用户名: 密码: 验证码:
黑潮入侵南海的方式及其动力机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吕宋海峡是北太平洋西边界流的一个大豁口。黑潮略显弧形地从南向北通过吕宋海峡时,其干流一般被限制在北吕宋海槽的范围内,但也经常发生部分黑潮入侵南海,从而对南海北部的海洋环境(诸如温盐场、环流、中尺度涡旋和生化要素场等)施加重大影响。有关黑潮入侵南海的问题一直是研究的热点,前人已经做了大量的研究工作,但仍然存在着较大的争议。吕宋海峡地形复杂以及黑潮与周边的海洋动力场(特别是中尺度涡旋)的相互作用,要弄清黑潮入侵南海的驱动机制是十分不容易的。
     本文的研究工作充分利用了卫星跟踪漂流浮标(Argos)轨迹资料的优点,从拉格朗日流的角度研究黑潮入侵南海的基本形态及其变化规律。在此基础上,进一步弄清如下几个关键问题:太平洋表层水从菲律宾海横穿吕宋海峡进入南海的驱动机制是什么?出现在吕宋海峡东、西两侧海域的中尺度涡旋是否存在联系?黑潮流套的产生机制是什么?最后,提出一个理解黑潮入侵南海的简明物理框架,并从理论上解释其动力机制。本文取得的主要创新性研究成果如下:
     1.穿越吕宋海峡进入南海的表层流的入口主要是在巴林塘海峡南部和巴布延海峡。这种现象最早出现9月下旬,此后逐步趋于稳定,范围向北扩大。12月最强盛,最北达到巴士海峡南部。2-3月它的出现概率迅速减小,此期间仅从20°N以南进入海峡的浮标可横穿海峡。此外,从巴林塘海峡南部进入并横穿吕宋海峡的漂流浮标,它们进入后的平均速度是进入前的1.5倍;但从巴布延海峡进入的表层流流速前、后变化不大。
     2.海洋观测事实表明冬季包括吕宋海峡北部在内的台湾岛西南海域的海平面升高,SLA为正值;而吕宋岛西北海域(包括吕宋海峡西南部)海平面下降,SLA为负值。与此海平面上升区和下降区相配置的分别是一个反气旋式涡旋和一个气旋式涡旋,大约在119.5°-121.5°E,19.8°-21.3°N的范围内形成一个海平面倾斜距平向南下倾,同时伴随着一支西向流。它像一台抽吸机,对流经吕宋海峡的黑潮施加了一个西向的速度增量,使得从巴林塘海峡南部进入的漂流浮标速度增大,从而迫使黑潮的一部分改变原有的路径,进而形成入侵南海的黑潮分支。冬季出现穿越吕宋海峡的表面流,主要是南海东北部海域海平面和环流季节调整的结果,不是来自吕宋海峡以东海域的中尺度涡旋扰动的强迫。文中利用一组质点运动方程求解了太平洋表层水穿越吕宋海峡进入南海的出现条件,方程中考虑了海面高度距平的变化、摩擦阻力和黑潮流背景场。理论结果表明:从菲律宾海进入吕宋海峡的太平洋表层水能否穿越黑潮进入南海主要取决于冬季海峡中部海面倾斜距平的大小、方向,和它进入海峡时所处的纬度位置,从而很好的解释了横穿吕宋海峡表层流的属性。
     3.根据2003、2004和2005年秋、冬季在吕宋海峡投放的卫星跟踪漂流浮标(Argos)资料,统计分析了黑潮通过吕宋海峡时的不同流型。结果表明秋、冬季黑潮表层流存在3种类型:北向型、西向型和流套-涡旋型,其中后两种流型入侵南海。指出吕宋海峡进入的流套-涡旋型路径的概率为0.23,流套的纬向尺度约130-210km,仅发生在恒春海脊西侧的台湾岛西南海域。认为黑潮流套仅是黑潮流分离的一部分,而非黑潮整体蛇形入侵南海,这与墨西哥湾的蛇形流不一样。在流套内西向流速大于东向流速,这可能是流套西向发展的原因之一。黑潮流套可演变成脱落涡旋,也可能就地消亡,脱落涡旋以约10cm/s速度西移。
     4.海面高度计资料的统计分析结果揭示了黑潮流区中尺涡旋的活动微弱,而恒春海脊西侧海域则是中尺涡旋活跃区。Argos漂流浮标轨迹表明了入侵南海的黑潮流脱落涡旋仅出现在恒春海脊西侧海域。基于对这两种现象物理本质的理解,我们认为这两种海洋现象是黑潮流对中尺度扰动不稳定性响应的结果。
     5.黑潮流套形成的理论研究成果:
     为了从理论上阐述这种机制,我们从σ坐标下的扰动不稳定性的控制方程出发,导出了在相空间中控制方程的表达式和解存在的约束条件;在考虑吕宋海峡地形和黑潮流的基本情况下,得到了扰动不稳定性问题的色散关系、指数成长率和波包解析表达式,主要理论结果如下:
     1)黑潮区具有接近惯性频率的固有振荡,它与黑潮速度场及密度场的水平切变密切相关。黑潮东、西两翼相对涡度((?)V/(?)x)正、负相反,它们造成的两个频率相近的单色波,并形成波包。比较波包的理论估算与观测结果,两者十分接近。
     2)从波包的振动周期角度来说,黑潮的作用类似于一个滤波器。出现在吕宋海峡以东洋区西行中尺度涡旋波,其90d周期的优势波将被黑潮拦截,仅具有低能量水平倍频波(45d周期)可通过黑潮区。通常倍频波比基频波的能量水平低得多,这是形造成黑潮流区中尺度波动衰弱的基本原因。
     3)扰动不稳定性主要取决于海底地形。西边界的北段是水深小于600m的恒春海脊,而且黑潮经常掠过该海脊。从吕宋海峡传入南海的扰动波,在西边界处遇到不同的情形。当扰动波通过恒春海脊时,它将可能因海底变深而增强,并迫使黑潮流的一部分弯曲,从而发展成黑潮流套。西边界的南段海脊的水深都大于波动深度,不存在扰动波增强的条件。
     文中我们还分析了西太平洋涡旋与吕宋岛弧的碰撞,认为反气旋涡旋通过巴士海峡的挤压,从而产下若干较小新生旋涡,这可能就是在台湾岛西南海域出现45d周期海平面波动的扰动来源。
The Luzon Strait (LS) is a large gap of the Pacific western boundary. The Kuroshio passthrough the LS from south to north with a bend path westward slightly and its mainstream isgenerally limited in the North Luzon Trough. However it occurs frequently that the Kuroshiointrudes the SCS, which exert its important influence on the marine environment of the SCS,such as the circulation, hydrography and biochemical filed. The subject on the Kuroshiointruding the SCS is still a research focus and predecessors have done a lot of investigations, butit is under debate up to new. Since the bottom topography of the LS is very complex and there isthe interaction between the Kuroshio and the current filed in its neighbor region, especially themesoscale eddies, it is difficult to understand the mechanism of the Kuroshio intruding the SCS.
     In this study, we use the advantage of the Argos satellite-tracked drifter trajectoriesindicating the lagrangian current to investigate the basic forms and variation regulars of theKuroshio intruding the SCS. On this basis, we focus to understand the following key problems:What is the driving mechanism of the Pacific surface water cross the LS into the SCS?Whether or not there is a connection between the mesoscale eddies on the two sides of the LS?How does the Kuroshio loop current from? We finally advance a simple physical frame on theKuroshio intruding the SCS, and explain their dynamic mechanisms. The main new results inthis study are as follows:
     1. Statistic analysis results of drifter trajectories show that: The entrance of surface flowacross the Luzon Strait (SFALS) is mainly the southern Balintany Channel (SBLTC) andBabuyan Channel (BBYC). The SFALS occur most early in last of September, and then tendsgradually to stable. In December it reaches the most powerful, and its entrance stretchesnorthward to the southern Bashi Channel. The occurring probability of SFALS decreased rapidlyin February--March, when the drifters enter from south of20oN may cross the LS. It is surprising that the speed of SFALS was1.5times of that before entering the LS as the entrancewas the Balintany Channel, but the speed increase of SFALS is not significant compared to thespeed before entering from the Babuyan Cannel.
     2. The oceanographic observed facts showed that in the wintertime there is a positive sealevel anomaly(SLA)southwest of the Taiwan Island including the northern LS, and a negativeSLA northwest of the Luzon Island including the southern LS. Obviously, they should match ananticyclonic circulation and a cyclonic circulation respectively. A slope down sea-surfacesouthward and an accompanied westward current should exist between these two regions, aboutscope of119.5°-121.5°E,19.8°-21.3°N. The combination of anticyclonic and cycloniccirculations is similar to a pump, which brings a westward velocity increase to the Kuroshio,special for the kuroshio water entering from the Balintany Channel, and drives a part of thekuroshio water change its original path to enter westward the SCS. Therefore, we believe that inwinter the generation of the SFALS is the result of season readjust of sea level and circulation inthe northeastern SCS rather than the forced by the perturbations, such as mesoscale eddies,eastof the LS. The occurring condition of the SFALS is solved by a set of movement equations,where the friction drag and the background current filed, the Kuroshio, are considered. Thetheoretical results indicate that whether the Pacific Surface Water can cross the LS into the SCSdepends upon the SLA gradient in the middle LS and the entrance positions of the PacificSurface Water.
     3. Observational data of the Argos satellite-tracked drifters deployed in the Luzon Strait (LS)in autumn and winter of January of2003,2004and2005are used to analyze the Kuroshiocurrent pattern passing through the LS. The result show that the paths of Kuroshio surfacecurrent in autumn and winter can be classified three types: northward type, westward type andLoop Current—Shedding Eddy type, and the letter two types were intrusion into the SouthChina Sea (SCS). The statistical analysis indicates that the occurring probability of LoopCurrent—Shedding Eddy type was0.23. The Kuroshio Loop Current (KLC), with the maximumlatitudinal scale reached210km, occured southwest of the Taiwan Island, west of the HengchunSea Ridge only. KLC was only a part of current separated from the Kuroshio rather than thewhole Kuroshio cruised into the SCS meanderingly, which differs from the Loop Current in the Gulf of Mexico. The westward current velocity was greater than eastward current velocity in theKLC, which is one of the reasons of its developing westward. The KLC may evolve into theShed Eddy or disappear on the spot. The Shed Eddy moved westward with a speed of about10cm/s.
     4. Statistical results from the satellite altimeter sea level data revealed that the Kuroshiostream belt is a weak active region of the mesoscale eddy, while the area west of the HengchenSubmarine Ridge (HSR) is one of the strong active regions of mesoscale eddy. The Argossatellite-tracked drifter trajectory diagrams showed that the Kuroshio Loop Current (KLC) andits shed eddy (SE) occurred only west of the HSR. It suggests that the two oceanographicphenomena are induced by instability of the Kuroshio stream on the mesoscale disturbance.
     5. Theoretical study results on the formation of the KLC:To better understand this mechanism in theory, from the governing equations of disturbanceinstability in coordinate frame we derived the governing equations in phase space and therestrained conditions of solution existence. For the simplified structures of Kuroshio streamand bottom topography, an analytical solution of dispersion relation and growth rate wasconstructed for mesoscale disturbance. The theoretical results are as follows.
     (1)There are the intrinsic oscillations with nearing inertia frequency in the Kuroshio area,which are related to the horizontal gradients of Kuroshio velocity and density fields. Therelative vorticities ((?)V/(?)x)are positive on the west wing and negative on the east wing of inthe Kuroshio area, which causes two monochromatic waves with nearing frequencies, and theysuperimpose to form a wave packet. The theoretical estimates for the wave packet are closed toobservational results.
     (2) The Kuroshio plays a role of direction dynamic filer. For the oscillation period of wavepacket, the disturbance wave propagating westward occurring in the subtropical pacific, thedominant wave with period about90days will be intercepted by the Kuroshio, themultifold-frequency waves with the periods T45daysonly may propagate into the SCSthrough the Kuroshio region.
     (3) The disturbance instability mainly depends on the bottom topography as well is relatedto the horizontal shear of Kuroshio fields. As the disturbance waves pass across the west boundary of LS, their states are different at the northern and southern sections. The disturbancewave excited probably anew at the northern section because the HSR is shallower than600mand deepen bottom westward, and forced a part of the Kuroshio meandering to develop into theKLC. There is not the exciting condition to disturbance wave at the southern section, becauseits submarine ridge has a depth more than that of the wave disturbance.
     In this paper, we analyze the encounters of the eddies occurring in the west pacific with theLuzon Island Arc, and suggest that the squeezing of anticyclonic eddy through the Bashi channelwill birth some new eddies propagating westward, which may be the mesoscale disturbanceorigin with a45-day period in the southwest of Taiwan Island.
引文
[1] Arbic B. K., and G. R. Flierl. Baroclinically unstable geostrophic turbulence in the limits ofstrong and weak bottom Ekmam friction: Application to midocean eddies. J. Phys.Oceanogr.,2004,34:2257-2273
    [2] Caruso M J, Gawarkiewica G G, Beardsley R. C.. Interannual variability of the Kuroshiointrusion in the South China Sea. J. Oceanogr.,2006,62:559-575.
    [3] Centurioni, L. R.,R. P. Niiler, and D.K. Lee. Observations of inflow of Philippine Seasurface water into the South China Sea through the Luzon Stilt. J. Phys. Oceanogr.,2004,34,113-121
    [4] Centurioni, L. R., P. N. Niller, and D. K. Lee. Near-surface circulation in the South ChinaSea during the winter monsoon. Geophys. Res. Lett.,2009,36, L06605,doi:10.1029/2008GL037076.
    [5] Chan K. M.. The seasonal variation of hydrological properties in the northern South ChinaSea. In: The Kuroshio,1970,143--162
    [6] Chau Y. K., Wong C. S.. Oceanographic investigation in the northern shelf of the SouthChina Sea off Hong Kong. Hong Kong Univ. Fish J.,1960,3:1-25
    [7] Chelton D. B., and M. G. Schlax. Global observation of oceanic Rossby waves. Science,1996,272(5259):234-238.
    [8] Chen C. T. A.,M. H. Huang. A mid-depth front separating the South China Sea water andthe Philippine Sea Water. Journal of Oceanolography,1996,52(1):17-25
    [9] Chen G. X., Y. J. Hou, X. Q. Chu,P. Qi. Vertical structure and evolution of the LuzonWarm eddy. Chinese Journal of Oceanology and Limnology,2010,28(5):955-961
    [10] Chen G. X., Y. J. Hou, X. Q. Chu. Mesoscale eddies in the South China Sea: meanproperties spatio-temporal variability and impact on themohaline structure. J. Geophys. Res.,20011, doi:10.1029/2010JC006716
    [11] Chern,C. S. and J. Wang,A numerical study of the summertime flow around the LuzonStrait. J. Oceanogr.,1998,54(1),53-74
    [12] Chern C. S., S. Jan, J. Wang. Numerical study of mean flow patterns in the South China Seaand the Luzon Strait. Ocean dynamics,2010, doi:10.1007/s10236-010-0305-3
    [13] Chu C.Y.. Environmental study of the surrounding waters of Taiwan Strait. Acta Oceanogr.Taiwanica,1971,1:15-32
    [14] Chu P. C., Y. C. Chen and S. H. Lu. Wind-driven South China Sea Deep Sea Basin warm–core/cool-core eddies. J. Oceanogr.,1998,54:347-360
    [15] Dale W. L.. Wind and drift currents in the South China Sea. The Malayan Journal ofTropical Geography,1956,8:1-31
    [16] Ding Y. H.. Summer monsoon rainfall in China. Journal of Meteorology Society of Japan,1992,70:373-396
    [17] Fan K. L.. The branch of Kuroshio in the Taiwan Strait. In Ocean Hydrodynamics of theJapan and East China Sea, by T. Ichiye, Elsevier, New York, p77-82
    [18] Fan K. L.. A study of water mass in Taiwan Strait. Acta Oceanogr. Taiwanica,1982,13:140-153
    [19] Fang G. H., Wei Z. X., Chol B.H., Wang K., Fang Y., Li w.. Interbasin freshwater, featand salt transport through the boundaries of the East and South China Seas from avariable-grid global ocean circulation model. Science in China,(Series D),2003,46(2):149--161
    [20] Farris,A.,and M. Wimbush. Wind-induced Kuroshio intrusion into the South China Sea.J.Oceanogr.,1996,52,771-784
    [21] Gill Y. P., and I. S. Oh. Seasonal characteristics of the near-surface circulation in thenorthern South China Sea obtained from satellite tracked drifters. Ocean Science Journal,2007,42(2):89--102
    [22] Gilson, J., and D. Roemmich (2002), Mean and temporal variability in Kuroshio geostrophictransport south of Taiwan (1993-2001). J. Oceanogr..,52,771-784.
    [23] He Z. G., Wang D. X., Hu J. Y.. Features of eddy kinetic energy and variations of uppercirculation in the South China Sea. Acta Oceanologica Sinaica,2002,21(2):305-314
    [24] Ho Chung-Ru,Nan-Jung Kuo, et al.. Dynamically active areas in the South China Seadetected from TOPEX/POSEIDON satellite altimeter data. Elsevier Science.2000,71:320~328
    [25] Ho C.-R., Q. Zheng, J.-J. Kuo, C.-H. Tsai, and N. E. Huang (), Observation of Kuroshiointrusion region in South China Sea derived from AvHRR data. Int. J. Remote Sensing,2004,25(21):4583-4591.
    [26] Ho C-R.,Zheng Q.,Zheng Z-W., Kuo N-J., Tai C-K.and Su F-C.,2009, Reply to Commentby A. Wada et al. on “The importance of pre-existing oceanic conditions to upper oceanresponse induced by Super Typoon Hai-Tang”. Geophys. Res. Lett.36, L09604,doi:10,1029/2009Gl03443.
    [27] Hsueh Y.,Zhong L., A pressure~driven South China SeaWarm Current[J].J. Geophys.Res.,2004,109,C09014,doi:10.1O29/2OO4JCOO2374.
    [28] Hu J. Y.,K. Hiroshi, H. Hong, Y. Qi. A review on the Currents in the South China Sea:Seasonal Circulation,South China Sea W arm Current and Kuroshio Intrusion[J].Journal ofOcanography,2000.56:607~624
    [29] Hu J., Kawamura H., Hong H., Kobashi F., Wang D.,3--6Months Variation of SeaSurface Height in the South China Sea and Its Adjacent Ocean. J Oceanogr.,2001,57(1):69-78.
    [30] Hu J., Zheng Q., Sun Z., Tai C.-K., Penetration of nonlinear Rossby eddies into South ChinaSea evidenced by cruise data. J Geophys. Res.,2012,117(C3): C03010.
    [31] Hu X. M., X. J. Xiong, F. L.Qiao, B.H. Guo and X. Lin. Surface current field and seasonalvariability in the Kuroshio and adjacent region derived from satellite tracked drifter data,Acta Oceanologica Since,2008,27(3),11-29.
    [32] Hwang C. and Chen S. A.. Circulations and eddies over the South China Sea derived fromTOPEX/POSEIDON altimetry. Journal of Geophysical Research,2000,105:23943-23965
    [33] Jia Y. L., Liu Q. Y., Liu W., Primary study of the Mechanism of eddy shedding from theKuroshio bend at Luzon Strait, J. Oceanogr.,2005,61:1017-1027
    [34] Jia Y. L.,Q Liu,Eddy shedding from the Kuroshio bend at Luzon Strait,J. Oceanogr.,2004,601063-1065
    [35] Li,L.,Nowlin W. D. and Su J. L.. Anticyclonic rings from the Kuroshio in the South ChinaSea. Deep Sea Research-Part I,1998,45:1469-1482
    [36] Li, Y. C. and L. Li. Temporal and spatial variability of the sea surface heights in thenortheastern South China Sea, Chinese Science Bulletin,2004,49(5):491~498
    [37] Li L.,Jin C-S., Zhu D-Y.. Couping and Propagating of mesoscale sea level variabilitybetween the western Pacific and the South China Sea, Chinese Science Bulletin,2007,52(12):1699—1707
    [38] Liang,W.D., T.V. Tang,Y.J. Yang.,M.T. Ko,and W.-S. Chuang, Upper ocean currentaround Taiwan. Deep-Sea Research,2003,Part2,50,1085-1150
    [39] Liang W. D., Yang Y. J., Tang T. Y.. Chuang W. S.. Kuroshio in the Luzon strait. J.Geophys. Res.2008,113, C08048, doi:10.1029/2007JC004609
    [40] Liu Z. Y.,Yang H. J.,Liu Q. Y.. Regional dynamics of seasonal variability in the SouthChina Sea. Journal of Physical Oceanography,2001,31,272-284
    [41] Liu,Q. Y.,Jiang X.,Xie S.P. and Liu W. T.. A gap in the Indo-Pacific warm pool over theSouth China Sea in boreal winter: Seasonal development and interannual variability.Journal of Geophysical Research,2004,109,C07012,doi:10.1029/2003JC002179
    [42] Metzger E. J. and H. E. Hurlburt. Coupled dynamics of the South China Sea,the Sulu Sea,and the Pacific Ocean. Journal of Geophysical Research,1996,101,12331-12352
    [43] Metzger, E. J. and H. E. Hurlburt. The nondeterministic nature of Kuroshio penetration andeddy shedding in the South China Sea. J. Phys. Oceanogr.,2001,3I,1712一1732
    [44] Metzger, E. J.. Upper ocean sensitivity to wind forcing in the South China Sea. J.Oceanogr.,2003,59:6783—6798
    [45] Nan F,, He Z., Zhou H., and Wang D.. Three long-lived anticyclonic eddies in the northernSouth China Sea. J. Geophys. Res.,2011b (116), C05002,doi:10.1029/2010JC006790
    [46] Nan F., Xue H., Chai F., Shi L., Shi M., and Guo P. F.. Identication of different types ofKuroshio intrusion into the South China Sea. Ocean Dynamics,2011a, DOI:10.1007/s10236-011-0426-3
    [47] Nan F., Xue H., Chai F., Shi L., Shi M., and Guo P. F., Oceanic eddy formation andpropagation southwest of Taiwan, J. Geophys. Res.,2011c(116), C12045, doi:10.1029/2011JC007386
    [48] Niino H., K. O. Emery. Sediments of shallow portions of East China Sea and South ChinaSea. Geo Soc America Bull,1961,72:731-762
    [49] Nitani H.. Oceanographic conditions in the sea east of Philipines and Luzon Strait insummer of1965and1966(A). J. C. Marr. The Kurosho-A Symposium on the Japan Current{C}. Honolulu: East-West Center Press,1970,213—232.
    [50] Nitani H.. Beginning of the Kuroshio,In: Kuroshio,Physical aspects of the Japan current,edit by H. Stommel and K. Yoshida,editors,Univ. of Wash. Press,Seattle,1972,129-163
    [51] Nof, D.. Strange encounters of eddies with walls. J. Mar. Res.,1999,57,1-24
    [52] Nof, D.. The Ballooning of Outflows. J. P. O.,2001,31,3045-3058
    [53] Pullen J., J. D. Doyle, P. May, et al.. Monsoon surges trigger oceanic eddy formation andpropagation in the lee of the Philippine Islands. Geophys. Res. Lett.,2008,35, l07604,doi:10.1029/2007GL033109
    [54] Qu T. and R. Lukas. The bifurcation of the North Equatorial Current in the Pacific. J. Phys.Oceanogr.,2003,33:5-18.
    [55] Qu T. D.,J. B. Girton and J. A. Whitehead. Deepwater overflow through Luzon Strait. J.Geophys. Res.,2006,111,C01002,doi:10.1029/2005JC003139.
    [56] Qu T., Y. Du, G. Meyers, A. Ishida, D. Wang. Connecting the tropical Pacific with IndianOcean through South China Sea. Geophys. Res. Lett.2005,32: L24609.Doi:10.29/2005GL024698
    [57] Qu T. D.,Y. Y. Kim,M. Yaremchuk,T. Tozuka,,A. Ishida. and T.Yamagata. Can LuzonStrait transport play a role in conveying the impact of ENSO to the South China Sea?Journal of Climate,2004,17(18):3644-3657
    [58] Qu T. D., H. Mitsudera and T. Yamagata. Intrusion of the North Pacific waters into theSouth China Sea. Journal of Geophysical Research,2000,105(C3):6415-6424
    [59] Scott R. B., and F. Wang. Direct evidence of an oceanic inverse kinetic energy cascade fromsatellite altimetry. J. Phys. Oceanogr.,2005,35:1950-1666
    [60] Shaw P. T. and Chao,S. Y.. Surface circulation in the South China Sea. Deep SeaResearch Part I. Oceanographic Research Papers,1994,41(11-12):1663-1683
    [61] Shaw P. T.,Chao S. Y. and Fu L. L.. Sea surface height variation in the South China Seafrom satellite altimetry. Oceanologica Acta,1999,22(1):1-17
    [62] Shaw P-T.. The seasonal variation of the intrusion of the Philippine sea water into the SouthChina Sea. J. Geophys. Res.,1991,96(C1):821~827
    [63] Shaw P-T.. The intrusion of water masses into the sea southwest of Taiwan. J. Geophys.Res.,1989,96(C12):18213~18226
    [64] Sheremet V. A.. Hysteresis of a western boundary current leaping across a gap. J. Phys.Oceanogr.,2001,32:314-335
    [65] Sherment V.,Kuehl J.. Gap—leaping western boundary current in a circular tankmodelEJ].J Phys Oceanogr,2007,37:1488—1495.
    [66] Sheu W. J.. Wu C.R., Qey L.Y.. Blocking and westward passage of eddies in Luzon Strait.Deep Sea Res., II,2010, doi,10.1016/j. dsr2.2010.04.004
    [67] Soong Y S, Hu J-H,Ho C-R,et al.. Cold-core eddy detected in the South China Sea.EOS,1995,76:345~347
    [68] Stammer D.. Global characteristics of ocean variability estimated from regional TOPEX/POSEIDON altimeter measurements. J. Phys. Oceanogr.,1997,27:1743-1769
    [69] Gilson, J., and D. Roemmich. Mean and temporal variability in Kuroshio geostrophictransport south of Taiwan (1993-2001). J. Oceanogr.,2002,52,771-784.
    [70] Su, J. L. Overview of the South China Sea circulation and its influence on the coastalphysical oceanography outside the Pearl River Estuary. Continental Shelf Research,2004,24:1745—1760.
    [71] Tian J. W.,Yang Q. X.,Liang X. F.,Hu D. X.,Wang F. and Qu T. D.. Observation ofLuzon Strait transport. Geophysical Research Letters,2006,33,L19607,doi:10.1029/2006GL026272
    [72] Tomczak M. and J.S. Godfrey. Adjacent seas of the Pacific Ocean. In RegionalOceanography; An Introduction, Pergamon Press, Oxford, P.173-191.
    [73] Wang D., H. Z. Xu, J. Lin and J. Y. Hu. Anticyclonic eddies in the northeastern South ChinaSea during winter2003/2004. J. Oceanogr.,2008,64,925-935
    [74] Wang G.,Su J., P. C. Chu. Mesoscale eddies in the South China Sea observed withaltimeter data. Geophysical Research Letter,2003,30(21),2121,doi:10.1029/2003GL018532
    [75] Wang G. H., Chen D., Su J. L.. Winter eddy denesis in the eastern South China Sea due toorographic wind jets. J. Phys. Oceanogr.2008,38:726-732, doi:10.1175/2007JPO3868.1.
    [76] Wang J. and Chern C-S.. The warm—core eddy in the northern South China Sea, I Preliminary observations on thewarm core eddy[J].Acts Oceanogr Taiwan,1987a,18:92—1O3.
    [77] Wang, J. and C.S. Chern. The warm-core eddy in northern South China Sea,2. A simplemechanism for the establishment and development of the warm-core eddy, Acta Oceanogr.Taiwannica,1987b18:104~113.
    [78] Wang J. and C. S. Chern. Observations and views on the Kuroshio penetrating into theSouth China Sea. Acta Oceanogr. Taiwanica,2000,38:129~151
    [79] Watts J. D. C.. A general review of the oceanography of the northern secter of South ChinaSea. Hong Kong Fish Bull,1971,2:41-50
    [80] Williamson G. R.. Hydrography and weather of the Hong Kong fishing ground. Hong KongFisheries Bulletin,1,43-49
    [81] Wyrtki K.. Physical oceanography of the Southeast Asian water.In NAGA Report Vol.2,Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand1959-1961Scripps institution of Oceanography,La Jolla,California,1961,195pp
    [82] Xiu p., Chai F., Shi L., Xue H., Chao Y.. A census of eddy activities in the South China Seaduring1993-2007. J.Geophys. Res.2010.115: C03012, doi:10.1029/2009JC005657
    [83] Xu J.,Shi M. C.,Zhu B. K.,Liu Z. H.. Several characteristics of water exchange in theLuzon Strait. Acta Oceanologica Sinica,2004,2311-22
    [84] Xue H.,Chai F.,N. Pettigrew. Kuroshio intrusion and the circulation in the South ChinaSea. J. Geophys. Res.,2004,109, C02017,doi:10.1029/2002JC001724.
    [85] Yang H.,Liu Q.,Liu Z.,et a1..A general circulation model study of the dynamics of theupper ocean circulation of the South China Sea.J. Geophys. Res.,2002,107(C7):3085,doi:10.1029/2OO1JCOO1O84.
    [86] Yang H.,Liu Q..Forced Rossby wave in the noahem South China Sea[J].Deep—SeaResearch I,2003,50:917-926
    [87] Yu Z., S. Shen,J. P. McCreary,M. Yaremchuk,and R. Furue. South China Sea throughflowas evidenced by satellite images and numerical experiments. Geophys. Res. Lett.,2007,34,L01601,doi:10.1029/2006GL028103
    [88] Yuan D.. Dynamics of the Luzon Strait transports. Acta Oceanologica Sinica,2002,21(2):175-185
    [89] Yuan D.,W. Han and D. Hu. Surface Kuroshio path in the Luzon Strait derived fromsatellite remote sensing data. J. Geophys. Res.111,2006,C11007,doi:10.1029/2005JC003412
    [90] Yuan D., and Z. Wang. Hysteresis and dynamics a western boundary current flowing by agap forced by impingement of mesoscale eddies. J. Phys. Oceanogr.,2011,41:878-888.
    [91] Yuan Y.,Liu Y.,Liu C. T. and Su J.. The Kuroshio east of Taiwan and the currents east ofthe Ryukyu-gunto during October of1995. Acta Oceanologica Sinica,1998a,17(1):1-13
    [92] Zhou H., Nan F., Shi M., Zhou L. M, Guo P.. Characteristics of water exchange in theLuzon Strait during September2006. Chinese Journal of Oceanology and Limnology,2009,27(3),650-657
    [93]仇德忠,杨天鸿,郭忠信.夏季南海北部一支向西流动的海流.热带海洋,1984,3(4):65-72
    [94]范立群,苏育嵩,李风岐.南海北部海区水团分析.海洋学报,1988,10(2):136-145
    [95]方文东,黄企洲,邱章,施平.春夏季季风转换期南海南部异常表层水.热带海洋学报,2001,20(1):77-81
    [96]管秉贤.巴士海峡及其附近夏季环流分布特征.黄渤海海洋,1990,8,1-11
    [97]管秉贤.我国台湾及其附近海底地形对黑潮途径的影响.海洋科学集刊(14).北京:科学出版社,1978,1-21
    [98]郭景松,胡筱敏,袁业立.利用卫星高度计资料对台湾海峡流量变化的诊断分析.《海洋科学进展》2005,23(1),20-26
    [99]郭景松,袁业立,熊学军等.吕宋海峡两侧中尺涡旋统计.海洋科学进展.2007,25(2):139~148
    [100]郭忠信,方文东.1985年9月的吕宋海峡黑潮及其输送.热带海洋,1988,(2):13-19
    [101]黄企洲,郑有任,1992年3月南海东北部巴士海峡的海流.中国海洋学文集,第6集,北京:海洋出版社,1996,42-52
    [102]黄企洲.巴士海峡黑潮流速和流带的变化.热带海洋,1983,2,35—41
    [103]黄企洲.巴士海峡的海洋学状况.南海海洋科学集刊,1984,6:54-66
    [104]贾英来.吕宋海峡黑潮形变的时空分布特征和形成机制,(博士学位论文),青岛:中国海洋大学,2002
    [105]靖春生,李立,朱大勇.西太平洋一南海中尺度水位波动的耦合传播特征EJ].科学通报,2006,51(20):2422—2428.
    [106]兰健,于非,鲍颖.南海南部海域的多涡结构.海洋科学进展,2005,23(4):408-413
    [107]李风岐,李磊,王秀芹,刘长乐.1998年夏、冬季南海的水团及其与太平洋的水交换.青岛海洋大学学报,2002,32(3):329-336
    [108]李风岐,苏育嵩,范立群.南海北部海区水团的判别分析.海洋湖沼通报,1987,3:15-20
    [109]李磊,李风岐,苏洁,许建平.1998年夏、冬季南海水团分析.海洋与湖沼,2002,33(4):393-401
    [110]李立,苏纪兰,许建平.南海的黑潮分离环流.热带海洋,1997,16(2):42-57
    [111]李立,伍伯瑜.黑潮的南海流套?—南海东北部环流结构探讨.台湾海峡,1989,8(1):89-95
    [112]李立.南海海水的T-S特性点聚图及其简要说明.台湾海峡,1987,6(1):93-96
    [113]李立.南海中尺度海洋现象研究概述.台湾海峡,2002,21(2):265-274
    [114]李薇,李立,刘秦玉.吕宋海峡及南海北部海域的是团分析,台湾海峡,1998a,17(2):207-213
    [115]李薇,刘秦玉,杨海军.吕宋海峡海洋环流的基本特征.青岛海洋大学学报,1998b,28(3):345-351
    [116]李薇,刘秦玉.西边界流在边界“豁口”的形变及其机制.青岛海洋大学学报,1997,27(3):277—281
    [117]李燕初,李立等.用TOPEX/Poseidon高度计识别台湾西南海域中尺度强涡.海洋学报,2002-03(Supp.1):163-170
    [118]李燕初,李立,林明森,等.用Topex/Poseidon高度计识别台湾西南海域中尺度强涡.海洋学报,2002,24(supp.1):163—17O.
    [119]刘秦玉,刘倬腾,郑世培,等.黑潮在吕宋海峡的形变及动力机制.青岛海洋大学学报,1996,26(4):413~42O.
    [120]刘秦玉,杨海军,李薇,刘倬腾.吕宋海峡纬向海流及质量输送.海洋学报,2000a,22(2):1-8
    [121]刘秦玉,杨海军,鲍洪彤等.北太平洋副热带逆流的气候特征.大气科学,2000b,5(3):363-372
    [122]南峰.台湾西南部海域流-涡结构及其演变规律研究.博士生学位论文.中国海洋大学,2012, pp105
    [123]蒲书箴,于惠苓,蒋松年.巴士海峡和南海东部黑潮分支.热带海洋,1992,5(2),1-8
    [124]苏纪兰,许建平,蔡树群,王欧.南海的环流和涡旋.见:丁一汇和李崇银.南海季风爆发和演变及其与海洋的相互作用.北京:气象出版社,1999.66-72
    [125]苏纪兰.南海北部环流动力机制.南海环境与资源基础研究前瞻.北京:海洋出版社,2001:1-7
    [126]苏纪兰.南海环流动力机制研究综述.海洋学报,2005,27(6):1—8.
    [127]苏京志,卢筠,候一筠等.南海表层流场的卫星跟踪浮标观测结果分析.海洋与湖沼,2002,33(2)122-127
    [128]田天,魏皓,南海北部及巴士海峡附近的水团分析.中国海洋大学学报,2005,35(1):9-13
    [129]王东晓,杜岩,施平,南海上层物理海洋学气候图集,北京:气象出版社,2002
    [130]王凡,赵永平,冯志刚,白学志,吴爱明.1998年春夏南海温、盐结构及其变化特征.海洋学报,2001,23(5):1-12
    [131]王桂华,苏纪兰,齐义泉.南海中尺度涡研究进展.地球科学进展,2005,20(8):882-886
    [132]王胄,陈庆生.南海北部之暖心涡旋(一)对南南海暖涡旋之初步观测.台湾大学海洋学刊,1987(18):92-103
    [133]王胄,陈庆生.南海北部之暖心涡流(二)对南海暖涡之理论分析.台湾大学海洋学刊,1987,(18):104--113
    [134]王胄,陈庆生.南海东北部海域次表层水与中层水之流径.热带海洋,1997,16(2):24-41
    [135]伍伯瑜.台湾海峡环流研究中的若干问题.台湾海峡,1982,1(1):1-7
    [136]吴日升,郭小,李立.1998年冬季南海的海洋水文特征与环流.海洋学报.2002,24(supp1):142-152
    [137]徐锡祯,邱章,陈惠昌.南海水平环流概述.中国海洋湖沼学会水文气象学会学术会议(1980)论文集.北京:科学出版社,1982.127-145
    [138]徐洪周,许金电,李立等.2001年冬春季转换期间南海东北部水文和环流特征.海洋学报,2007,29(5):10-20
    [139]许建平,李金洪,刘增宏,朱伯康.1998年夏季风暴发前后南海海洋水文特征及其变异.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001a.197-210
    [140]许建平,潘玉球,柴扉,刘增宏,朱康伯.1998年春夏季南海若干重要水文特征及其形成机制分析.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001b,211-219
    [141]许建平,苏纪兰,仇德忠.黑潮入侵南海的水文分析.见:南海东北部海区环流课题组编.中国海洋学文集(6),南海东北部海区环流研究.北京:海洋出版社,1996,1-12
    [142]许建平,苏纪兰.黑潮水入侵南海的水文分析Ⅱ.1994年8-9月观测结果.热带海洋,1997,16(2):1-23
    [143]薛惠洁,柴扉,侍茂崇.吕宋海峡水平通量计算.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001a.152-167
    [144]薛惠洁,柴扉,侍茂崇.南海东北部黑潮的入侵流套及其环流.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001b.23-37
    [145]薛惠洁,柴扉,徐丹亚,侍茂崇等.南海海流数值计算.见:薛惠洁,柴扉,许建平等著.中国海洋学文集,第13集.北京:海洋出版社,2001c.1-13
    [146]杨海军,刘秦玉.南海海洋环流研究综述.地球科学进展,1998,13(4):364—368.
    [147]杨昆,施平,王东晓等.冬季南海北部中尺度涡旋的数值研究.海洋学报,2000,22(1):27-34
    [148]赵伟,候一筠,乐肯堂,李明悝,齐鹏.吕宋海峡水较换的季节变化的数值研究.海洋与湖沼,2007,38(6):495-503

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700