川曲,陈良棚.巷道放顶煤人-机-环境系统可靠性研究[J].中国安全科学学报,2000,10(6):57-61.
    [41]朱川曲.急倾斜煤层巷道放顶煤生产系统可靠性分析[J].湘潭矿业学院学报,1997,12(1):1-8.
    [42]朱川曲,李成端,李之蜀.用层次分析法选择急倾斜煤层采煤方法[J].煤炭工程师,1995,(3):12-16.
    [43]朱川曲,梁盛开.急倾斜煤层采煤方法选择的神经网络专家系统[J].湘潭矿业学院学报,1998,13(4):7-12.
    [44]赵伏军,李夕兵,胡柳青.巷道放顶煤法的顶煤破碎机理研究[J].岩石力学与工程学报,2002,(S2):2309-2313.
    [45]杨建立.放顶煤振动技术试验研究[J].煤,2006,15(4):13-14.
    [46]赵伏军,李夕兵,罗章.巷道放顶煤松动高度的确定[J].焦作工学院学报(自然科学版),2002,21(3):161-164.
    [47]赵伏军,李夕兵,蒋卫东.急倾斜中厚-厚煤层巷道放顶煤开采爆破技术研究[J].煤矿开采,2002,(1):25-27.
    [48]林大能,胡伟,熊仁钦.含气顶煤冒落影响因素主次性灰色关联研究[J].湘潭矿业学院学报,2001,16(4):5-8.
    [49]谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [50]潘长良,唐礼忠,王文星等.深井硬岩矿山岩爆灾害防治研究(J).湖南科技大学学报(自然科学版),2003,(4);6-10.
    [51]于广明,裴亮,赵广东.矿山开采非线性沉陷学初论[J].中国安全科学学报,1998,8(5)6-9.
    [52]郑颖人,刘兴华.近代非线性科学用于岩石力学问题[J].岩土工程学报,1996,18(1):98-100.
    [53]Jun Sun,Sijing Wang.Rock mechanics and rock engineering in China:developments and current state-of-the-art[J].International Journal of Rock Mechanics and Mining Science,2002,18:98-100.
    [54]R.E.Grey.Coal mine subsidence and structures[J].Mine Induced Subsidence,1998,(5):69-86.
    [55]J.B.Burgmann.Engineering design of major hospital for conditions of mines subsidence.Conference on Buildings and Structures Subject to Mine Subsidence,Australia,1988.
    [56]SYD S.S.PENG,Surface Subsidence Engineering,Society for Mining,Metallurgy and Exploration,Inc.,1992.
    [57]谢文兵,陈晓详,郑百生.采矿工程问题数值模拟研究与分析[M].徐州:中国矿业大学出版社,2005.
    [58]孙恒虎,赵炳利.沿空留巷的理论与实践[M].北京:煤炭工业出版社,1993.
    [59]李春淋.王庄煤矿急倾斜煤层沿空留巷的实践与认识[J].江苏煤炭,1999,(2):15-16.
    [60]于海勇,吴健.放顶煤开采理论与实践[M].徐州:中国矿业大学出版社,1992.
    [61]Jerry Tien,P.E.Longwall Caving in Thick Seams[J].Coal Age.1998,103(4):52-54.
    [62]李树刚.综放开采围岩活动及瓦斯运移[M].徐州:中国矿业大学出版社,2000.
    [63]王芝银,李云鹏,张恩强.急斜煤层巷道稳定性数值模拟[J].岩石力学与工程学报,2000,(6):718-721.
    [64]Itasca Consulting Group,Ins.FLAC Version 4.0[S],2000.
    [65]刘长武,翟才旺.地层空间应力场的开采扰动与模拟[M].郑州:黄河水利出版社,2005.
    [66]B.Unver,N.E.Yasitli.Modelling of strata movement with a special reference to caving mechanism in thick seam coal mining.International Journal of Coal Geology.66(2006):227-252.
    [67]Xie H,Chen ZH,Wang JC.Three-dimensional numerical analysis of deformation and failure during top-coal caving.International Journal of Rock Mechanics & Mining Sciences.1999;36(5):651-658.
    [68]N.E.Yasitli,B.Unver.3D numerical modeling of longwall mining with top-coal caving.International Journal of Rock Mechanics & Mining Sciences 42(2005):219-235.
    [69]C.Gonza,lez Niciezaa,M.I.A,lvarez Ferna,ndeza,A.Mene,ndez Di,azb,A.E.A,lvarez Vigil.The new three-dimensional subsidence influence function denoted by n-k-g. International Journal of Rock Mechanics & Mining Sciences 42(2005):372-387.
    [70]张先尘,朱建明.缓倾斜、倾斜煤层地质条件的开采工艺性研究[J].中国矿业大学学报,1991,20(3):35-44.
    [71]邵小平,石平五.急斜放顶煤开采围岩破坏规律立体模拟研究[J].采矿与安全工程学报,2006,23(1):107-110.
    [72]黄庆享,石平五.急斜大段高综采放顶煤矿压研究[J].西安科技大学学报,1993,13(2):97-104.
    [73]石平五.急斜长壁开采顶板破断运动及危险性[J].西安科技学院学报,1998,18(1):1-7.
    [74]高召宁,石平五.急倾斜水平分段放项煤开采岩移规律[J].西安科技学院学报,2001,21(4):316-318.
    [75]石平五.急斜大段高放顶煤矿压显现及围岩控制[J].矿山压力与顶板管理,1992(4):43-47.
    [76]石平五,张幼振.急斜煤层放顶煤开采“跨层拱”结构分析[J].岩石力学与工程学报,2006,(1):79-82.
    [77]高召宁,石平五,姚令侃.急斜特厚煤层开采采动损害传递途径研究[J].中国煤炭,2006,(1):37-40.
    [78]高召宁,石平五,姚裕春.急斜特厚煤层开采围岩破坏规律研究[J].矿业研究与开发,2006,26(3):26-28.
    [79]Itasca Consulting Group,Ins.UDEC Version 3.1[S],2000.
    [80]傅鹤林,彭思甜,韩汝才.岩土工程数值分析新方法[M].长沙:中南大学出版社,2006.
    [81]凌复华.突变理论及其应用[M].上海:上海交通大学出版社,1988.
    [82]唐春安,徐小荷.岩石破裂过程失稳的尖点突变模型[J].岩石力学与工程学报,1990,9(2):100-107.
    [83]秦四清,何怀锋.狭窄煤柱冲击地压失稳的突变理论分析[J].水文地质与工程地质,1995,(5):17-20.
    [84]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154.
    [85]高谦.地下大跨度采场围岩突变失稳风险预测[J].岩土工程学报,2000,22(5):523-527.
    [86]李思平,孙连英.基于非线性理论的边坡稳定性评价模型[J].水文地质与工程地质,2002.(2):11-14.
    [87]于广明.地层沉陷的突变现象及其研究进展[J].辽宁工程技术大学学报,2001,20(1):1-5.
    [88]邓跃进,董兆伟,张正禄.大坝变形失稳的尖点突变模型[J].武汉测绘科技大学学报,1998,24(2):170-173.
    [89]谷新建.用突变理论分析矿山冒落型地震机理[J].中国安全科学学报,2003,13(10):8-10.
    [90]郭文兵,邓喀中,邹友峰.条带开采的非线性理论研究及应用[M].徐州:中国矿业大学出版社,2005.
    [91]谢和平,段发兵,周宏伟等.条带煤柱稳定性理论与分析方法研究进展[J].中国矿业,1998,7(5):37-41.
    [92]秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,19(4):486-492.
    [93]王旭春,黄福昌,张怀新等.A.H.威尔逊煤柱设计公式探讨及改进[J].煤炭学报,2002,27(6):604-608.
    [94]邓跃进,董兆伟,张正禄.大坝变形失稳的尖点突变模型[J].武汉测绘科技大学学报,1998,24(2):170-173.
    [95]刘军,秦四清,张倬元.缓倾斜层状岩体失稳的尖点突变模型研究[J].岩土工程学报,2001,23(1):42-45.
    [96]潘岳,解金玉.关于“缓倾斜层状岩体失稳的尖点突变模型研究”的讨论[J].岩土工程学报,2001,23(4):516-518.
    [97]石平五,邵小平.基本顶破断失稳在急斜煤层放顶煤开采中的作用[J].辽宁工程技术大学学报,2006,25(3):325-328.
    [98]石平五,高召宁.顶煤损伤统计力学模型[J].长安大学学报(自然科学版)2003,23(1):58-60.
    [99]张勇.长壁放顶煤开采顶煤损伤和破坏机理研究[D].北京:中国矿业大学北京校区,1998.
    [100]李术才,朱维申.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J].岩石力学与工程学报,1999,18(2):142-146.
    [101]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [102]王昌汉.放矿学[M].北京:冶金工业出版社,1982.
    [103]任玉凤,刘国兴.急倾斜煤层放顶煤综采法计算机模拟[J].煤炭工程,1992.
    [104]李俊斌.急倾斜厚及中厚煤层掩护支架架后放煤采煤法[J].煤矿开采,2005,(6):28-30.
    [105]李俊斌,李颖,潘殿功.倾斜及急倾斜煤层伪斜巷道放顶煤采煤法[J].煤矿开 采,2003,8(2):24-26.
    [106]于广明.地层沉陷的突变现象及其研究进展[J].辽宁工程技术大学学报,2001,20(1):1-5.
    [107]白晨光,黎良杰,于学馥.承压水底板关键层失稳的尖点突变模型[J].煤炭学报,1997,22(2):149-154.
    [108]漆涛,石平五,王拴存.急斜近距煤层联合开采矿压显现规律[J].矿山压力与顶板管理,2004,(3):62-63.
    [109]樊运策,明科栋.高瓦斯煤层放顶煤安全开采相关技术[J].矿山压力与顶板管理,2004,(3):62-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700