用户名: 密码: 验证码:
南海北部中尺度涡及北部湾环流结构与生成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,基于改进的中尺度涡判别方法和海平面异常数据(SLA),本文分析了南海北部中尺度涡的变化规律及其对南海环流影响。其次,构建南海西北部的三维后报模型,分析南海环流及其它强迫因子对北部湾环流(位于南海西北部)的贡献。得到的主要结果如下:
     通过用相对涡度代替SLA来消除全球平均下反气旋(气旋)式涡旋对应负(正)SLA的误差,并引进流场判据消除O-W中尺度涡判别方法的误差。基于新方法的分析结果表明,南海西北部存在四个中尺度涡消散区,与南海的四个中尺度涡主要生成区相对应,从而构建四个规律性的涡旋传播通道。
     讨论了中尺度涡在经向上的能量通量分布,发现南海东边界和西边界是能量密集区。中尺度涡以西向传播为主,其能量通量是东向传播的6倍。与季风对海洋的输入能量相比,中尺度涡对背景流的贡献大9倍。在西向传播过程中,中尺度涡不断消失和生成,接力般把能量从南海东部传到西部,使得能量聚集在西边界。
     由于北部湾受南海环流影响,因此中尺度涡对南海环流的影响可以传递至北部湾。二十年来,由于有限的观测数据和大量的数值诊断计算,北部湾的季节性环流型态与生成机制一直存在较大争议。本文通过POM模式在南海西北部建立三维后报模型,模拟2006-2007年的环流变化。该模型充分考虑了日平均的风场(Blended wind data)、热通量(Woods Hool的OAFlux)以及俄勒冈大学(OSU)潮汐模型提供的六个分潮。侧边界则使用HYCOM提供的2005年12月1日到2007年12月31日的日平均温度、盐度、正压和斜压流速、水位等数据,同时考虑了气候态下几个河流的月平均径流量。模式结果与实测数据较前人最大程度的符合,不仅模拟出908专项观测到的两个上升流和两个冷水团,而且与海流观测吻合较好。
     基于此,本文得出与前人模型结果不一样的结论:北部湾的南部环流有显著的季节性变化特征,夏季为反气旋式环流而冬季则为气旋式,分别受南海环流和东北季风控制。北部环流则可分成东西两部分,西北部环流无明显季节性变化特征,主要受沿岸流控制,包括湾西岸的低盐水以及南部环流的分支,而东北部环流则受局地风场和琼州海峡流的共同作用。
     受环流影响,北部湾表层存在几个水文特征迥异的水团,包括南部高温高盐水团,西海岸和北海岸的河口羽状区形成的低盐水团以及介于二者间的混合水团,水团主要受季风、热通量以及径流量影响。无热通量时,南海的高温高盐水能够侵入北部湾更北端,混合水团和湾西岸的低盐水团往北收缩。同时湾西岸的河口羽状区受径流量和季风的共同作用,例如冬季的东北季风把低盐水压缩在近岸而夏季西南季风有助于其离岸扩展。在深层,北部湾存在两个冷水团,生成于冬季,成长于春季,在夏季和秋季不断减弱并消失。冷水团主要受热通量作用,季风起次要作用。
     通过把开边界设置到珠江以东以及在琼州海峡内设置足够的分辨率,提出琼州海峡流的东西向分量的日振荡分量与季节性振荡分量相当,因此在冬季和夏季的某一天也有可能是东向流或西向流。但季节性平均来讲,琼州海峡流在春末至夏末为东向,在秋季至来年春季为西向,年平均通量为西向的0.1Sv(约为)。琼州海峡流主要受海峡两端水位差控制,局地风和潮汐余流则起次要作用。
     本文概括分析了北部湾上升流和暖池的特征及其生成机制,包括海南岛西岸,西南岸以及越南沿岸。上升流主要存在于夏季,其中海南岛西岸上升流受潮混合和热通量控制,西南季风起反作用;越南沿岸和海南岛西南岸近岸的上升流生成机制为西南季风引起的Ekman输运。从10月到来年1月,在东北季风垂向混合和潜热通量作用下,海南岛西岸为暖池控制。
     在日平均和月平均的风场和热通量强迫下,北部湾的环流和水团有较大差异,例如南部环流在月平均强迫下虽然基本结构变化不大,但强度比日平均有所增强,而且北部环流的基本结构有较大改变。因此,不同时间分辨率的风场和热通量强迫对北部湾环流和水团有重要影响。
     本文的研究成果有助于海洋生物地球化学,海洋渔业等学科在北部湾的进一步研究,同时对广西和海南近海的海洋环境保护有重要意义。
Firstly, the characteristics of eddies and their effects on the circulation in thenorthern South China Sea (SCS) were examined, basis on the Sea Level Anomalydata and developed eddy-detected method. Secondly, the three-dimensionalhindcast model was built in the northwestern SCS and the effects of SCScirculation and other factors on the circulation in the Beibu Gulf were analyzed.The findings were mainly as follows:
     Based on the Okubo-Weiss method, six procedures were added to avoid thenoise, which could achieve the robust results. In addition, four distinctive sinks ofthe eddy (EAAs) were firstly examined, which were linked with the four eddybirthplaces to result in four pathways for eddies in the northern SCS.
     The zonal distribution of the eddy kinetic energy flux (EKEF) was alsofigured out, with two peaks in the eastern and western boundary, respectively. Andthe westward EKEF was almost6times as the eastward EKEF. Compared with thework on the circulation by the wind, the work by eddies was almost night times asthat in the northern SCS. The eddy would be generated and dissipatedcontinuously along the westward propagation way. Thus, the eddy acted as a relayto transfer the energy from east to west, and the energy would be lastlyaccumulated in the western boundary.
     The eddy could affect the Beibu Gulf via the SCS circulation. However, thecirculation in the Gulf has not been agreed in the past twenty years, which was dueto the limited in situ data and diagnostic numerical models in the past. Therefore,the three-dimensional hindcast model was built in the northwestern SCS, modelingthe circulation in the Beibu Gulf between2006and2007. This numerical modelconsidered the daily averaged blended wind and heat flux (OAFlux Project) data,and six tidal consituents from tidal model of OSU. For the lateral boundaries, the daily averaged temperature, salinity, barotropic and baroclinic velocities, andelevation were constructed from HYCOM between December1,2005andDecember31,2007. And the monthly averaged river discharges were alsospecified. As a result, the model results were consistent with in situ data, such asthe current observation data. And two upwellings and two cold water masses weremodeled as the observation result of Project908.
     With the good model results, the new views were concluded: it could beshowed an apparent seasonal evolution in the southern Gulf: in summer thevertically averaged circulation was anti-cyclonic, whereas in winter the patternchanged to cyclonic. The circulation was dominated by outer SCS circulation andnortheasterly wind in summer and winter, respectively. In the northern Gulf flowswere independent between the eastern and the western side. The flows in thenorthwestern interior Gulf were affected jointly by several currents including thecoastal plume and the branch separated from the southern gyre, resulting in noapparent seasonal variation. However, the northeastern Gulf was dominated by thelocal wind and the flows from the QS.
     Different water masses were distinguished at the surface with the warm andsaline South China Sea water in the south, relatively fresh plume waters along thenorthern and western coasts of the Gulf, and the mixture of the two in between.They were adjusted by wind and heat flux. Such as, the warm and saline SCSwater could intrude the Beibu Gulf more northward without heat flux. In addition,the river plume in the western Gulf was modulated by the river discharge and wind,which was pushed towards the shore in winter but spread offshore in summer. Atlower levels, two cold, water masses were found in the model, which wereproduced throughout the winter, sheltered and protected from the surface warmingby a thermocline as the season progressed, and gradually disappeared fromsummer to fall. These two cold water masses were dominant by the heat flux, andwind played second role.
     By placing the model open boundary east of the Pearl River delta and allowing sufficient resolution of the Qiongzhou Strait (QS), flows in the QS weredetermined. Because the daily variation was at least as strong as the seasonalcurrent, flows in the QS could be westward or eastward on some days in summeror winter, but the seasonal mean current was eastward from late spring throughsummer and westward during the rest of the year, with an annual mean westwardtransport of~0.1Sv (~) into the Gulf.
     The characteristics and mechanisms of upwellings and warm pool wereexamined in the Beibu Gulf. The upwelling off western coast of Hainan wasdominated by tidal mixing and heat flux, while the southwesterly wind hadnegative effect on it; the upwellings off Vietnamese coast and off southern coast ofHainan were induced by the Ekman transport of southwesterly wind. In addition,there was warm pool existing between October and January off the western coastof Hainan, induced by the latent heat flux and vertical mixing by the northesterlywind.
     Basis on this work, the research of marine biogeochemistry and fishery willbe carried out. In addition, it is helpful to the protection of marine environment offcoasts of Guangxi and Hainan.
引文
[1]曹德明和方国洪.北部湾潮汐和潮流的数值模拟[J].中国海洋与湖沼,1990,21(2):105-113
    [2]柴扉,薛惠洁,侍茂崇.南海北陆架区3个典型反气旋涡水文特征及演变规律[M].中国海洋学文集-南海海流数值计算及中尺度特征研究,2001
    [3]陈波,李培良,侍茂崇,邱绍芳,庄军莲,何碧娟,蒋磊明.北部湾潮汐余流和风生海流的数值计算与实测资料分析[J].广西科学,2009,16(3):346-352
    [4]陈照章,胡建宇,孙振宇,朱佳.北部湾东部海区夏季和冬季温盐平面分布特征比较
    [M].北部湾海洋科学研究论文集(第2辑),海洋出版社,2008:64-76
    [5]方国洪,曹德明,黄企洲.南海潮汐潮流的数值模拟[J].海洋学报,1994,16(4):1-12
    [6]郭飞,侍茂崇,夏综万.琼东沿岸上升流二维数值模型的诊断计算[J].海洋学报,1998,20(6):109-116
    [7]郭忠信,王文质.北部湾风生环流的数值计算[J].热带海洋,1983,2(3):207-215
    [8]国家科委海洋组海洋综合调查办公室编.“中越合作北部湾海洋综合调查报告”[M],1964
    [9]国家科委海洋组海洋综合调查办公室编.北部湾水文气象参考资料[M],1966
    [10]黄志达,胡建宇,孙振宇,朱佳,陈照章.北部湾东部海区2007年春季航次温度、盐度和密度的分布特征[M].北部湾海洋科学研究论文集(第2辑),海洋出版社,2008:96-98
    [11]李树华.北部湾潮汐潮流数值计算[J].海洋通报,1985,4(6):6-9
    [12]李树华.北部湾潮汐余流的初步研究[J].广西科学院报,1986a,2(1):22-29
    [13]李树华.北部湾潮波的数值模拟试验[J].热带海洋,1986b,5(3):7-14
    [14]李树华.北部湾欧拉余流的初步研究[J].海洋湖沼通报,1987,3:8-14
    [15]刘爱菊和张延廷.北部湾潮汐数值预报及分析[J].中国海洋与湖沼,1997,28(6):640-645
    [16]刘凤树和于天常.北部湾环流的初步探讨[J].海洋湖沼通报,1980,1:9-15
    [17]罗义勇和孙文心.北部湾风暴潮的数值模拟-三维流速分解模型的一个应用[J].青岛海洋大学学报,1995,25(1):7-16
    [18]全国海洋综合调查图集[M].第九册,1963
    [19]沈育疆,胡定明,梅丽明,何国平.南海潮汐数值计算[J].海洋湖沼通报,1985,1:1-11
    [20]侍茂崇,陈春华,黄方,叶安乐.琼州海峡冬末春初潮余流场特征[J].海洋学报,1998,20(1):1-10
    [21]孙洪亮,黄卫民,赵俊生.北部湾潮致、风生、和热盐余流的三维数值计算[J].海洋与湖沼,2001,32(5):561-568
    [22]谭光华.北部湾海区水文结构及其特征的初步分析[J].海洋湖沼通报,1987,(4):7-15
    [23]王道儒.北部湾冷水团的动力-热力机制研究[D].中国海洋大学博士论文,1998
    [24]王建丰,王毅,孙双文.北部湾东南春季实测潮流、余流特征[M].北部湾海洋科学研究论文集(第2辑),海洋出版社:53
    [25]吴自库,王丽娅,吕咸青,田纪伟,陈介中.北部湾潮汐的伴随同化数值模拟[J].海洋学报,2003,25(2):128-135
    [26]夏华永,李树华,侍茂崇.北部湾三维风生流及密度流模拟[J].海洋学报,2001,23(6):11-23
    [27]徐锡祯,邱章,陈惠昌.南海水平环流的概述[M].中国海洋湖沼学会水文气象学会学术会议论文集,1982
    [28]徐振华.北部湾潮汐潮流的数值模拟[D].中国海洋大学,硕士学位论文,2006
    [29]颜廷壮.中国沿岸上升流成因类型的初步分析[J].海洋通报,1991,10(6):1-6
    [30]杨士瑛,鲍献文,陈长胜,陈菲.夏季粤西沿岸流特征及其机制分析[J].海洋学报,2003,25(6):1-8
    [31]杨士瑛,陈波,李培良.用温盐资料分析夏季南海水通过琼州海峡进入北部湾的特征[J].海洋湖沼通报,2006(1):1-7
    [32]殷忠斌,陈明剑,李树华,郭芝兰.北部湾潮汐数值计算参数的试验[J].广西科学,1996,3(2):71-74
    [33]俞慕耕.南海潮汐特征的初步探讨[J].海洋学报,1984,6(3):293-300
    [34]俞慕耕和刘金芳.南海环流系统与环流形势[J].海洋预报,1993,10(2):13-17
    [35]袁叔尧和邓九仔.北部湾环流数值研究[J].南海研究与开发,1999,2:41-46
    [36]张国荣,潘伟然,兰健,林毅辉,马腾,骆智斌,王建丰.北部湾东部和北部近海冬、春季水体输运特征[M].北部湾海洋科学研究论文集(第2辑),海洋出版社:64-76
    [37]赵昌,吕新刚,乔方利.北部湾潮波数值研究[J].海洋学报,2010,32(4):1-11
    [38]钟欢良.北部湾北部春季环流分析[J].海洋通报,1995,14(1):81-85.
    [39]中越北部湾海洋综合调查队.“中越北部湾海洋综合调查报告”[M].1965
    [40]俎婷婷.北部湾环流及其机制的分析[D].中国海洋大学硕士论文,2005
    [41] Bayler, E. J., and Z. Liu. Basin-scale wind-forced dynamics of the seasonal southern SouthChina Sea gyre [J]. J. Geophys. Res.,2008,113, C07014, doi:10.1029/2007JC04519
    [42] Blumberg A. F., and G. L. Mellor. A description of a three-dimensional coastal oceancirculation model, in Three-Dimensional Coastal Ocean Models [M]. Coastal EstuarineStud., Vol.4, edited by Heaps N, AGU, Washington, D. C,1987:1-16
    [43] Chaigneau, A., A. Gizolme, and C. Grados. Mesoscale eddies off Peru in altimeter records:Identification algorithms and eddy spatiotemporal patterns [J]. Prog. Oceanogr.,2008,79(2–4),106–119, doi:10.1016/j.pocean.2008.10.013.
    [44] Chelton, D. B., M. G. Schlax, and R. M. Samelson. Global observations of nonlinearmesoscale eddies [J]. Prog. in Oceanogr.,2011,91,167-216
    [45] Chen C. L., P. L. Li, M. C. Shi, J. C. Zuo, M. X. Chen, and H. P. Sun. Numerical study ofthe tides and residual currents in the Qiongzhou Strait [J]. Chin. J. Oceanol. Limnol.,2009,27(4):931-942
    [46] Chen, G. X., Y. J. Hou, and X. Q. Chu. Mesoscale eddies in the South China Sea: meanproperties, spatio-temporal variability and impact on thermohaline structure [J]. J. Geophys.Res.,2011,116, C06018, doi:10.1029/2010JC006716
    [47] Chen, G. X., J. P. Gan, Q. Xie, X. Q. Chu, D. X. Wang, and Y. J. Hou. Eddy Heat and SaltTransports in the South China Sea and Their Seasonal Modulations [J]. J. Geophys. Res.,2012,117, C5, doi:10.1029/2011JC007724
    [48] Chow C. H., and Q. Y. Liu. Eddy effects on sea surface temperature and sea surface wind inthe continental slope region of the northern South China Sea [J]. Geophys. Res. Lett.,2012,39: L02601, doi:10.1029/2011GL050230
    [49] Chu P. C., Y. C. Chen, and S. H. Lu. Wind-driven South China Sea deep basinwarm-core/cool-core eddies [J]. J. Oceanogr.,1998,54(4):347–360
    [50] Crosby D. S., L. C. Breaker, and W. H. Gemmill. A proposed definition for vectorcorrelation in geophysics: Theory and applications [J]. J. Atmos. Oceanic. Technol.,1993,10:355-367
    [51] Dale W. L.. Wind and drift current in the South China Sea [J]. The Malayan Journal ofTropical Geography,1956,8:1–31
    [52] Dong C., and Coauthors. An oceanic cyclonic eddy on the lee side of Lanai Island, Hawai’I[J]. J. Geophys. Res.,2009,114, C10008, doi:10.1029/2009JC005346.
    [53] Durski, S. M., S. M.Glenn, and D. B. Haidvogel. Vertical mixing scheme in the coastalocean: Comparison of the level2.5Mellor-Yamada scheme with an enhanced version of theK-Profile parameterization [J]. J. Geophys. Res.,2004,109: C01015,doi:10.1029/2002JC001702
    [54] Fang G. H.. Tide and tidal current charts for the marginal seas adjacent to China [J]. Chin. J.Oceanol. Limnol.,1986,4(1):1-16
    [55] Fang, G. H., W. D. Fang, Y. Fang, and K.Wang. A survey of studies on the South China Seaupper ocean circulation [J]. Acta Oceanogr. Taiwan.,1998,37:1–16
    [56] Ferrari R., and C. Wunsch. The distribution of eddy kinetic and potential energies in theglobal ocean [J]. Tellus,2010,62A,92–108
    [57] Flather R. A.. A tidal model of the northwest European continental shelf [J]. Memories de laSociete Royale des Sciences de Liege,1976,6(10):141–164
    [58] Gan J. P., H. Li, E. N. Curchitser, and D. B. Haidvogel. Modeling South China Seacirculation: Response to seasonal forcing regimes [J]. J. Geophys. Res.,2006,111: C06034,doi:10.1029/2005JC003298
    [59] Gan, J. P., and T. D. Qu. Coastal jet separation and associated flow variability in thesouthwest South China Sea [J]. Deep Sea Res. Part I,2008,55,1–19,doi:10.1016/j.dsr.2007.09.008
    [60] Gan J. P., L. Li, D. Wang, and X. Guo. Interaction of a river plume with coastal upwellingin the northeastern South China Sea [J]. Cont. Shelf. Res.,2009,29(4):728-740,doi:10.1016/j.csr.2008.12.002
    [61] Harrison, D. E., and W. R. Holland. Regional eddy vorticity transport and the equilibriumvorticity budgets of a numerical model ocean circulation [J].1981, J. Phys. Oceanogr.,11,190–208.
    [62] Henson S. A., and A. C. Thomas. A census of oceanic anticyclonic eddies in the Gulf ofAlaska [J]. Deep Sea Res. Part I,2008,55,163–176, doi:10.1016/j.dsr.2007.11.005
    [63] Hu J. Y., H. Kawamura, H. S. Hong, and Y. Q. Qi. A Review on the Currents in the SouthChina Sea: Seasonal Circulation, South China Sea Warm Current and Kuroshio Intrusion [J].J Oceanogr.,2000,56:607-624
    [64] Hu J. Y., H. Kawamura, and D. L. Tang. Tidal front around the Hainan Island, northwest ofthe South China Sea [J]. J. Geophys. Res.,2003,108:3342, doi:10.1029/2003JC001883
    [65] Hu, J. Y., J. P. Gan, Z. Y. Sun, J. Zhu, and M. H. Dai. Observed three-dimensional structureof a cold eddy in the southwestern South China Sea [J]. J. Geophys. Res.,2011,116(C05016),1-11, doi:10.1029/2010JC006810
    [66] Hwang, C., and S.-A. Chen. Circulations and eddies over the South China Sea derived fromTOPEX/Poseidon altimetry [J]. J. Geophys. Res.,2000,105(C10),23,943-23,965, doi:10.1029/2000JC900092
    [67] Isern-Fontanet, J., E. Garcia-Ladona, and J. Font. Identification of marine eddies fromaltimetric maps [J]. J. Atmos. OceanicTechnol.,2003,20,772–778.
    [68] Large, W. G. and S. Pond. Open ocean momentum flux measurements in moderate to strongwinds [J].1981, J. Phys. Oceanogr.,11,324-336
    [69] Li J. X., R. Zhang, and B. G. Jin. Eddy characteristics in the northern South China Sea asinferred from the Lagrangian drifter data [J]. Ocean Sci.,2011,7,661-669, doi:10.5194/os-7-661-2011
    [70] Li J. X., G. H. Wang, S. P. Xie, R. Zhang, and Z. Sun. A winter warm pool southwest ofHainan Island due to the orographic wind wake [J]. J. Geophys. Res.,2012,117: C08036,doi:10.10129/2012JC008189
    [71] Li L., W. D. Nowlin., and J. L. Su. Anticyclonic rings from the Kuroshio in the South ChinaSea [J]. Deep-Sea Res. I,1998,45:1469–1482
    [72] Liu, Q. Y., A. Kaneko, and J. L. Su. Recent progress in studies of the South China Seacirculation [J]. J. Oceanogr.,2008,64(5),753-762, doi:10.1007/s10872-008-0063-8
    [73] Lu X. G., F. L. Qiao, G. S. Wang, C. S. Xia, and Y. L. Yuan. Upwelling off the west coastof Hainan Island in summer: Its detection and mechanisms [J]. Geophys. Res. Lett.,2008,35: L02604, doi:10.1029/2007GL032440
    [74] Manh D. V., and T. Yanagi. A study on the residual flow in the Gulf of Tonkin [J]. JOceanogr.,2000,56:59-68
    [75] Mellor G. L., and T. Yamada T. Development of a turbulence closure model for geophysicalfluid problems [J]. Rev. Geophys. Space. Phys.,1982,20:851-875
    [76] Nan, F., H. J. Xue, P. Xiu, F. Chai, M. C. Shi, and P. F. Guo. Oceanic eddy formation andpropagation southwest of Taiwan [J]. J. Geophys. Res.,2011,116, C12045,doi:10.1029/2011JC007386.
    [77] Nencioli, F., C. M. Dong, T. Dickey, L. Washburn, and J. McWilliams. A vectorgeometry‐based eddy detection algorithm and its application to a high‐resolutionnumerical model product and high‐frequency radar surface velocities in the SouthernCalifornia Bight [J]. J. Atmos. Oceanic Technol.,2010,27(3),564–579,doi:10.1175/2009JTECHO725.1
    [78] Okubo, A.. Horizontal dispersion of floatable particles in the vicinity of velocity singularitysuch as convergences [J]. Deep Sea Res.,1970,17,445-454.
    [79] Rhines, P. B., and W. R. Holland. A theoretical discussion of eddy-driven mean flows [J].Dyn. Atmos. Oceans,1979,3,289-325
    [80] Rhines, P. B., and W. R. Young. A theory of wind-driven circulation. I. mid-ocean gyres [J].J. Mar. Res.,1982,40,559-595
    [81] Scott, R. B., and Y. Xu. An update on the wind power input to the surface geostrophic flowof the world ocean [J]. Deep Sea Res.,2009,56,295–304.
    [82] Shaw, P. T., and S. Y. Chao. Surface circulation in the South China Sea [J]. Deep-Sea Res. I,1994,40(11/12),1663–1683
    [83] Shaw, P. T., S. Y. Chao, and L. Fu. Sea surface height variations in the South China Seafrom satellite altimetery [J]. Oceanol. Acta,1999,22,1–17
    [84] Shi M. C., C. S. Chen, Q. Xu, H. Lin, G. Liu, and H. Wang. The role of Qiongzhou Strait inthe seasonal variation of the South China Sea circulation [J]. J. Phys. Oceanogr.,2002,32:103–121, doi:10.1175/1520-0485(2002)032<0103:TROQSI>2.0.CO;2
    [85] Sun H. L., and W. M. Huang. Three-dimensional numerical simulation for tide and tidalcurrent in the Beibu Gulf [J]. Acta Oceanol. Sin.,2001,20(1):29-38
    [86] Van Maren D. S., P. Hoekstra. Seasonal variation of hydrodynamics and sediment dynamicsin a shallow subtropical estuary: the Ba Lat River, Vietnam. Estuar [J]. Coast Shelf S.,2004,60:529-540
    [87] Von J. S., H. Sasaki, and J. Marotzke. Wind-Generated power input to the deep ocean: anestimate using a1/10°general circulation model [J]. J. Phys. Oceanogr.,2007,37:657–672,doi:10.1175/JPO3001.1
    [88] Wang, D. X., H. Z. Xu, J. Lin, and J. Y. Hu. Anticyclonic eddies in the northeastern SouthChina Sea during winter2003/2004[J]. J. Oceano.,2008,64:925-935
    [89] Wang, G. H., J. L. Su, and P. C. Chu. Mesoscale eddies in the South China Sea observedwith altimeter data [J]. Geophys. Res. Lett.,2003,30(21),2121, doi:10.1029/2003GL018532
    [90] Wang, G. H., D. Chen, and J. L. Su. Generation and life circle of the dipole in the SouthChina Sea summer circulation [J]. J. Geophys. Res.,2006,111: C06002,doi:10.1029/2005JC003314
    [91] Wang, G. H., D. Chen, and J. L. Su. Winter eddy genesis in the eastern South China Sea dueto orographic wind jets [J]. J. Phys. Oceanogr.,2008,38:726–732,doi:10.1175/2007JPO3868.1
    [92] Wang, W., and R. X. Huang. Wind energy input to the Ekman layer [J]. J. Phys. Oceanogr.,2004,34,1267–1275
    [93] Weiss, J.. The dynamics of enstrophy transfer in two dimensional hydrodynamics [D].Physica D,1991,48,273-294, doi:10.1016/0167-2789(91)90088-Q.
    [94] Wong, L. A., J. C. Chen, H. J. Xue, L. X. Dong, J. L. Su, and G. Heinke. A model study ofthe circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters:1.Simulations and comparison with observations [J]. J. Geophys. Res.,2003,108, C5,3156,doi:10.1029/2002JC001451
    [95] Wu C. L., and T. L. Chiang. Mesoscale eddies in the northern South China Sea [J].Deep-Sea Res. II,2007,54:1575–1588
    [96] Wu C. R., P. T. Shaw, and S. Y. Chao. Seasonal and interannual variations in the velocityfield of the South China Sea [J]. J. Oceanogr.,1998,54(4):361–372
    [97] Wu D. X., Y. Wang, X. P. Lin, and J. Y. Yang. On the mechanism of the cycloniccirculation in Gulf of Tonkin in the summer [J]. J. Geophys. Res.,2008,113, C09029, doi:10.1029/2007JC004208
    [98] Wunsch, C.. The work done by the wind on the oceanic general circulation [J]. J. Phys.Oceanogr.,1998,28,2332-2340
    [99] Wyrtki, K.. Scientific results of marine investigations of the South China Sea and Gulf ofThailand1959-1961[R]. Naga Report2, University of California, San Diego,1961:164-170
    [100] Xia H. Y., S. H. Li, and M. C. Shi. Three-D numerical simulation of wind-driven currentand density current in the Beibu Gulf [J]. Acta Oceanol. Sin,1997,20(4):455-472
    [101] Xiu, P., F. Chai, L. Shi, H. J. Xue, and Y. Chao. A census of eddy activities in the SouthChina Sea during1993–2007[J]. J. Geophys. Res.,2010,115: C03012. doi:10.1029/2009JC005657
    [102] Xiu, P., and F. Chai. Modeled biogeochemical responses to mesoscale eddies in the SouthChina Sea [J]. J. Geophys. Res.,2011,116: C10006. doi:10.1029/2010JC006800
    [103] Xue H. J., and Chai F.. Coupled Physical-Biological Model for the Pearl River Estuary: APhosphate Limited Subtropical Ecosystem [M]. In proceedings of the7th InternationalConference on Estuarine and Coastal Modeling, edited by M. L. Spaulding, ASCE,2002:913-928
    [104] Xue, H. J., F. Chai, N. R. Pettigrew, D. Y. Xu, M. C. Shi, and J. P. Xu. Kuroshio intrusionand the circulation in the South China Sea [J]. J. Geophys. Res.,2004,109: C02017, doi:10.1029/2002JC001724
    [105] Yang H. J., Q. Y. Liu, Z. Y. Liu, D. X. Wang, and X. B. Liu. A general circulation modelstudy of the dynamics of the upper ocean circulation of the South China Sea [J]. J. Geophys.Res.,2002,107: C7,3085. doi:10.1029/2001JC001084
    [106] Ye A. L., and I. S. Robinson. Tidal dynamics in the South China Sea [J]. Geophys. J. R. askSOC.,1983,72:691-707
    [107] Yim B. Y., Y. Noh, B. Qiu, S. H. You, and J. H. Yoon. The Vertical Structure of Eddy HeatTransport Simulated by an Eddy-Resolving OGCM [J]. J. Phys. Oceanogr.,2010,40:340~353
    [108] Young, W. R., and P. B. Rhines. A theory of wind-driven circulation II. Gyres with westernboundary layers [J]. J. Mar. Res.,1982,40(3),849-872
    [109] Yu L, X. Jin, and R. A. Weller. Multidecade Global Flux Datasets from the ObjectivelyAnalyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, oceanevaporation, and related surface meteorological variables [R]. Woods Hole OceanographicInstitution, OAFlux Project Technical Report. OA-2008-01,2008,64pp Woods HoleMassachusetts
    [110] Yuan D. L., W. Q. Han, and D. X. Hu. Surface Kuroshio path in the Luzon Strait areaderived from satellite remote sensing data [J]. J. Geophys. Res.,2006, Vol.111, C11007.doi:10.1029/2005JC003412
    [111] Zhai, X. M., and R. J. Greatbatch. Wind work in a model of the northwest Atlantic Ocean [J].Geophys. Res. Lett.,2007,34, L04606, doi:10.1029/2006GL028907
    [112] Zhai, X. M., H. L. Johnson, D. P. Marshall, and C. Wunsch. On the wind power input to theocean general circulation [J]. A. M. S.,2012:1-27
    [113] Zhang, H.-M., J.J. Bates, and R.W. Reynolds. Assessment of composite global sampling:Sea surface wind speed [J]. Geophys. Res. Lett.,2006,33, L17714,doi:10.1029/2006GL027086
    [114] Zhuang W., Y. Du, D. X. Wang, Q. Xie and S. P. Xie. Pathways of the mesoscale variabilityin the South China Sea [J]. Chin. J. Oceanol. Limnol.,2010,28(5):1055-1067
    [115] Zu T. T., J. P. Gan, S. Y. Erofeeva. Numerical study of the tide and tidal dynamics in theSouth China Sea [J]. Deep-Sea Res. I,2008,55:137-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700