用户名: 密码: 验证码:
电磁场在铜连铸中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕电磁场在铜坯两种主要连铸工艺,即水平连铸和垂直半连铸中的应用开展研究,包括板带坯水平连铸的电磁搅拌,电磁复合作用下的金属凝固和连铸,以及高性能无氧铜的软接触电磁连铸,期望通过实验室模拟、现场试验和工业实践,开发新技术,推动电磁技术在金属铜坯连铸中的推广和应用。
     本文针对超薄板坯宽厚比大、电磁搅拌时感应效率低下,铜制结晶器对交变电磁场屏蔽强烈,水冷感应线圈在生产中易产生安全事故,以及交变电磁场对生产现场控制设备有干扰等问题,提出了施加静磁场和与其正交的直流电,形成定向电磁搅拌的新模式,设计了工业试验和试生产用的铜合金超薄板坯(板带坯)水平连铸电磁搅拌结晶器,对其搅拌特点和规律进行了深入研究,掌握了基本规律,进而开展了Cu-Fe-P系KFC合金和Cu-Ni-Zn系锌白铜合金的板带坯水平连铸电磁搅拌的工业试验和试生产。结果显示,在电磁搅拌作用下,铜合金超薄板坯(板带坯)水平连铸的凝固界面形状发生很大变化,搅拌对流对凝固前沿的溶质富集产生强烈的抑制作用,使板带中的Fe元素偏析现象大幅度下降(当输入电流达到800A时偏析近零);同时,电磁搅拌使凝固组织细化,中心层出现明显等轴晶带并使疏松等缺陷消失,而铸坯边缘区域的柱状晶组织则变细且生长方向趋向铜液来流方向(发生偏移),柱状晶一次主轴之间间距随搅拌电流增高而减小,铸坯的抗拉强度比普通连铸时提高39%。
     本文开发了采用稳恒强磁场与工频小电流复合作用产生电磁振荡的方法,在实验时中进行了较高熔点的纯铝及Al-4.5%Cu合金的电磁振荡下的凝固实验,发现电磁振荡技术可以明显细化金属的凝固组织。对于纯铝,同一交变电流强度(10A)下,当磁感应强度为6T时,试样细化程度存在峰值,晶粒数最多,但是在纵截面上存在明显的细化衰减现象。6T磁感应强度和5A交变电流时两者的复合作用的细化晶粒作用最明显。对于Al-4.5%Cu合金,单一稳恒磁场或单一的交变电流均不能改变合金的树枝晶形貌。只有当磁场和电流复合时枝晶才有可能被打碎,复合作用小时合金凝固组织为等轴状和颗粒状混合的凝固组织,复合作用大时凝固组织以颗粒状为主。在10T磁感应强度下,随着交变电流的增加液体波动加剧,枝晶被打碎的程度增加,直至完全转变为颗粒状组织。揭示晶粒细化的原因主要是电磁复合作用造成的波动力对初始晶核的冲刷,以及电磁压力折断枝晶臂引起的晶核增值,而并非通常认为的空化效应。工业试生产证明了在实际生产中利用电磁复合作用细化晶粒改善铸坯质量的可行性。
     本文在理论计算和实验室模拟实验的基础上,设计出铜坯连铸用软接触电磁结晶器,并且在无氧铜的生产中得到成功应用,在此基础上提出“电磁(搅拌)脱氧-电磁连铸”的无氧铜生产方法,实现了国内铜加工企业现有装备条件下的大尺度、高性能无氧铜材料的非真空、低成本、连续性生产。该方法生产的无氧铜材的铜含量≥99.97%,氧含量在5-10ppm,超过国家TU1标准(部分达到TU0标准),完全满足国际上电真空领域用高性能无氧铜的性能指标,并且物理、力学性能均优于同类产品,其中,铸坯密度8.92~8.94g/cm3(接近铜的理论密度8.96g/cm3),屈服强度51MPa,抗拉强度155MPa,延展率45%,断面收缩率70%;材料电阻率0.01712?mm2/m(国际退火无氧铜材料的标准电阻率为0.01742?mm2/m,国内的行业标准为0.01777Ωmm2/m),电导率为104%IACS,比国际上同类材料的电导率标准提高1.75%,比国内行业标准提高3.80%;同时,在高温真空条件下,材料的全排气量为5.6mPa·m3/g,仅为日本采用常规方法所生产的同类产品的40%。
     综合上述研究成果,本文在超薄板坯(板带坯)水平连铸电磁搅拌和电磁振荡结晶器及连铸工艺等方面开辟了新的思路和有实用意义的工业试验,为今后的发展和新技术开发建立了基础。在有色金属连铸用软接触电磁结晶器设计与实用化,高性能无氧铜材料制备的电磁(搅拌)脱氧-电磁连铸新方法等方面实现了技术创新,形成了大尺度、高性能无氧铜材料的低成本和规模化生产,其产品在应用领域和物理、力学性能等方面均达到国际前沿标准,
In this paper, we focus on the study of application of electromagnetic field in the main two copper continuous casting technologies: horizontal continuous casting and vertical semi-continuous casting, including the electromagnetic stirring in thin slab horizontal continuous casting, electromagnetic vibration in liquid metal solidification and continuous casting, and soft-contact electromagnetic continuous casting of high quality oxygen-free copper We hope these experiment investigations in laboratory and factory could brought out new techniques and promote the industry application of electromagnetic technology in copper continuous casting.
     Because of the disadvantages, including large width-height ratio of super thin slab, the weaken stirring effect of electromagnetic induct in EMS, the strong shielding effects of copper mould on the alternated electromagnetic field, the unsafety of brass water-cooling induct coil using in practice and the interference effects of alternated electromagnetic field on the control equipment, a kind of new stirring mode under the condition of static magnetic field coupled with orthogonal directional current was brought forward. EMS mould used in copper thin slab horizontal continuous casting for industry experiments and production was designed out and its stirring characteristics were studied deeply. Then, it was applied to Cu-Fe-P series KFC and Cu-Zn-Ni alloy horizontal continuous casting successfully. It showed that the solidification interface of copper alloy thin slab changed obviously after EMS process, the solute accumulation in solid liquid interface was repressed strongly via the electromagnetic stirring, and the segregation of Fe was reduced greatly (achieved to zero when stirring current is 800A). At the same time the solidification structure of the billet was refined, equiaxed grain zone appeared in the mid-zone and the porous shrinkage disappeared. While the column grain became thinner at the edge of the billet, its growth direction changed towards to the metal flow. The primary dendrite spacing reduced with the increasing of stirring current, and the billet’s tensile strength enhanced 39% after EMS process.
     In lab, alloys with higher melting point such as pure aluminum and Al-4.5%Cu alloy were solidified in vibrated condition which generated by static high magnetic field with 50 Hz alternating current orthogonally. The results showed that the solidification structures were refined obviously by the electromagnetic vibration. For pure aluminum, the sample has the most grain number per area when the magnetic flux strength was 6T and the alternative current strength keeping at 10A, but on vertical section, the refine effect attenuated from top to bottom. When the magnetic flux strength was 6T and alternative current strength was 5A, the sample had the most refined solidification structure. For Al-4.5Cu alloy, the shape of dendritic crystal would not be changed by only imposing static magnetic field or alternative current singly. While it would be changed via a static magnetic field interacted with alternating current, which called electromagnetic vibration. When this multiple action was weak, the solidification structure was equiaxed crystal mixed with granular grain. Once this action was strong, the main structures were granular. When the magnetic flux strength was 10T, the liquid metal’fluctuation aggravated with the raise of alternating current strength, more and more dendritic crystal were broken up and finally changed to granular grain entirely. We found that the main cause of crystal refinement were the crystal nucleus multiplication which generated by the electromagnetic vibration and the broken up of dendritic arm by electromagnetic pressure during the dendritic crystal growth, but not the cavitations effects in general. The industry experiment using H65 brass testified the feasibility of electromagnetic vibration, which showed the refine grain and improved billet’s quality.
     Based on the theoretical calculation and simulation experiment in laboratory, a kind of soft-contact electromagnetic mould used in copper alloy continuous casting is designed and applied successfully in the production of copper and magnesium alloy. Furthermore, a new technique acquiring oxygen-free copper called“electromagnetic (stirring) deoxidization - electromagnetic continuous casting”is proposed. By using this technique, the copper with the characters of high quality, large size and oxygen-free could be realized in the domestic enterprises under the condition of non-vacuum, low cost and continuous production. The copper content exceeds 99.97% and oxygen content lies between 5 and 10 ppm, which meet the TU1 standard, even the TU0 standard and reach the copper standard used in international vacuum electron field. The physics and mechanical property are better than that in similar products, its density reach to 8.92-8.94 g/cm3 (the copper density in theory is 8.96 g/cm3) , the mean yield strength is 51 MPa, the tensile strength is 155 MPa, the elongation percentage is 45 %, reduction of cross section area is 70 %, resistance is 0.01712 ?mm2/m(the value of annealed oxygen-free copper standard international is 0.01742Ωmm2/m), conductivity exceeds 104 % IACS which enhanced 1.75% above that in the similar production world wide,the full exhaust gas content in high temperature and vacuum is 5.6 mPa·m3/g, just about 40 % of the value in traditional Japanese production.
     As a sum, the research on electromagnetic stirring mould used in thin slab horizontal continuous casting, electromagnetic vibration mould and new continuous casting technique broken a new path and have practical values and establish the basis for the future development, the design and utilization of copper electromagnetic soft-contact continuous casting mould , new technique acquiring oxygen-free copper called“electromagnetic (stirring) deoxidization - electromagnetic continuous casting”were technique innovations, high quality oxygen-free copper billet with large size could produced in industry with low cost, and high physical and mechanical property.
引文
1.王先冲。电磁场理论及应用[M],科学出版社,1991:5。
    2.张伟强。金属电磁凝固原理与技术[M],北京:冶金工业出版社,2004:8。
    3.韩至诚。电磁冶金学[M],北京:冶金工业出版社,2001。
    4.代威,傅正义,卢北平,张丰收。电磁场在材料科学中的应用[J],国外建材科技,2004;25(3):7-10。
    5.舍克里(美)。冶金中的流体流动现象[M],北京:冶金工业出版社,1985:175-201。
    6.韩至成(译)。电磁流体力学在冶金生产中的应用(Ⅰ) [J],国外钢铁,1987;5:27-39。
    7.郑军译。连铸电磁搅拌[J],武钢技术,1997;35(10):33-38。
    8. Moreau R. Magnetohydrodynamics [M], Kluwer Acdemic Publisher, 1990.
    9. Moffat H. K. Metallurgical Application of Magnetohydrodynamics [C].London: the Metal Society, 1984. Proceedings of a symposium of the International Union of Theoretical and Applied Mechanics, Trinity College, Cambridge, UK, 1982.
    10.浅井滋生。材料电磁アロセシソケの动向[J],鉄と鋼。1989;75(1):32-41。
    11. Asai Shigeo. Birth and Recent Activities of Electromagnetic Processing of Materials [J], ISIJ International, 1989; 29(12): 981-992。
    12.殷瑞钰。中国加快发展连铸的途径[J],钢铁, 1998;33(3):72-76。
    13.夏晓东,史华明等。电磁搅拌技术在连铸的应用[J],宝钢技术, 1999;(3):9-13。
    14.杨海西,龚涛,雷作胜,邓康,任忠鸣。铜电磁连铸的数值计算[J],特种铸造及有色合金, 2000;(5):51-52。
    15. Cao Zhiqiang, Jia Fei, Zhang Xingguo, Hao Hai, Jin Junze. Microstructures and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluminum alloys [J], Materials Science and Engineering A,2002; 327: 133-137。
    16. Dmitry sediako, Olga sediako and Kuan ju lin,Some aspects of thermal analysis and technology upgrading in steel continuous casting[C],Canadian Metallurgical Quarterly, 1999-2000; 38(5): 377-385。
    17.陈辉明。智能感应加热电源并联投切系统[D],[硕士论文],杭州:浙江大学,2004。
    18.俞勇祥。感应加热技术的应用与发展[J],今日科技,1999;9:4-5。
    19.鲁俊生,田志川,孙玉株。感应加热的原理与应用[J],通化师院学报(自然科学),1996;4:29-30。
    20.孙宁,吕德隆。感应加热技术的应用[J],机械工人(热加工),2004;(6):21-23。
    21.李桂变,王德虎。感应加热新技术的应用及探讨[J],新技术新工艺(热加工工艺技术),2006;1:105-107。
    22.李凤忠。冷坩埚真空感应半悬浮熔炼技术及其工艺实践[J],有色金属(冶炼部分), 1994; 4:32-35。
    23.佐佐健介,浅井滋生。Industrial Heating [J], 1991;3:43。
    24. Schinppereit G H, Leatherman A F, Evers D- JOM[J], 1961; 140~143。
    25. Hideaki Tadano, Michiru Fujita, Tatsuo Take. Levitational melting of several kilograms of metal with a cold crucible [J], IEEE Transactionson Magnetics, 1994; 30(6): 4740- 4742.
    26. L.M. Holmes. Stability of Levitation [J], J- Appl- Phys, 1978; 49 (6): 3102-3109.
    27.邓康。水冷坩埚悬浮熔炼方法及其电热性能分析[J],上海工业大学学报,1994;15(1): 87-94。
    28.董华峰,任忠鸣。软接触结晶器电磁连铸中初始凝固基础研究[J],上海大学学报(自然科学版), 1997;3S(1):179~182。
    29. Makino H, Kuwabara M, Asai Shigeo- Process Analysis of Non-contact Continuous Casting of Materials Using Cold Crucible [J], ISIJ Int., 1996, 36(4): 380-387.
    30. Mark Hull et al. Reactive Titanium Powders Manufacture [J], Powder Metallurgy, 1990; 33(3): 178-179。
    31. Schippereit G H. Cold-crucible Induction Melting of Reactive Metals [J], J. Metals, 1961; 13(2): 140-143。
    32. Chronister D J, Scott S W, Stickle D R. Induction Skull Melting of Titanium and Other Reactive Alloys [J], Metals, 1986; 9: 51-54。
    33. Okness E C, Wroughton D M, Comenetz G, et al. Electromagnetic Levitation of Solid and Molten Metals[J], Appl. Phys, 1952; 23: 545-552。
    34. Wang Nan, Xie Wenjun, Wei Bingbo. Physical Characteristics of Electro- magnetic Levitation Processing [J], ACTA PHYSICA SINICA (Overseas Edition), 1999; 8(7): 504-513。
    35. Fautrelle Y R. Analytical and Numerical Aspects of the Electromagnetic Stirring Induced byAlternating Magnetic Fields [J], Fluid Mech, 1981; 108: 405-430。
    36.毛斌。钢水电磁搅拌的流体力学基础[J],1993全国连续铸钢学术会议论文集,中国金属学会连铸分会,1983;。
    37.倪满森。我国连铸技术的发展与进步[J],钢铁,1987;22(12):57-62。
    38. M. Komastu. Effect of electromagnetic stirring on solidification phenomena of steels [J], steelmaking conference, 1983; 66.
    39. M.R. Bridge et al. Structural effects and band segregate formation during the electromagnetic stirring of strand cast steel [J], Metallurgical Transaction B, 1984; (15B): 581-589。
    40. Vives C. Elaboration of semisolid alloys by means of new electromagnetic recasting processes [J], Metallurgical Transaction B, 1992; 23B:。
    41. Vives C, Perry C. Effects of magnetically damped convection during the controlled solidification of metals and alloys [J], Int.J.Heat Mass Transfer, 1987; 30: 479-496.
    42. Uhlmann D R, Seward T P, Chalmers B. Trans.metall.soc.AIME, 1996; 236:527-531.
    43. Vives C, Perry C. Effects of electromagnetic stirring during the controlled solidification of tin [J], Int.J.Heat Mass Transfer, 1986; 29: 21-33.
    44. Meyer J.L., Durand F, Ricou R, Vives C. Steady Flow of Liquid Aluminum in a Rectangular-Vertical Ingot Mold, Thermally or Electromagnetically Activated [J], Int.J. Metall. Trans. B., 1984; 15B: 471-478.
    45. Szekely J, Nakanishi K. Stirring and its Effects on AluminumDeoxidation in the ASEA-SKF Furnace:Part II. Mathematical Representation of theTurbulent Flow Field and of Tracer Dispersion [J]. Metall.Trans.B, 1975: 6B: 245-256.
    46. Gau C, Viskanta R. Melting and solidification of a metal system in a rectangular cavity [J]. Int.J. Heat Mass Transfer, 1984; 27: 113-123.
    47. Flemings M C, Adams C M, Hucke E E, Taylor H F. Trans.AFS, 1958; 64: 636-641.
    48. Roth W, Schippers M Z. Metalk, 1956; 47: 78-85.
    49. Ichikawa R, Taniguchi H, Asai O.Z. Metalk, 1980; 71: 260-263.
    50. Miksch E S, Trans.metall.soc.AIME, 1969; 245: 2069-2072.
    51.高桥忠义,市川冽,工藤昌行,岛原皓一。铁と钢,1975;61:2198-2213.
    52. Murakami K, Fujiyama T, Koike A, Okamoto T. Influence of melt flow on the growth directions of columnar grains and columnar dendrites [J], Acta.Metall.,1983; 31: 1425-1432.
    53. Murakami K, Aihara H, Okamoto T. Growth direction of columnar crystals solidified in flowing melt [J], Acta.Metall, 1984; 32: 933-939.
    54. Okamoto T, Kistake K, Bessho I.J. Dendritic structure in unidirectionally solidified cyclohexanol Dendritic structure in unidirectionally solidified aluminum, tin, and zinc base binary alloys [J] , Cryst.Growth, 1975; 29: 131-136.
    55.贾光霖,宫克强,刘祥,王玉玮。电磁搅拌对铝合金凝固过程的影响[J],东北工学院学报,1988;(3):337-341。
    56. Garabedian H, Strickland-constable R F.J. Collision breeding of ice crystals [J]. Cryst.Growth, 1974; 22(3): 188-192.
    57. Garabedian H, Strickland-constable R F.J. Collision breeding of crystal nuclei: Sodium chlorate [J], Cryst.Growth, 1972; 13(14): 506-509.
    58.胡汉起,郑日琪。电磁搅拌对低硫钢枝晶组织及机械性能的影响[J],金属学报,1990;26A: 313-315。
    59. Jackson K A, Hunt J D, Uhlmann D R, Seward T PⅢ. Trans.metall.soc. AIME, 1966; 236: 149 -158.
    60. Kattamis T Z, Coughlin J C, Flemings M C. Influence of coaraening on dendrite arm spacing of aluminum-copper alloys [J] .Trans.metall.soc.AIME, 1967; 239: 1504-1511.
    61. Vogel A.Metall Sci., 1978; 12:576-578.
    62. Apaydin N, Prabhakar K V, Doherty R D. Special grain boundaries in rheocast Al-Mg [J]. mater.sci.Eng, 1980; 46: 145-150.
    63. Cole G S, bolling G F.Trans.metall.Soc.AIME., 1967; 239:1824-1835.
    64. Cole G S, bolling G F. The importance of natural convection in casting [J]. Trans. metall. Soc. AIME, 1965; 233:1568-1575.
    65. Griffiths W D, McCartney D G. Macrostructural development in aluminium alloys solidified vertically downwards [J], Mater Sci.Eng. 1993; A173: 123-127.
    66.李庆春。铸件形成理论基础[M],北京:机械工业出版社,1982。
    67.吴加雄。单电流电磁分离夹杂物的基础研究[D],硕士学位论文,上海:上海大学, 2004。
    68.钟云波,任忠鸣,邓康。行波磁场连续净化铝合金液实验[J],中国金属学报,2001;11(2):167- 171。
    69.张国志,辛启斌,张辉。关于液态金属电磁净化的探讨[J],材料与冶金学报2002;1(1):31-35。
    70.佐佐健介,前井滋生。电磁を力利用しナこ熔融金属中介在物の除去,电磁力を利用した材料プロセシシソゲの新展开。日本东京:日本钢铁协会,1999
    71. Z. N. Getseleev. Casting in an electromagnetic Field [J], JOM 1971; 23 (10): 38.
    72. Charles Vives and R.Ricou. Experimental study of continuous electromagnetic casting of aluminum alloys [J], Metallurgical Transaction B, 1985; 16B (6): 377-384.
    73.朱晓鹰,任忠鸣,金俊泽。电磁铸造铝扁锭实验研究[J],轻金属,1991;11:53-57。
    74. Ch. Vives. Electromagnetic Refining of Aluminum Alloy by the CREM Process [J], Metallurgical Transaction B, 1989; 20B (5): 623-643.
    75. Ikuto Miyoshino, Eiichi Takeuchi, Hiroshi Yano, Junichi Sakane, Tsuyoshi Saeki and Hiroyuki Kajioka. Influence of Electromagnetic Pressure on the Early Solidification in a Continuous Casting Mold [J]. ISIJ, 1989; 29(12): 1040-1047.
    76.人迫隆志,中田正之,小松政美。间歇引拔时の高周波磁场にょる连铸铸型内初期凝固制御[J],材料とアロセス,1992; 5:984。
    77.中田正之,大迫隆志,森健太郎。高周波磁界にょる铸型内初期凝固制御[J],材料とアロセス,1992;5:198。
    78.绫田研三、宫泽宪一、上杉浩之。ナツアロ电磁力利用技术开发の概要[J],材料とアロセス,1997;10:8280。
    79.任忠鸣,董华峰。软接触结晶器电磁连铸中初始凝固的基础研究[J],金属学报,1999;35(8):851-855。
    80.任忠鸣,邓康,蒋国昌。软接触结晶器电磁连铸技术的发展[J],钢铁研究学报,2002;14(I):58-64。
    81. Takeuchi E. Applied MHD in the Process of Continuous Casting [C]. Szekely J. Magneto- hydrodynamics in Process Metallurgy [C], San Diego: TMS,1992: 189-202.
    82. SanDiego, Magneto hydrodynamics in Process Metallurgy [D]: TMS, 1992: 189-202.
    83. Takeuchi E, Toh T etc. Advances of Applied MHD Technology for Continuous Casting Process [J]. Nippon Steel Technical Report, 1994: 29-37.
    84. Chino Y,Iwai K,Asai Shigeo. Mechanism of wave excitation on a liquid metal surface submerged in an intermittent alternating magnetic field [J], ISIJ, 1999, 39(12): 1245-1251.
    85.李廷举,佐佐健介,前井滋生。间断高频磁场作用下连铸型内金属液的运动和铸坯表面质量Ⅰ液体金属弯月面运动对铸坯表面质量的影响[J],金属学报,1997; 33(5(: 524-528.
    86. Li T J , N agaya A , Sassa K, et al. Study of Meniscus Behavior and Surface Properties during Casting in a High Frequency Magnetic Field [J ], Metall and Materials Trans, 1995; 26B: 353- 359.
    87.赵志浩,张北江,崔建忠。线材水平电磁连铸过程中磁场分布的数值模拟[J],材料与冶金学报,2002;1(2(:527-531。
    88.鹫见郁宏,佐佐健介,浅井滋生。连铸铸片の表面性状に及ぽす磁气压力の效果に关する? ?à实验と理论解析[J ],铁と钢, 1992; 78: 447-454。
    89.藤健彦,竹内荣一。高周波电磁气压にょる初期凝固制御特性[J ],材料と·アロ.ヌ, 1994, 7: 17。
    90.任忠鸣,周月明,张春元。水平电磁连铸中金属磁悬浮行为[J ],金属学报, 1996;32(6(:642-646。
    91. Asai S. Recent Studies on Electromagnetic Process of Materials [A ]. Sohn H Y, Gesk in E S eds. Metallurgical Processes for the Year 2000 and Beyond [C ]. Pittsberg: TMS, 1988: 17-36.
    92. Moore D J, Hunt J C R. F low, Turbulence and Unsteadiness in Coreless Induction Furnaces [A]. M etall Applications of MHD, Proc IUTAM [C]. Cambridge: IU TAM, 1982: 93-107.
    93. Debray F, Fautrelle Y, BurtyM , et al. Surface Waves and Mass Transfer Induced by a Low Frequency Electromagnetic Field [A]. Asai Shigeo eds. Proceedings of International Symposium on Electromagnetic P rocessing of Materials, EPM’94 [C ]. Nagoya: ISIJ, 1994: 29-34.
    94.朱晓鹰,任忠鸣,李廷举。高频电磁铸造小截面铸锭的研究[J ],轻金属,1990;4: 60-63。
    95.张维平,任忠鸣,金俊泽。小型扁锭的电磁铸造技术研究[J ],大连理工大学学报,1991;31(4):419-424。
    96. Sasatani K, Kaniko K, Kawase Y, et al. Analysis of Electromagnetic Casting System Using Cold Crucible by 3D Finite Element Method [A]. Asai Shigeo eds. Proceedings of International Symposium on Electromagnetic Processing of Materials, EPM’94 [C]. Nagoya: ISIJ, 1994: 132-137.
    97.佐佐健介,李廷举,杉森丰治。ほか.连铸にぉける铸片の表面粗度にぼす及间欠高周波磁场の同期印加时期と铸型冷却条件の影响[J ],材料と·アロ.ヌ,1995;8:213。
    98.和田,藤崎敬介,泽田健三。ほか.バルス型低周波磁场が印加された熔融金属の流动とメニスカス形状[J ],材料とプロ·ス, 1995;8:214。
    99.藤健彦,竹内荣一,梅泽一诚。ほか.°à?型低周波磁场にょる初期凝固制御特性[J ],材料とアロ.ヌ,1995;8:215。
    100. Masah iro Tani, Takeh iko Toh, Eh ich i Takeuch i, et al. Electromagnetic Shap ing for the Contro l of Initial So lidification in Continuous Casting [A]. Conferences Proceedings, International Congress, Electromagnetic P rocessing ofM aterials[C]. Paris: Paris LaDefence Centre Francais Del’Electricite, 1997: 527-532.
    101. KO lesnichenko A F, Yushchenko B A, Podoltsev A D, et al. Electromagnetic Moulds for Steels [A]. Szekely J eds. Magnetohydrodynamics in Process Metallurgy [C]. San Diego: TMS, 1992: 223-229.
    102.邸洪双,刘相华,王国栋。双辊铸轧薄带钢技术的新进展[J],东北大学学报,2001;21(3):1-9。
    103.李祖齐,邢长虎,翟启杰。双辊薄带连铸技术的研究与发展[J];铸造,2001;50(9):518-521。
    104.徐光,徐楚韶。带钢近终形生产技术的发展概况[J],武汉冶金科技大学学报(自然科学版)r,1999;22(2):125-128。
    105.张孝福。双辊式不锈钢带钢连铸技术的最新进展[J],太钢技术,2001;2:6-17。
    106.高少平,唐晓燕,杜锋。薄带钢连铸技术发展现状及展望[J],上海金属,1997;19(2):9-14。
    107. W. A. Opalka. Direct Strip Caster for Stainless Steel Starts Up at Nippon [J]. Iron and Steel Making, 1998; 10: 13-15.
    108. Zapuskalov, Nikolai. Comparison of Continuous Strip Casting With Conventional Technology [J], ISIJ, 2003; 43 (8): 1115-1127.
    109.施家红。双辊薄带连铸装置产业化技术经济系统评价[J],上海钢研,1999;(1):34-36。
    110. R. Steffen。带钢连铸的现状[J],上海宝钢工程设计,2000;(3):56-58。
    111.伊森博格等。薄带连铸的最新进展[J],上海冶金设计,1999;1:51-56。
    112.唐书甫。带钢连铸技术的新进展[J],炼钢,1998;5:58-61。
    113.朱静。带钢连铸技术的发展和现状[J],上海金属,2000;22(5):3-8。
    114. Zapuskalov, Nikolai. Comparison of Continuous Strip Casting With Conventional Technology [J]. ISIJ International, 2003; 43 (8): 1115-1127.
    115.施家红。双辊薄带连铸侧封技术研究[J],上海钢研,1998;2:22-27。
    116. Liang X, Pan F, Zhou S. Edge Containment of a Twin.roll for Near Net Shape Strip Casting [J]. J. Mat. Proc. & Tech., 1997; 63 (6): 788-791.
    117.李朝锋,邸宏双。侧封对双辊铸轧薄带钢工艺稳定性及铸带质量的影响[J],钢铁研究学报,2002;14(2):68-71。
    118.李朝锋,王春刚,张劲松。机械侧封对双辊薄带连铸稳定性及铸带质量的影响[J],鞍钢技术,2001;16:42-44。
    119. Ismael G, Saucedo, Kenneth E. Blazek, METEC Congress 94, 2nd European Continuous Casting Conference & 6th International Rolling Conference [J], Dusseldorf, German, Jan , 1994; 1: 20-22.
    120. K. R. Whittington, P. A. Davidson, J. Hunt, M. Yun, P. Thomas. Electromagnetic Edge Dams for Twin.roll Casting [J], Light Metal, 1998: 1147-1150.
    121. Kawachi, Asai. Confinement of Molten Puddle in a Twin Roll Caster by Use of an Electromagnetic Dam Combining a Solid Dam [J], ISIJ, 1992; 10 : 27-33.
    122. Kawachi, Masayuki, Asai. Shape Control of Molten Metal Puddle by Directly Imposing Electric Field between Roll and Magnetic Field in the Casting Direction in Twin Roll Process [J], ISIJ, 1992; 77 (9) : 1434-1441.
    123.王晓东,邓康,任忠鸣等。双辊薄带连铸电磁侧封静态模拟实验[J],钢铁研究学报, 2005;17(2):38-42。
    124.温宏权。双辊薄带连铸电磁侧封磁场的计算与分析[J],宝钢技术,2002;4:50-53。
    125.温宏权,张永杰,鲍培玮。双辊薄带钢铸轧熔池电磁侧封模拟实验[J],铸造技术, 2003; 24(3): 234-235。
    126. Vives C. Effect of electromagnetic vibration on the microstructure of continuously cast aluminum alloys [J], Materials Science and Engineering, 1993; A173 (1): 169-172.
    127. Vives C. Crystallization of aluminum alloys in the presence of cavitation phenomena induced by vibrating electromagnetic pressure [J]. Journal of crystal growth, 1996; 158(1): 118-127.
    128.张勤,崔建忠。电磁振荡对半连铸7075Al合金的宏观偏析的抑制作用[J],铸造,2003;52(3):171-175。
    129.张勤,崔建忠。电磁振荡法半连铸7075合金的微观组织及溶质元素分布[J],中国有色金属学报,2003;13(3):1184-1191。
    130.张勤,崔建忠,路贵民。电磁振荡对铝合金半连铸微观组织及溶质元素晶内含量的影响[J],金属学报,2003;9(10):1115-1120。
    131.张勤,崔建忠,路贵民,张北江。电磁振荡强度对半连铸7075铝合金微观组织的影响[J],中国有色金属学报, 2002;12 (5):222-226。
    132.张勤,崔建忠,路贵民,张北江。电磁振荡频率对半连铸7075铝合金微观组织的影响[J],材料导报,2003;17(2):79-81。
    133.张勤,崔建忠。电磁振荡下半连铸Al合金凝固组织的细化机制[J],中国有色金属学报, 2003;13(6):1500-1504。
    134. Alireza Radjai and Kenji Miwa. Effect of intensity and frequency of electromagnetic vibration on the micro structural refinement of hypoeutectic Al.Si alloys [J]. Metallurgical and Materials Transaction A, 2000; 31A (3): 755-762.
    135. Yoshiki Mizutani, Yoshinori Ohura.Effect of electromagnetic vibration intensity on micro structural refinement of Al-7%Si alloy [J], Materials Transactions, 2004; 45(6): 1944-1948.
    136. Yoshiki Mizutani, Jun Kawata. Effect of the frequency of electromagnetic vibrations on micro structural refinement of AZ91D magnesium alloy [J], Materials Research Society, 2004; 19(10): 2997-3003.
    137. Alireza Radjai, Kenji Miwa. Structural refinement of gray iron by electromagnetic vibration [J], Metallurgical and Materials Transactions A, 2002; 33(9): 3025-3030.
    138. Yoshiki Mizutani, Satoshi Kawai,Kenji Miwa. Effect of the intensity and frequency of electromagnetic vibrations on refinement of primary silicon in Al-17%Si alloy [J], Materials Transaction, 2004; 45(6): 1939-1943.
    139. Alireza Radjai, Kenji Miwa. An investigation of the effects caused by electromagnetic vibration in a hypereutectic Al.Si alloy melt[J], Metallurgical and Materials Trsnsaction, 1998; 29A(5): 1477-1484.
    140. J P Choi,K B Kim,E P Yoon.Effect of electromagnetic force on the silicon size in hypoeutectic Al.Si alloy[J], Materials Science Forum, 2004; 449: 157-160.
    141. Tsutomu Takagi, Kazuhijo Iwai, Shigeo Asai.Solidified structural of Al alloys by a localimposition of an electromagnetic oscillation force [J], ISIJ International, 2003; 43(6): 842-848.
    142. Iwai Kazuhiko and Sugiura Kento. Control of solidified structure by using electromagnetic oscillation [J], Materials Science Forum, 2005; 475: 2695-2698.
    143. Kento Sugiura and Kazuhiko Iwai.Refining mechanism of solidified structure of alloy by electromagnetic refining process [J], ISIJ International, 2005; 45(7): 962– 966.
    144.李新立。水平连铸设备及生产有色金属时金属液存储量和熔炼能力的选择[J],铜加工, 1983;37(5):466-471。
    145.周永键。水平连铸铜合金铸锭质量的改善[J],上海有色金属, 1997;18(3):114-118。
    146.章仲禹。我国水平连铸技术发展的若干意见[J],南方钢铁,1997;4:1-13。
    147.周书才。电磁搅拌对水平连铸奥氏体不锈钢组织的影响[J],特种铸造与有色合金, 2006; 26(12):784-787。
    148.周振龙。水平连铸机130mm结晶器的设计与使用[J],特殊钢,2003;24(3):37-38。
    149.莫军。水平连铸机结晶器技术的应用[J],特殊钢,2001;22(4):46-48
    150.董晟全。SiCp/Al水平连铸电磁搅拌结晶器的探讨[J],西安工业学院学报,2001;21 (4):
    336-342。
    151.孟茂生。H/C54水平连铸机的设计[J],铸造技术,2005;26(1):37-41。
    152.任裕秋。RF-850铜水平连铸机的改进与完善[J],湖南冶金,1998;1:58-60。
    153.钟秋生。水平连铸引拉紫铜工艺初探[J],冶金丛刊,2004;151(3):13-15。
    154.范其良。水平连铸拉坯频率对铸坯表面质量影响的研究[J],湖南冶金,2000;3:3-6。
    155.郭明恩。水平连铸H90合金带坯工艺条件的实验研究[J],热加工工艺,2006;35(1):32-39。
    156.张辉。水平连铸H65黄铜线坯的工艺研究和应用[J],有色冶炼,2001(5):58-61。
    157.刘刚。H65黄铜水平连铸工艺研究[J],金属世界,2007;2:10。
    158.郭明恩。H68黄铜水平连铸工艺参数优化[J],特种铸造与有色合金,2005;25(9):574-576。
    159.周维汉。对水平连铸工艺参数-反推的研究[J],钢铁研究,2005;3:35-37。
    160.唐伟。变频调速在水平连铸拉坯辊速度控制中的应用[J],电气应用,2005;24(7):93-94。
    161.唐伟。基于变频调速的水平连铸机拉坯辊速度控制系统[J],自动化仪表,2005;26(9):53-55。
    162.周英明。整体式水平连铸机拉坯辊装置的研制和应用[J],钢铁技术,2006;(1):20-21,50。
    163.席勇。伺服驱动技术在水平连铸中的应用与分析[J],Serve control,2006;3:64-67。
    164.徐建国。PLC在铜水平连铸中的应用[J],冶金自动化,1995;1:49-50。
    165.李生民。新型水平连铸智能控制系统的研究[J],铸造技术,2003;24(5):383-384。
    166.张丹。一种求解水平连铸中瞬态界面换热系数的新方法[J],特种铸造与有色合金, 2006; 26(3):146-149。
    167.陈国权,林家骝。铝合金铸件/金属型界面间隙及换热系数通用化的研究[J],铸造,1993; 8:1-6
    168.张云鹏,苏俊义。铸铁水平连铸中圆坯凝固过程的数值模拟[J],金属学报,2001;37:
    287-290。
    169.李朝霞,郑贤淑,金俊泽。连续铸造铝锭水冷边界换热条件的分析[J],铸造技术,2001;
    1: 17-20。
    170.徐春杰,甘雨,张云鹏。铸铁水平连铸圆结晶器优化设计数值模拟[J],特种铸造及有色合金, 2003;2:26-28。
    171.程鸣涛。水平连铸中断面圆坯凝固过程的数学模拟[J],钢铁研究学报,1996;8(4):10-13。
    172.骆合力。水平连铸凝固过程的数值模拟[J],特种铸造与有色合金,1999;S(1):142-145。
    173.杨建新。水平连铸钢坯凝固温度场的计算[J],韶关大学学报(自然科学版), 1999;20(4):59-69。
    174.卢远志。水平连铸钢坯凝固过程的计算机仿真[J],湖南大学学报,1999;25(1):38-43。
    175.付军隆。水平连铸铸坯温度和热应力的计算分析[J],北京科技大学学报, 1994;16(4):315-320。
    176.谢文华。铜材水平连铸温度场的数值模拟[J],塑性工程学报,1996;3(2):7-13。
    177.李新涛,李丘林,李廷举。电磁场对水平连铸紫铜管表面质量及组织性能的影响[J],中国有色金属学报,2004;14(12):2060-2065。
    178.李丘林,李新涛,李廷举。空心铜管坯水平电磁连铸过程的电磁效应研究[J],西安交通大学学报,2005;39(9):1003-1006。
    179.左玉波。低频电磁水平连铸新型超高强铝合金[J],特种铸造与有色合金, 2007;27(9): 706-708。
    180.朱庆丰。低频磁场对水平连铸2024铝合金微观组织的影响[J],东北大学学报(自然科学版),2007;28(7):998-1001。
    181.高学鹏。电磁场对水平连铸Al-1Si合金线材组织和性能的影响[J],特种铸造与有色合金,2007;27(6):264-268。
    182.上野晴信,鹤饲直道。纯铜铸件熔铸时气体的特性及其对铸件质量的影响[J],国外铸造,1979;2:34-39。
    183.龚建斌编译。纯铜熔炼工艺进展[J],国外铸造,1980;2:6-10。
    184.北方交通大学材料系编写组。金属材料学[M],北京,中国铁道出版社,1983:276。
    185.袁鸽成,汪沛雨,黎祚坚。上引铸造无氧铜杆的气孔特征及其形成机理[J],特种铸造及有色合金,1997;5:13-15。
    186. B.M丘尔辛著。张志超,陈德译。铜和铜合金的熔炼[M],1990。
    187. The ravromead upwards vertocal continuous casting process.Sand R.Cochrane Rautomead International Limited, International Wrought Copper Council Conference Maastricht Netherlands October 1995.
    188. A discussion of future treads and their influne on the copper strip, sheet and plate industry. John G.Cowie&Robert D. weed, copper development Association Inc.February 1998.
    189.冼爱平,液态金属的物理性能[M],北京:科学出版社,2006。
    190. Deng K.Electromagnetic field calculation and analysis of levitation melting with cold crucible [J], Acta Metall.Sinica, 2000; 13(2): 702-707.
    191. Deng K.Calculation and experimental analysis of electromagnetic continuous casting with soft-contacted mould [J], Acta Metall.Sinica, 2000; 13(2): 708-714.
    192. Deng K.Theoretical and experimental analysis of continuous casting with soft-contacted mold [J], Trans.Nonferrous Met.Soc.China, 2000; 10(3): 314-319.
    193.程镇康。锡磷青铜带生产技术的发展和几个关键问题的评述[J],铜加工, 2005; (1):18-23。
    194.李秋玲。薄板坯水平连铸结晶器电磁搅拌的研究[D],上海:上海大学, 2005: 29-30。
    195.朱守军,任忠鸣,邓康。水平电磁连铸电磁场及屏蔽效应的数值计算[J],上海大学学报,1997;3(2):177-182。
    196.赵祖德,姚良均,郭鸿运等。铜及铜合金材料手册[M],北京:科学出版社, 1993:160, 287-288。
    197.洛阳铜加工厂中心试验室金相组。铜及铜合金金相图谱[M],北京:冶金工业出版社, 1983:211-212。
    198.闵乃本。晶体生長的物理基础[M],上海,上海科学技术出版社,1982,120。
    199.王晖。强磁场对合金中析出相凝固行为的影响[D],上海:上海大学,2002,2。
    200. Q Wang, T Moniyama, K Iwai, S Asai. Non-contact generation of intense compression waves in a molten metal by using a high magnetic field [J]. Materials Transactions,JIM.2000,41(8):1034-1039。
    201.胡汉起。金属凝固原理[M].冶金工业出版社,北京,1999,1-100。
    202.王晖,任忠鸣。强磁场对Bi-Mn合金半固态凝固过程中MnBi析出相组织的影响[J],中国有色金属学报,2004,14(7):1095-1100。
    203. Gaskell R. An Introdution to Transport Phenomena in Materials Engineering﹝M﹞.New York:NY,Mac Millan,1992,125-130。
    204. S Amano, K Iwai, S Asai. Non-contact Generation of Compression Waves in a Liquid Metal by Imposing a High Frequency Electromagnetic Field [J],ISIJ,1997,37(10):962-966。
    205.王强,岩井一彦。磁声波对金属凝固组织的影响[J],金属学报,2002, 38(9):961-965。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700